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Abstract

Recently it has been show that in some ecosystems fast rates of change of environmental

drivers may trigger a critical transition, whereas change of the same magnitude but at slower

rates would not. So far, few studies describe this phenomenon of rate-induced tipping, while

it is important to understand this phenomenon in the light of the ongoing rapid environmental

change. Here, we demonstrate rate-induced tipping in a simple model of cyanobacteria with

realistic parameter settings. We explain graphically that there is a range of initial conditions

at which a gradual increase in environmental conditions can cause a collapse of the popula-

tion, but only if the change is fast enough. In addition, we show that a pulse in the environ-

mental conditions can cause a temporary collapse, but that is dependent on both the rate

and the duration of the pulse. Furthermore, we study whether the autocorrelation of stochas-

tic environmental conditions can influence the probability of inducing rate-tipping. As both

the rate of environmental change, and autocorrelation of the environmental variability are

increasing in parts of the climate, the probability for rate-induced tipping to occur is likely to

increase. Our results imply that, even though the identification of rate sensitive ecosystems

in the real world will be challenging, we should incorporate critical rates of change in our eco-

system assessments and management.

Introduction

In the recent years the notion that ecosystems can have tipping points has received considerable

attention. The term ‘tipping point’ is loosely defined as a threshold point in conditions after

which runaway change brings a system to a new state. Under current levels of climate change the

likelihood of such transitions in ecological systems is increasing [1,2]. These critical transitions

are of great concern because recovery is difficult due to hysteresis. Several mechanisms can lead

to critical transitions, but all mechanisms have in common that self-enforcing feedbacks [3]

cause the critical transitions. In the mathematical literature three classes of transitions between

states are distinguished: bifurcation-induced, noise-induced and rate-induced tipping [4].

Bifurcation-induced tipping is due to a gradual change in external condition (Fig 1A and

1B). As a result of the change in conditions, the resilience of the current state erodes until the
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system reaches a bifurcation point at which the state becomes unstable and the system shifts to

an alternative state [3]. In the case of noise-induced tipping, not a change in external condi-

tions, but a perturbation in the system state, results in a shift from one state to another. When

the perturbation is large enough to bring the system across the unstable equilibrium (top of

the hill between two valleys, Fig 1C), the system shifts to the other equilibrium [3,5].

Rate induced tipping is caused by a high speed of change in external conditions rather than

the absolute level. It has been described recently [4] and can occur only in susceptible systems,

i.e., systems that are ‘forward basin unstable’ [6]. This is the case if an instantaneous change in

environmental conditions can bring the system to an alternative basin of attraction while no

bifurcation point is crossed [6]. Rate-tipping can only be understood if we consider that a sys-

tem is not always in a steady state and that the equilibrium can change if conditions change. If

the external conditions change fast compared to the response rate of the system, the system

cannot track the changing equilibrium. As a result, the actual system state can deviate from the

stable state. If the change in external changes is below the critical rate, the system state lags

behind the changing steady state but stays in the same basin of attraction (Fig 1F, purple ball).

If the external changes are above a critical rate, the system lags so far behind the changing equi-

librium, that it is brought out of the basin of attraction (Fig 1F, orange ball). Subsequently, the

system shifts to another stable state. If the system can respond fast to the changing equilibrium,

the system will approximately remain in steady state (Fig 1F, green ball). Rate-induced tipping,

can also occur in excitable systems where a fast change in conditions cause the system to cycle

once [7]. While there is a vast amount of literature on bifurcation-induced and noise-induced

tipping, there are only few studies that describe rate-induced tipping in ecology [8–10].

In light of the ongoing rapid environmental change, it is important to better understand

when an ecosystem might be sensitive to rates of change. A candidate system for such rate-

induced tipping seems to be a population of cyanobacteria. Cyanobacteria are sometimes toxic

keystone taxa that may dominate freshwater and marine ecosystems [11]. Experiments have

shown that in chemostats, phytoplankton communities can have tipping points and show criti-

cal slowing down before the transition [12,13]. It has been proposed that a self-enforcing feed-

back that involves photoinhibition can cause these alternative stable states [12,13].

