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Abstract: A warning prior to seizure onset can help improve the quality of life for epilepsy patients.
The feasibility of a wearable system for predicting epileptic seizures using anomaly detection based
on machine learning is evaluated. An original telemeter is developed for continuous measurement of
R-R intervals derived from an electrocardiogram. A bespoke smartphone app calculates the indices
of heart rate variability in real time from the R-R intervals, and the indices are monitored using
multivariate statistical process control by the smartphone app. The proposed system was evaluated
on seven epilepsy patients. The accuracy and reliability of the R-R interval measurement, which was
examined in comparison with the reference electrocardiogram, showed sufficient performance for
heart rate variability analysis. The results obtained using the proposed system were compared with
those obtained using the existing video and electroencephalogram assessments; it was noted that
the proposed method has a sensitivity of 85.7% in detecting heart rate variability change prior to
seizures. The false positive rate of 0.62 times/h was not significantly different from the healthy
controls. The prediction performance and practical advantages of portability and real-time operation
are demonstrated in this study.

Keywords: epilepsy; electrocardiography; heart rate variability; multivariate statistical process
control; wearable system; machine learning; seizure prediction
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1. Introduction

Epilepsy is a chronic neurological disorder characterized by recurrent seizures that affects
approximately 1% of the world’s population [1]. Antiepileptic drugs are ineffective in controlling
seizures in up to 30% of patients to whom it is administered, who can develop intractable epilepsy
with the administration of more than three antiepileptic drugs [2].

Convulsions or loss of consciousness associated with uncontrolled seizures may cause serious
injuries to the patients themselves and the people around them. Early detection of epileptic seizures
prior to symptoms allows for early intervention with fast-acting medication, vagus nerve stimulation,
or evasive action against accidents. A questionnaire answered by 141 epilepsy patients showed that
more than 90% of the patients desired seizure prediction [3].

Although epileptic seizure prediction using electroencephalogram (EEG) data has achieved
reliable sensitivity and specificity [4–7], intolerance to motion artifacts with scalp EEG and craniotomy
techniques required for invasive EEG would be a major barrier to dissemination. In addition, because
the real-time analysis of the EEG channels acquired at a sampling rate higher than 500 Hz requires
huge machine power for calculation, the current application software achieving standalone seizure
prediction can hardly be implemented on a handheld device, such as a smartphone.

As epileptic seizures affect the autonomic nervous function, peri-ictal changes are seen in the heart
rate and electrocardiogram (ECG) data [8–10]. The parasympathetic and sympathetic outputs to the
heart are modulated by the central autonomic network, which includes the insular cortex, orbitofrontal
cortex, cingulate, amygdala, hypothalamus, and periaqueductal gray matter. Excessive neural
activation associated with epileptic seizures distributed in these brain regions affects the functioning
of the central autonomic network, which is reflected by heart rate variability. Hence, the practicality
of prediction care can be improved by monitoring the cardiac autonomic changes in the early ictal
phase [11–13] and preictal phase [14] by heart rate variability (HRV) analysis [15,16] with a portable
Holter monitor. A systematic review of HRV and epileptic seizures was performed, which showed
that the HRV and heart rate change before seizure onset [17]. Feature extraction from HRV indices
preceding seizure onset using the machine learning technique should contribute toward realizing
automatic seizure prediction, whereas the Lorenz-plot-based method predicted seizures in only three
of the seventeen patients [18]. Although time-frequency analysis [19], nonlinear analysis of HRV
using fuzzy clustering [20], and the machine learning method based on support vector machine [21]
demonstrated greater prediction sensitivity than the random predictor in retrospective analysis of
preictal ECG collected from video-EEG recording, the feasibility of real-time analysis and prospective
clinical applications has not been examined. Evaluation of the real-time capability through ECG data
acquisition, calculation of HRV indices, and calculation of analytic features operating on a wearable
system is crucial for demonstrating the feasibility of the prediction system, because seizure warnings
would help avoid seizure-related accidents, improve patient quality of life, and provide novel treatment
strategies, particularly for intractable epilepsy.

To improve the positive predictive value in the seizure prediction, our group reported a novel
analytical method using machine learning. The method employs multivariate statistical process control
(MSPC) [22] for anomaly detection to identify minority samples that have different characteristics to
the remaining samples.