Photoinhibition is a decrease in the rate of photosynthesis as a result of high light. High light

levels cause damage to the photosynthetic machinery of the cells, which lowers the photosyn-

thetic rates, or protective mechanisms to avoid damage can lower the rate of photosynthesis

[14,15]. This means that although phytoplankton need light for photosynthesis, too much light

lowers their productivity. High concentrations of phytoplankton may reduce photoinhibition

under high light conditions by self-shading, which implies that there is a self-enforcing feed-

back [13,16]. As a result of this feedback, phytoplankton communities can maintain a high bio-

mass under light levels that would prohibit growth in a low biomass system. When the light

intensity reaches a certain threshold, the shading becomes insufficient to prevent photoinhibi-

tion. As a result, biomass decreases, the system becomes even more vulnerable to the high

light, and the biomass decreases even further, resulting in a shift to a collapsed state [13]. Due

to this positive feedback, the system has alternative stable states for a range of incoming light

intensities. Therefore it can show both bifurcation- and noise-induced tipping.

Light is a two-edged sword for the growth of phytoplankton, they need it but too much

light can be harmful. Because of this optimum for incoming light intensity, this system might

also be sensitive to rates of change of light. Our hypothesis is that if you start from a low bio-

mass and you increase the light intensity gradually, the systems tracks the changing equilib-

rium and the biomass grows. However, if the light intensity is increased faster, the

phytoplankton biomass cannot increase fast enough to provide enough shading and conse-

quently, the system collapses.
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Previous work on rate-induced tipping in ecosystems describe the effects of gradual change

[9,10] or pulses [8] in environmental conditions, using deterministic models [8–10]. In reality,

however, systems are often subject to a regime of stochastic perturbations, called environmen-

tal variability. Recent studies show that changes in the temporal autocorrelation of climatic

variables may increase the chance of critical transitions in climate-sensitive systems that are

close to a bifurcation point [17,18]. This leaves the question how such change in the temporal

autocorrelation of climate variability may affect the likelihood of rate-induced transitions. If

the rate of environmental change is below, but close to the critical rate, does the temporal auto-

correlation of the environmental variability then impact the probability of undergoing a rate-

induced transition?.

In this paper we study a model of phytoplankton growth in a chemostat, and show that for

realistic parameter settings [12] there can be rate-induced tipping if light levels increase rapidly

in this system. We focus on three different types of changes in environmental conditions: a

gradual increase to a new level, a pulse perturbation, and a regime of perturbations in combi-

nation with a gradual increase to a new level. After we have explored the conditions for which

the model shows rate-induced tipping, we discuss the implications of these results for other

ecosystems and ecosystem management under current rates of climate change.

Material and methods

Model

To explore if phytoplankton communities are sensitive to the rate of change in light intensity,

we use a simple model that describes the photoinhibition of phytoplankton in a chemostat

[19]. The changes in the phytoplankton concentration of the chemostat can be described as

Fig 1. Three types of tipping in a system with alternative stable states. Three types of tipping: Bifurcation-induced

(a,b), noise-induced (c,d) and rate-induced (e,f). The upper panels show the initial stability landscapes. Pink arrows

show the change in the stability landscape, and the blue arrow shows a change in the state of the system. The lower

panels show the stability landscapes at the tipping point, and the dotted arrows indicate the self-enforced change of the

system.

https://doi.org/10.1371/journal.pone.0253003.g001
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follows:

dA
dt
¼ Pav ðIzðz;AÞÞ A � lA ð1Þ

Where A is the algae concentration (g m-3) and Pav(Iz(z,A)) is the average production rate in

the water column (d-1) as function of the light availability. The total loss rate l (d-1) is assumed

to be proportional to the phytoplankton concentration implying a constant respiration and

flushing rate. In the chemostat the light comes from the side and the light is attenuated in the

water due to light absorption and scattering. The light intensity in the water column follows

the Lambert-Beer law. According to this formula, the light intensity expressed as photon flux

Iz (μmol m-2 s-1) decays exponentially with position z (m):

Izðz;AðtÞÞ ¼ Iine
� Kd z� k AðtÞz ð2Þ

Where Iin is the light intensity at the top of the water column, Kd is the light attenuation coeffi-

cient of particles and substances in the water (m-1). This light attenuation depends on particles

and substances in the water. Therefore, also the phytoplankton biomass has an effect on the

light attenuation coefficient. This effect is approximately linear with biomass [20], so in our

model Iz is a function of both z and A. k is the specific extinction of phytoplankton (m2 g-1).