In this study, the feasibility and reliability of seizure prediction as a diagnostic tool that is practical
for daily use by patients is evaluated with a prototype in hospitals during long-term video-EEG
monitoring, which is categorized as the phase 2 validation framework [23]. Section 2 describes the
bespoke wearable system for HRV measurement and analysis for seizure prediction. The experimental
methods for evaluating the seizure prediction capability are explained in Section 3 and the results are
shown in Section 4. Section 5 discusses the results from instrumentation engineering and biomedical
significance perspectives. Section 6 concludes the study.



Sensors 2020, 20, 3987 3 of 16

2. Epileptic Seizure Prediction System

2.1. System Composition

Figure 1 shows an overview and a flowchart of the proposed seizure prediction system.
The developed wearable system consists of an R-R interval (RRI, the time elapsed between two successive
R-waves of the QRS signal on the electrocardiogram) telemeter and a smartphone. Although many
wearable heart rate monitors are available on the market, the provided functions have limitations for
use in the proposed system, which requires a sampling rate higher than 500 Hz for HRV analysis,
device-embedded real-time RRI calculation to reduce the calculation load of the smartphone, and an
automated gain control function to be operated by a nonspecialized user. Thus, we developed an
original telemeter to realize the functions shown in the upper half of Figure 1 within a small and
lightweight form factor. Figure 2a shows the block diagram of the telemeter that measures the RRIs of
the ECG. The device has small dimensions of 74 × 34 mm, with a thickness of 12 mm, excluding the
three one-meter ECG lead wires, as shown in Figure 2b, and a long battery life for wearable healthcare
applications. The analog front-end circuitry of the telemeter amplifies the AC-coupled ECG signal
obtained from the three disposable electrodes using an instrumentation amplifier, and reduces the noise
using a 50/60 Hz notch filter and a variable gain low-pass filter. ECG signals preprocessed in the analog
front end are sampled by a 1 kHz 10-bit analog-to-digital converter and analyzed using threshold-based
R-wave detection [24] in a cortex-M0 microcontroller built into a Bluetooth module (EYSFCNZXX,
Taiyo Yuden, Japan). The sampling frequency was compatible with the 1 kHz sampled video-EEG data
used for the phase 1 validation of our previous method [22]. In a simple threshold discrimination,
the low-frequency baseline drift and P- and T-waves (which have the same polarity as R-waves in
the Standard Lead II configuration) of ECG signals may lead to false positives of R-wave detection.
Accordingly, a quasi-band-pass filtering program determines the pulse width of the digitized ECG and
forwards the digitized ECG to a comparator when the pulse width is within 3–50 ms. A timer counts
and transmits RRIs to the smartphone via the Bluetooth 4.0-LE wireless connection, which operates
under the smartphone’s heart rate profile. Here, the RRIs for 60 beats are stored in the telemeter’s
memory to avoid data loss due to transmission errors in the wireless connection. An automatic gain
control function programmed in the telemeter microcontroller enables easy operation, which can be
performed by nonspecialized subjects with simple instructions [25,26].
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Figure 1. System overview and signal processing workflow of the proposed epileptic seizure
prediction system.
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developed Android app showing memo buttons; current heart rate appears on the heart while
monitoring. Instrumentation amplifier (Inst. Amp), analog-to-digital converter (ADC), receiver and
transmitter (Rx/Tx).

2.2. HRV Analysis

The bespoke smartphone software receives and analyzes RRI data in real time (Figure 2c) to derive
HRV indices of autonomic nervous activities. The HRV indices used for the epileptic seizure prediction
consist of four time-domain indices (mean of RRI (meanNN), standard deviation of the RRI (SDNN),
root mean square of the differences of adjacent RRIs (RMSSD), and the number of pairs of adjacent
RRIs whose difference is greater than 50 ms within a given length of measurement time (NN50)) and
four frequency-domain indices (total power (TP), variance of RRI, power of the low-frequency band
of 0.04–0.15 Hz (LF), power of the high-frequency band of 0.15–0.4 Hz (HF), and ratio of LF to HF
(LF/HF)) [15].

HRV indices are derived from statistical or frequency analysis of a three-minute moving window,
so an outlier contamination in the RRIs would adversely affect the indices for the following three
minutes. Hence, the outlier RRIs should be replaced using the following real-time compensation
techniques, which were implemented as a function on the smartphone app in this work.

The observed RRIs for 180 s are stored in a first-in, first-out buffer. The median absolute deviation
RRIMAD of the i-th RRI, i.e., RRIi, is calculated with the stored RRIs (RRIn | n: 1~i-1) as

RRIMAD =median|RRIi −median RRIn| (1)
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where the function “median” gives the median of the input variables. The normal RRI range is

median RRIn − 4σ < RRIi <median RRIn + 4σ (2)

where the standard deviation of the RRI is σ = 1.4826×RRIMAD.
The RRI outliers, which are less than the lower limit, are removed from the RRI data used for

HRV analysis. However, when the observed RRI is greater than the upper limit, it is assumed that
multiple heartbeats have been missed. Accordingly, the number of missed heartbeats N is estimated as

N = round
(

RRIi
median RRIn

)
(3)

where the function “round” returns the rounded value of the input value and the outlier is replaced
with the N-th corrected RRIs by

R̂RI =
RRIi

N
(4)

The time-domain indices are calculated from the buffered RRIs. For the frequency-domain indices,
the stored RRIs are resampled to ensure uniform intervals for the frequency analysis. The third-order
spline is used for the RRI interpolation and the sampling rate is 4 Hz. The power spectrum
density of the resampled RRI data is calculated using an autoregressive model of the order of
40 and the frequency-domain indices are derived from the power spectrum density according to
Fujiwara et al. [22].

2.3. Anomaly Detection Prior to Epileptic Seizure

Univariate statistical process control monitors each variable with upper and lower limits, which is
a simple approach to anomaly detection. However, univariate statistical process control is unsuitable
for anomaly detection because it cannot monitor changes in correlated variables. To consider the
correlation between the HRV indices, we employed MSPC, which is a machine learning technique that
has been applied to anomaly detection in multivariate systems [27–29].

In MSPC, principal component analysis models linear correlations, referred to as principal
components. In this study, six principal components with the highest contribution rates describe major
trends in the changes of the HRV indices.

MSPC defines the normal operating conditions as two indices, namely the Q and T2 statistics [30],
which monitor the gap between sample and model data. The Q statistic is the squared distance between
a sample and the subspace spanned by the principal components; that is, the Q statistic measures the
dissimilarity between the sample and the model data from the viewpoint of the correlation between the
variables. The T2 statistic is the Mahalanobis distance between a sample and the origin in the subspace
spanned by the principal components. When the T2 statistic is low, the sample is close to the mean of
the model data. The statistics are obtained by the following determinants

Q = xT(I − VRVT
R)x (5)

T2 = xTVRÓ
−2
R VT

Rx (6)

where x denotes the column vector consisting of the eight sampled HRV indices. Here, VR ∈ R
8×6 is a

loading matrix, the r-th column represents the direction of the r-th principal component; OR ∈ R
6×6 is

a diagonal matrix, where the diagonal elements are standard deviations of the corresponding principal
components; and I is the identity matrix. Equations (5) and (6) are not computationally expensive,
so MSPC is suitable for real-time monitoring of HRV. There are few instances of epileptic seizures
(i.e., anomalies) that are collected in data, so MSPC models the normal data. The collected RRI data
and calculated parameters are analyzed for seizure prediction according to Algorithm 1.
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Algorithm 1 Seizure prediction algorithm

1 set τ [0]← 0, C [0]←
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4 Extract and preprocess the HRV indices x[t].
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6 if
{(

T2[t]
∨

Q[t] > CL
)

AND C[t− 1] = N
}

OR{(
T2[t]

∨
Q[t] ≤ CL

)
AND C[t− 1] = P

}
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indicate “interictal” and “preictal,” respectively. To ignore instantaneous
HRV changes such as those due to rapid motion, the patient status is determined as preictal when
either the T2 or Q statistic exceeds its control limit for more than ten seconds continuously.

The control limits (CLs) of the Q and T2 statistics are defined as α% confidence limits. CLs are
determined by the lower α% and upper α% of the confidence interval for samples representing the
normal condition. The sensitivity and the specificity of the MSPC are controlled by α, which was set
to 99%.