The spatial averaged light limitation of phytoplankton in the chemostat can be calculated by

integration over the total water column D (m):

Pav

�
Izðz;AðtÞÞ ¼

1

D

Z D

0

Pz ðIzðz;AðtÞÞ
�
dz ð3Þ

The relationship between light availability Iz and the relative phytoplankton production Pz can

be described with the Peeters-Eilers equation, that includes the effect of photoinhibition [21]:

PzðIzðz;AðtÞÞÞ ¼ Pmax
Izðz;AðtÞÞ

a Izðz;AðtÞÞ
2
þ bIzðz;AðtÞÞ þ c

ð4Þ

Where Pmax is the maximum growth rate of phytoplankton (d-1). The precise meaning of the

parameters a, b, and c are hard to interpret. Therefore, Peeters and Eilers introduced two new

parameters: Iopt, the optimum light availability for production, and Ik, that defines the slope of

the curve at Iz = 0. Specifically, Ik is the light availability where the maximum production is

reached if the initial slope was continued. The parameters a, b, and c can be expressed as func-

tion of these two new parameters:

a ¼
Ik
Iopt2

; b ¼ 1 � 2
Ik
Iopt

; and c ¼ Ik ð5Þ

The integral of the phytoplankton production (Eq 4) can be solved analytically [21]. The

default values of the parameters of the model (Eqs 3 and 4) describe phytoplankton in a che-

mostat [12] and can be found in Table 1. The model was analyzed using Grind for MATLAB

(http://www.sparcs-center.org/grind.html) which uses a Runge-Kutta numerical solver

(ode45). For continuation of bifurcations, GRIND uses MatCont version 6.10 [22].

Simulated incoming light intensities

We focus on three different kinds of change in the incoming light intensity: a gradual increase

to a new level, a pulse perturbation, and a stochastic regime of perturbations. First, we

increased the light intensity with different rates to check when the model can track the equilib-

rium. After that, we analysed how pulses in the light intensity affect the phytoplankton

PLOS ONE Understanding the critical rate of environmental change for ecosystems

PLOS ONE | https://doi.org/10.1371/journal.pone.0253003 June 18, 2021 4 / 14

http://www.sparcs-center.org/grind.html
https://doi.org/10.1371/journal.pone.0253003


community in the chemostat. Lastly, we determined how the system is affected by a stochastic

regime of perturbations. The analysis of phytoplankton dynamics under constant environ-

mental conditions can be found in the S1 File.

In the first scenario, we increased the light intensity from a low value (Iin = 100 μmol m-2 s-

1) to a high value (Iin = 800 μmol m-2 s-1) with a constant rate. This scenario is called ‘steady

drift’ [4] and is implemented in the model as follows:

dIin
dt
¼

r

0

if Iin < Iin;max

otherwise
ð6Þ

8
<

:

Where r is the rate by which the light intensity is increased. The initial conditions are the equi-

librium states (A�) for the low light conditions (Iin = 100: A� = 6.1779).

Next, we explored the potential effects of a pulse in a rate-sensitive system. We exposed the

model to a brief pulse in the value of the parameter Iin. The effect of such a pulse is different

than a gradual increase in light intensity, because not only the relative rate, but also the dura-

tion of the pulse determines whether the system tips or not. Therefore, we varied both the rate

and the duration of pulse. During the pulse we let Iin approach a maximum value exponentially

(this is called ‘unsteady drift’ [4], Iin will remain at the maximum value for a specific duration,

after which Iin decreases exponentially back to the start value. We ran the model for different

values of r, ranging from 0.1 to 0.4 with a step of 0.001. The duration of the pulse was defined

by tend, which varied from 115 to 180 with a step of 0. The formula for the pulse in the light

intensity is:

dIin
dt
¼

rðIin;max � IinÞ

rðIin;min � IinÞ

if t > tstart and t < tend

otherwise
ð7Þ

8
<

:

Where Iin,max is the maximum value of the pulse of 800 μmol m-2 s-1, and Iin,min the base light

intensity.