The analysis method mentioned above was implemented on an Android app programmed using
the Java programing language. In this study, the modeling parameters of VR and ΣR were used from
Fujiwara et al. [22].

3. Experimental Methods

3.1. MSPC Model Construction

The interictal HRV data for constructing the MSPC model were collected from refractory epilepsy
patients who were admitted to three departments in Japan: the Department of Neurosurgery,
Medical Hospital, Tokyo Medical and Dental University (TMDU); the Department of Psychiatry,
National Center Hospital of Neurology and Psychiatry (NCNP); and the Department of Epileptology,
Tohoku University Hospital (TUH). Patients underwent clinical video-EEG monitoring for presurgical
evaluation or seizure assessment. Data from fourteen patients collected by Fujiwara et al. (2016) were
used with the approval of the Medical Research Ethics Committees from all participating departments.
Two or more experts from the Japan Epilepsy Society labeled seizures and epileptic interictal spikes
from video-EEG data of the awake state to allow creation of a dataset containing only normal data.
The HRV indices were calculated from the cropped ECG and the learning procedure of the MSPC
model was performed by MATLAB according to (Novak et al., 1999). The MSPC does not model
abnormality (i.e., seizures), and collecting clean ECG data during a seizure is difficult because of the
contamination of seizure motion artifacts and the low frequency of seizures.

3.2. Measurement Setup and Protocols

The prospective study was conducted on epilepsy patients admitted to TMDU, NCNP, and the
Department of Psychiatry of Nara Medical Center (NMC), Japan, for clinical video-EEG monitoring.
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The experiments were approved by the Medical Research Ethics Committees of TMDU, NCNP,
and NMC, and written informed consent was obtained from each participant.

The subjects rested in a supine or sitting position in a bed inside a monitoring room and
their prescribed antiepileptic drugs were reduced from the usual dosage, according to the standard
procedure of video-EEG monitoring. The video, ECG, and EEG data were recorded simultaneously
using a long-term video-EEG monitoring system (Neurofax EEG-1200, NIHON KOHDEN, Japan) with
sampling frequencies of 500 or 1000 Hz for both ECG and EEG.

The fabricated wearable RRI telemeter, which has disposable ECG electrodes and a bipolar CS5
lead configuration, was used simultaneously with the video-EEG monitoring system. Data were
collected with an Android smartphone (Blade S Lite g02, ZTE Japan K. K., Japan) fixed to the bedside
and tethered for continuous power. The internal clock of the smartphone was manually synchronized
with the clock of the video-EEG monitoring system, because the network security regulations do not
permit use of the network time protocol. The recording with the wearable system was continued as
long as possible during the video-EEG monitoring.

The CLs were calculated during post-processing after video-EEG monitoring, because the
interictal periods must be determined from the video-EEG data diagnosed by clinical specialists.
Therefore, only steps 6–12 in Algorithm 1 were executed on the PC after the experiments.

The system was evaluated with video-EEG monitoring, which is considered the gold standard for
commercial seizure detection devices [31–33]. However, video-EEG monitoring restricts body motion
and autonomic change from normal daily life, which may lead to the underestimation of the number
of false positives. Therefore, in addition to the recommended validation methods [34], the system was
evaluated on the healthy subjects (controlled to be consistent in gender and age) and focused on false
positives from the uncontrolled situation of their daily life. The healthy subjects without a history
of cardiac and neuronal diseases were asked to wear the system during their daily life, except while
sleeping. The same criteria for data exclusion with the patient data was used.

4. Results

4.1. Patient Attribution

Eighteen focal epilepsy patients were admitted to the study who were not involved previously.
Data from two patients were removed because they did not have a seizure. The data obtained during
the nocturnal period between 20:00 and 08:00 and during naps (observed in video) were removed
from the assessment, as the risk of accidental injury due to focal seizures during sleep is significantly
lower than those during awake periods. Moreover, the HRV is affected by micro-arousal and sleep
stage transitions [35,36], which may increase false positives. Thus, nine patients were excluded as they
had seizures only during sleep. Tables 1 and 2 detail the remaining seven patients and their analyzed
episodes, respectively. Premature ventricular contraction may also cause false positives.

Table 1. Patient demographic and clinical characteristics. Medications were carbamazepine (CBZ),
gabapentin (GBP), levetiracetam (LEV), valproic acid (VPA), rufinamide (RFN), lamotrigine (LTG),
clonazepam (CZP), zonisamide (ZNS), and lacosamide (LCM).

Patient Sex Age Seizure Foci Medication (mg/day)

A F 31 Right temporal lobe CBZ 200, GBP 1200
B M 54 Left mesial temporal lobe LEV 500, VPA 1000
C M 20 Left temporal lobe LEV 1000
D F 25 Undefined RFN 600, LTG 150, LEV 2500, VPA 400
E F 42 Occipital lobe (undefined lateralization) LEV 2000, GBP 600, CZP 1, ZNS 300
F M 9 Right frontal lobe VPA 400, CBZ 200
G F 14 Undefined LEV 1750, LCM 50
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Table 2. Collected episodes. Seizures were focal-impaired awareness seizures (FIAS), focal to bilateral
tonic–clonic seizures (FBTCS), and focal aware seizures (FAS). “FIAS→FBTCS” means that FIAS
symptomatically changed to FBTCS, which was treated as a consecutive seizure.

Patient Seizures Total Duration
(h:min)

Interictal Duration
(h:min)

Control
(age/gender)

Total Duration
(h:min)

A 3 FIAS 70:14 0:53 31/F 5:08
B FIAS→FBTCS 40:35 13:47 57/M 4:48
C 2 FIAS 32:18 9:21 20/M 7:17
D FIAS 105:52 2:57 25/F 7:08
E 2 FAS 85:03 2:43 45/F 11:21
F 2 FIAS 28:39 8:07 9/M 6:07
G 3 FAS 86:45 2:28 16/F 7:14

To independently evaluate the performance, periods of data affected by such pathophysiologic
contaminants were identified by cardiovascular specialists certified by the Japanese Circulation Society
and were removed from the evaluation. Additionally, contaminated motion artifacts in the EEG traces
increase the difficulty to accurately determine seizure onsets and interictal discharges. These noisy
intervals of EEG data are defined with the analyzed results, such as the anomalies in the HRV indices,
Q/T2 statistics, and RRI interpolation performed by Equations (1)–(4), then removed from the validation
of the seizure prediction performance under visual inspection performed by two or more specialists
certified by the Japan Epilepsy Society. The remaining data were reviewed and diagnosed by two or
more specialists certified by the Japan Epilepsy Society and the start of the seizure symptoms was
labeled as the seizure onset. On the other hand, the time intervals greater than 30 min from seizure
onsets, sleep activity, and interictal discharges were labeled as the interictal periods by the specialists
observing the video and EEG. The interictal data were used to evaluate the false positives due to
the malfunction of the proposed method; they were independent from the pathological physiologic
changes in the patients.

In addition, the data from seven healthy controls whose age and gender were balanced with the
patients were collected with the proposed system during their daily life, as shown in Table 2.

4.2. Measurement Accuracy and Reliability

The interictal RRIs obtained using the proposed system and from the video-EEG monitoring
system were compared using Bland–Altman analysis [37]. The RRIs were derived from the ECG
channel recorded on the video-EEG data with the same MATLAB features used in [22]. These RRIs were
aligned with those collected by the developed system to be on the same timeline in order to calculate
the statistical indices of the Bland–Altman analysis. The Bland–Altman plot (Figure 3) describes the
compatibility of the two compared systems. The horizontal and vertical axes represent the mean and
the difference (subtracting the device RRI from the reference RRI) of the RRIs, respectively, obtained
from the compared systems. The dashed horizontal line and the adjoining number indicate the mean of
the difference and represent the measurement bias of the proposed system against the reference system.
The two solid horizontal lines represent the intervals of the limits of agreement of the measurement
difference from the Bland–Altman analysis.

Table 3 lists the measurement failure rates of the RRIs calculated from the number of RRI outliers
beyond the range defined by Equation (2). Here, the RRI outliers have been replaced using the outlier
modification method (from Section 2.2), so that the effects of the outliers on the HRV indices are
removed to avoid inducing false positives.
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Table 3. Measured failure rate for all subjects.