The simulations started with the ecosystem in equilibrium with low light Iin,min and we

applied the pulse after 100 time steps. In this model, a pulse will always have a temporary effect,

as the system is not bistable at the initial conditions, implying that it can recover even from

very low values. Reverting the change will therefore eventually result in recovery. This recov-

ery, however, will take very long compared to the systems’ timescale.

In a deterministic situation, only the starting conditions and the rate of change affect

whether the system shifts or not, but in a stochastic situation, this is no longer true. We tested

how the autocorrelation of hypothetical environmental variables affects the probability of

Table 1. Description of the parameters and state variables with their initial conditions and default values.

Variable Value Description Units

A 6.1779 Phytoplankton biomass g m-3

Iin 100 Light intensity μmol m-2 s-1

D 0.05 Size of the water column m

Ik 40 Slope of the light curve at Iz = 0 μmol m-2 s-1

Iopt 150 Optimum light intensity of phytoplankton μmol m-2 s-1

k 3 Specific light attenuation coefficient of phytoplankton m2 g-1

kd 10−5 Background light attenuation coefficient m-1

l 0.4 Loss of phytoplankton due to flushing day-1

Pmax 0.49 Maximum productivity day-1

https://doi.org/10.1371/journal.pone.0253003.t001
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invoking a critical transition in a changing environment. We created time series of hypotheti-

cal environmental fluctuations Ta using the following stochastic differential equation:

dTa

dt
¼ � g Ta þ b

dW
dt

ð8Þ

Where β is a parameter scaling the variance of the noise, dW/dt is a Wiener process where

the increments are normally distributed. γ is� 0 and corresponds to negative feedbacks that

act to restore any anomaly to the mean, Ta = 0. The smaller γ, the larger the autocorrelation of

Ta; γ = 0 corresponds to an unbounded random walk (Brownian motion). We solved the equa-

tion using an Euler-Maruyama scheme with time step 1. With this scheme and time step, the

relation between γ and the autocorrelation α of the discrete time series generated with this

model can be described as α(1) = 1-γ (sampling time step = 1).

In reality, when the temporal autocorrelation of the environmental variability increases, the

variance of the variability also changes (see S7 Fig in S1 File). The variance of a process can

increase as a response to weakening feedbacks, but there are also mechanisms that reduce the

variance while increasing the persistence. For example, when the heat capacity or inertia of a

system changes [18,23,24]. To gain insight into how increased temporal autocorrelation in the

environmental variability might affect rate-induced tipping, we study the effect of time-corre-

lation in isolation. Therefore, we scaled the parameter β in such a way to keep the expected var-

iance of Ta at a constant value using the following equation:

b ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � a2Þ

Dt

r

ð9Þ

We ran the model with time series of Ta with different levels of autocorrelation α (γ of Eq 8 1 =

(1-α)/dt), ranging from 0 to 0.9 with an increment of 0.05, and different levels of standard

deviation (σ), ranging from 1 to 8 with an increment of 0.25. We increased the incoming light

intensity from 100 to 800 (Eq 6), with a rate r that is just below the critical rate (rcrit = 50.0104,

r = 48), to test whether the type of environmental variability in combination with the gradual

change can result in rate-induced tipping. For each level of autocorrelation and standard devi-

ation σ we repeated the simulations 1,000 times to determine what percentage of the runs

collapsed.

Environmental variability, or noise, can be added to the model as additive, or multiplicative

noise. For the model and results of this model with additive noise, see S1 File. Here, we focus

on the effect of environmental variability when it affects the incoming light intensity (multipli-

cative noise). This means that the stochastic fluctuations are added to the incoming light inten-

sity in the following way:

dIin
dt
¼

r þ TaðtÞ

TaðtÞ

if Iin < Iin;max

otherwise

dIin
dt
¼ r ðIin;max � IinÞ þ TaðtÞ ð10Þ

8
<

:

Where r is the rate by which the light intensity is increased (rcrit = 50.0104, r = 48) and Iin.

max the maximum value of the incoming light intensity of 800 μmol m-2 s-1. We did the same

analysis in a model with unsteady drift; details and the results can be found in the S1 File.