Patient Total RRIs RRI Outliers Failure Rate (%)

A 245,920 11,564 4.7
B 163,520 577 0.4
C 159,240 5805 3.6
D 474,630 31,665 6.7
E 343,770 14,668 4.3
F 144,530 2446 1.7
G 419,440 11,866 2.8

4.3. Seizure Prediction

Seizure prediction between 15 min prior to seizure onset and the moment immediately before
seizure onset was considered to be successful [22], i.e., the prediction horizon was 15 min. Table 4
lists the durations when the Q and T2 statistics exceed the control limit for more than 10 s, where the
seizure starts at t = 0.

The seizures were identified by a character for the patient identity and a number for the seizure
instance, e.g., A1 was patient A’s first seizure. Twelve of the fourteen seizures were predicted correctly
with a sensitivity of 85.7% by the Q statistic and two of fourteen seizures were predicted correctly
with a sensitivity of 14.3% by the T2 statistic. The one-sided sign test [38,39] of the Q and T2 statistics
showed that the sensitivity of our algorithm was significantly greater than and lower than the chance
level, respectively (both p = 0.0065). Figures 4 and 5 show examples of how the Q and T2 statistics
change before a seizure onset and during the interictal period, respectively. The colored band in the
figures highlights the duration when C[t] = P was satisfied, indicating that the statistic exceeded CL
(represented with the colored horizontal line) by 10 s and was discriminated as preictal in Algorithm 1.

The false positives during the interictal periods were analyzed and summarized for each patient
in Table 5 using a popular method in the field of seizure detection systems [40]. The false positive rate
is defined as the number of false positives per hour.
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Table 4. Seizure prediction performance. The duration of prediction is shown with the start and the
end of exceedance (e.g., −05:28 to −05:17) means that the statistic exceeded the control limit from 5 min
28 sec to 5 min 17 sec prior to a seizure. NA indicates not available, meaning that the statistic did not
exceed the control limit. Sen (sensitivity) summarizes the true positive ratio of seizure prediction.

Seizure
Duration (min:s to min:s)

Q T2

A1 −05:10 to −04:58 NA
A2 −05:16 to −02:19 NA
A3 NA NA
B1 −07:06 to −05:16 NA
C1 −14:40 to −14:25, −12:41 to −11:40 NA
C2 NA −09:56 to −08:16
D1 −13:05 to −11:15 NA
E1 −16:09 to −14:44, −09:36 to −06:39 NA
E2 −14:43 to −10:36 NA
F1 −12:43 to −12:06 −13:18 to −10:28, −06:34 to −02:52
F2 −15:41 to −12:42, −10:13 to −08:44 NA
G1 −14:23 to −13:39, −08:37 to −04:54, −03:38 to −01:05 NA
G2 −03:52 to −02:59 NA
G3 −12:18 to −09:33 NA

Sen 85.7% 14.3%
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Figure 4. Results of MSPC analysis for seizure episodes (a) A1 and (b) B1. The horizontal lines and
vertical lines indicate the control limits and the seizure onset, respectively. The colored bands denote
C[t] = P, indicating the discriminated preictal change.
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Table 5. False positive rate during interictal period.

Patient
False Positive Rate (times/h) False Positive Rate of Healthy Control

Q T2 Q T2

A 3.34 1.11 0 2.14
B 0.29 1.16 0 1.46
C 1.62 1.62 0.69 1.92
D 0.43 1.71 0.14 0.56
E 0.67 0.34 1.32 0.59
F 0.73 4.76 1.30 0.65
G 0.74 0.37 0.97 1.82

Total 0.62 1.34 0.93 1.02

5. Discussion

EEG is the most popular biomarker for seizure prediction, but HRV is rarely used [41], although the
effects of epileptic seizures on the cardiac autonomic function have been reported in the early ictal
phase [11–13] and the preictal phase [14]. Previous approaches of seizure prediction achieved
comparable performance with HRV and time-frequency analysis [19], fuzzy clustering [20], and a
support vector machine classifier [21]. However, only retrospective analysis of video-EEG data was
performed, and real-time analyses are not reported. In this study, a wearable system was used
with video-EEG monitoring. The HRV indices were calculated in real time on a smartphone that
contained a precalibrated MSPC model. Only the control limit, which is a discrimination threshold of
seizure prediction, was calculated after measurement, since the interictal periods should be defined by
specialists through a diagnosis of the video-EEG data. In clinical situations, the proposed system would
be used after a definitive diagnosis has been made with video-EEG monitoring, with the control limits
being calculated prior to use. In addition to prediction, the smartphone app sends data to a server,
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so remote monitoring in telemedicine may enable rapid fine-tuning of CLs and τ via the network.
Thus, the proposed system demonstrated adequate real-time HRV monitoring and seizure prediction.