Results

Gradual increase of light intensity

We started all simulations from a state in which the phytoplankton population size was

adapted to the low light conditions, which implies that the biomass is relatively low. If the light
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intensity is increased slowly, the phytoplankton could grow fast enough for self-shading.

When we increased the light intensity very rapidly, the system shifted to the other state because

the growth-rate of the phytoplankton was too slow to keep up with the increased light intensity

(blue line, Fig 2).

The reason why this model has rate-induced tipping can also be understood from the (Iin,

A)-phase plane of the model with unsteady drift (Fig 3B, see S1 File for details). If Iin changes

gradually, the system can follow the equilibrium and the phytoplankton biomass increases

(green line, Fig 3B). If Iin changes too fast, however, the system is brought past the unstable

equilibrium and as a consequence, the phytoplankton biomass collapses (blue line, Fig 3B).

The critical rate for r-tipping depends on the initial conditions and the maximum light inten-

sity. The conditions where rate tipping is potentially possible have “forward basin instability”

[6]. This is the case if an instantaneous change in environmental conditions can bring the sys-

tem to an alternative basin of attraction while no bifurcation point is crossed [6]. In a simple

model with one state variable, this instability can be read from the phase plane (Fig 4), A

change with infinite speed from an initial condition to a higher value for the incoming light

intensity can be visualized as a horizontal line (like the orange arrow). If that straight line

crosses the unstable equilibrium (Fig 4, green line), the system is forward basin instable,

because the new equilibrium is in another basin of attraction than the initial equilibrium and

the fold bifurcation F1 is not passed. Initial conditions for which rate-tipping could occur in

this model, are indicated in Fig 4 (red dots). In this model, for rate-tipping to be possible, the

maximum light intensity needs to be large enough that an instantaneous change to the maxi-

mum light intensity, can bring the system past the unstable equilibrium (see Fig 4). If we allow

the system to start outside the equilibrium this means that for higher initial biomass condi-

tions, the maximum light intensity needs to be larger than for low initial biomass conditions

for rate-tipping to be possible.

Fig 2. Simulated effects of the rate of change (r) in light intensity (Iin) on phytoplankton biomass. In this model the light intensity is changed gradually from 100 to

800 with two different rates (r = 50.104, and r = 50.105).

https://doi.org/10.1371/journal.pone.0253003.g002
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Effect of light intensity pulses

In the previous section we have explored the impact of a gradual increase of incoming light on

tipping, showing that when the increase in light intensity goes too fast, the system cannot track

the changing equilibrium. Next to gradual increase, drivers of environmental change can also

increase for a brief period of time. For example, when environmental conditions are reversed

as a result of an implemented policy. Furthermore, the increasing frequency and duration of

extreme weather events [25] like heat waves and droughts also act as pulses on ecosystems.

As with the gradual increase in light intensity, if the rate of change is too fast, the system

cannot track the changing equilibrium and the system is brought in the alternative basin of

attraction and the phytoplankton starts collapsing. In contrast to gradual increase, the pulse

should last long enough to cause a collapse. If the light intensity is lowered already before the

phytoplankton biomass is collapsed, the biomass returns to the initial biomass value. For each

specific rate there is a specific minimum duration that is needed for the system to collapse. For

higher rates, shorter durations are needed for the biomass to collapse (Fig 5B).

With our initial conditions, the critical rate for rate-tipping to occur is 0.1378 day-1. With

this rate, the duration of the pulse needs to be at least 382 days for the system to collapse (i.e.

biomass < 10−8 g m-3). If the rate is very high (r>1000), the critical duration of the pulse is still

around 112 days, indicating that for a pulse to have an effect on the phytoplankton community,

the duration of the pulse should be longer than 112–382 days, depending on the rate of change.