The small size of the proposed system, consisting of a telemeter and a smartphone, allows patients
to hold the system. The battery life depends on the smartphone model and the telemeter’s operating
duration of more than 48 h after a full charge. Considering that a fully charged Android smartphone
depletes its 3010 mAh battery in 14.12 ± 0.68 h (mean ± SD, n = 6) under continuous operation,
the proposed wearable system has sufficient battery life for daily activity monitoring from 09:00 to
18:00. Although the fabricated telemeters failed to measure the RRIs of 3.46 ± 1.91% (mean ± SD) in
the interictal episodes, the failure rates are sufficiently small to be used for HRV analysis, because an
RRI failure that is less than 5% does not cause a significant error in the HRV indices when they are
compensated properly [16,42]. Meanwhile, the effect of the RRI outliers can be minimized through
RRI outlier compensation (Section 2.2). The intersubject variance in the RRI failure rates suggests that
it was affected by the stability of the electrodes and patients, because the threshold-based R-wave
detection method adopted in the proposed telemeter is relatively weak against the baseline drift of
ECG. Since the present study showed that the original telemeter exhibited sufficient performance only
in situations where patient activity was limited and the false positive rates in healthy controls were
relatively higher than that in patients, device lead-off and motion artifacts in daily life activity should
be discussed in the upcoming phase 3 and 4 studies. Garment-type ECG electrodes could be a solution
for improving usability and reducing motion artifacts originating from multiplied wire leads [43].

Although the numbers of seizures and patients used for evaluation are relatively small in
comparison to the retrospective studies for seizure prediction [44], the number of patients used for the
learning dataset is comparable because the MSPC model was constructed from fourteen subjects in
our previous study [22]. In general, the number of events per variable is recommended to be as least
ten [45] when a statistical model is built. The proposed MSPC model has eight input HRV features
that were calculated from an RRI between two heartbeats. The model was constructed with 18.9 h of
interictal data that included more than ten thousand heartbeats [22]. Thus, the sample size for model
construction was appropriate for this study. Meanwhile, statistical significance was shown for the
prediction sensitivity, because fourteen seizures were obtained from seven patients. A study with a
larger number of subjects with controlled syndromes and focus locations may help in understanding
the variance in prediction latency.

In Fujiwara et al. [22], epileptic seizure prediction with a sensitivity of 91% and a false positive
rate of 0.7 times/h was performed using an offline retrospective analysis of the ECG extracted from
long-term video-EEG monitoring. In this current study, the measurement and analysis functions were
implemented in the wearable system and operated in real time. The developed system realized a
sensitivity of 85.7% and a false positive rate of 0.62 times/h, where the MSPC model was constructed
with previously unseen data (i.e., different patients) and the Q statistics were used independently for
seizure prediction. The proposed system’s sensitivity is comparable to previous systems (78–100%)
introduced in the review papers, which summarized 23 seizure prediction methods [40,46]; however,
most of them did not consider wearability or real-time analysis capability, so are not considered suitable
for practical use. Conversely, the retrospective studies of EEG-based seizure prediction achieved a
false positive rate within the range of 0.06–0.39 times/h. The clinical studies of the seizure detection
(not prediction) system [33,47] were comparable within the range of 0.04–0.16 times/h. In recent
retrospective studies on seizure prediction using HRV analysis, Pavei et al. [48] presented an epileptic
seizure prediction algorithm adopting an SVM classifier for HRV signals that forecasted seizures with a
sensitivity of 94.1% and a false positive rate of 0.49 in patients with epilepsy and 0.19 in healthy subjects.
Billeci et al. [21] proposed an HRV-based patient-specific seizure prediction method using recurrence
quantification analysis, with an average sensitivity of 89.6 and a false positive rate of 0.41 per hour.
The interview-based patient survey [3] showed that patients require high sensitivity from seizure
prediction devices, whereas they regard specificity as secondary. However, the majority of patients
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required false alarms to be less than the correct predictions. Therefore, the present method requires
further development to reduce the false positive rate.

There was no significant reduction in the false positive rate from our previous study. The results
support our previous study’s hypothesis that the false positives may be due to body motion affecting
the autonomic nervous system and HRV. As the patients rested in a sitting or supine position for
most of the time during the video-EEG monitoring, the probability of body motion occurrence in the
present study is considered similar to the previous study. The calculation of the t-test showed that
the difference in the false positive rate of Q and T2 statistics between the patient and healthy groups
was not statistically significant (p > 0.05). These results suggest that the autonomic activity rates of
the healthy subjects and the epilepsy patients are not significantly different during interictal periods,
where there is no effect from the interictal discharges.

The false positive rate of the Q statistic was significantly high in patient A. The data length of
the extracted interictal periods of patient A was shorter than other patients because the patient had
more seizures and interictal discharges than others. The insufficient length of the interictal data made
the control limit unreliable. In patient C, two of the four false positives occurred while eating in
the Q statistic, while three of the four false positives in T2 occurred while eating. Patients A and
C had temporal lobe epilepsy (TLE), the severity of which may be related to abnormal heart rate
regulation [49,50]. Considering preictal episodes A3 and C2, which were not predicted by the Q
statistic, the interictal period should be carefully selected for appropriate control limit definition.
However, the extracted interictal episodes were shorter than those in previous studies [5], because the
severe exclusion criteria were defined to strictly exclude the epileptiform activity from the learning
and CL tuning dataset [22]. Further work is required to determine sufficient durations of the interictal
episodes for tuning of CLs and to develop a MSPC model specific to TLE patients.

Patient F showed a significantly high false positive rate in the T2 statistic. According to the results
of the video-EEG assessment, four of thirteen false positives occurred during a cognitive function test
and seven occurred when the patients were focused on their hobbies (e.g., making plastic models),
which suggests that HRV changes occurred due to the mental workload, as seen from the T2 statistic.
This hypothesis coincides with our previous results, which showed that the T2 statistic exerted a better
discrimination performance than the Q statistic in preventing drowsy driving accidents using HRV
analysis and MSPC [51].

This study has several limitations that should be focused on in future work. Only Japanese
patients with limited epilepsy syndrome (focal epilepsy) were selected, which should be addressed in
future work. The developed system was examined under limited conditions at the hospital, as precise
evaluation of the prediction sensitivity requires the determination of accurate seizure onset and because
the false positive rate requires reliable evidence of isolation from the effect of interictal discharges
or sleep. Hence, we selected this limited situation that could facilitate simultaneous video-EEG
monitoring, and the results were compared with the healthy controls in unlimited situations. However,
evaluation of the proposed system considering practical situations in a patient’s daily life will be
performed in future work to demonstrate the efficacy of a wearable seizure alert system. The ictal and
interictal data while sleeping were excluded from the analysis. As suggested in the clinical trial in a
seizure detection device [33], the development of an alternative MSPC model constructed only from the
interictal sleep data may have the ability to predict sleep seizures, which remains to be developed and
evaluated in future work. In addition, the intervals that were difficult for labeling preictal or interictal
phases due to artifact contamination in the EEG data were removed from analysis retrospectively,
although this offline preprocessing cannot be achieved in real-world situations. This may lead to the
underestimation of the number of false positives and should be addressed in the upcoming phase
3 trial.
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6. Conclusions

A prototype of a wearable system for epileptic seizure prediction was developed in this study.
A bespoke telemeter operated by a nonspecialized person demonstrated sufficient accuracy and
reliability for RRI measurement in comparison with the reference ECG of the video-EEG monitoring
system. The Q and T2 statistics for the MSPC model were computed in real time and there was a
sensitivity of 85.7% with a false positive rate of 0.62 times/h for the Q statistic. The prototype’s real-time
seizure prediction and continuous operation of the wearable system will allow applications in the
real world.

The MSPC model can be refined whilst it is operational via patient data updates. This could
improve the model’s sensitivity and allow the model to adapt to shifts in a patient’s normal state.

The evaluation of the proposed system in the actual daily life of epilepsy patients is desired in
future works.
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