Effect of stochastic perturbation regimes in light intensity

In reality, ecosystems are subject to a regime of perturbations in the environmental conditions,

this is also called environmental variability. In different environments, the variability can have

Fig 3. Simulated effects of the rate of change (r) in light intensity (Iin) on phytoplankton biomass. a) If the light intensity is increased slowly, the

phytoplankton can grow fast enough to provide self-shading and the system will move towards a high-biomass equilibrium (green line). If the rate is too

fast, the phytoplankton cannot grow fast enough to provide shade and the system collapses (blue line). b) The (Iin, A)-phase plane of the model. The blue

dotted line is the nullcline of the phytoplankton biomass. The green dotted line is the nullcline for Iin, which is a vertical line at Iin,max (Iin,max = 800 for

these settings). If Iin changes very fast, the system is brought past the separatrix (red dotted line) and moves to the collapsed state (blue line), while if Iin

changes more gradually, the system can follow the equilibrium and the phytoplankton biomass increases (green line).

https://doi.org/10.1371/journal.pone.0253003.g003
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different power spectra. Previous research indicates that systems with bifurcation-induced tip-

ping are sensitive to the frequencies of the environmental variability. Longer periods of adverse

conditions result in an higher probability of tipping in a more time-correlated environments

[17]. Because our previous analyses show that the phytoplankton biomass is sensitive to the

duration of pulses, increased time-correlation in the environmental variability might also

affect the probability of a collapse in biomass.

Our results (see Fig 6) indicate a higher probability of shifting in a system with more time-

correlated stochasticity. When the environmental variability affects the incoming light inten-

sity, the fluctuations are in the driver. When the fluctuations are uncorrelated, the fluctuations

are very rapid but the phytoplankton biomass does not have time to respond to the short

changes. When the fluctuations are correlated, however, the fluctuations are slower and can

cause an temporary increase in light intensity on top of the gradual increase, that results in a

collapse of the biomass (see Fig 6).

Discussion and conclusions

We have shown with this model with realistic parameter settings [12] that speed of change can

be critical for the effect that environmental conditions have on phytoplankton. Although our

model of phytoplankton is not new, rate tipping has not been described before for this system.

Because the parameterization of the model is partly based on the experimental settings and

experimental data of Faassen et al. (2015), our results imply that that rate-tipping could occur

in an experimental setup, if you increase the incoming light intensity fast enough. This

Fig 4. Initial conditions that are forward basin instable. The red dots indicate the initial conditions that are forward

basin stable. The blue line indicates the stable equilibrium, the green line the unstable equilibrium and F1 is the fold

bifurcation. When a change in the incoming light intensity occurs with infinite speed (horizontal line, as for example

the orange arrow) and crosses the unstable equilibrium, the new equilibrium is in another basin of attraction than the

initial equilibrium, while the fold bifurcation F1 is not passed. If this is the case, the system is forward basin instable.

https://doi.org/10.1371/journal.pone.0253003.g004
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indicates that a phytoplankton community in a chemostat might be a good experimental set-

ting to test under which conditions rate-tipping might occur in a real ecosystem. In addition,

we show that a pulse in the conditions can also cause a temporary collapse, and that the kind

of stochastic regime can influence the probability of shifting.

Fig 5. Simulation experiment altering pulse duration and intensity for an exponential increase of the light

intensity. (a) Example time series of Iin with a pulse of 140 days. (b) The response of the phytoplankton biomass to

pulses that increase and decrease exponentially with different rates of change (x-axis) and different durations of the

pulse (y-axis). The high biomass state refers to the state in which the phytoplankton population is able to maintain the

biomass, and in the collapsed biomass state self-shading was not sufficient to prevent photoinhibition and as a result,

the biomass collapsed. The rate of change pulse (parameter r) is the rate by which the incoming light intensity is

changed during the pulse.

https://doi.org/10.1371/journal.pone.0253003.g005

Fig 6. The response of the phytoplankton biomass to an increase in the light intensity with stochastic fluctuations

on the light intensity. Combined effects of autocorrelation and the standard deviation of the fluctuations on the

percentage of runs in which the phytoplankton biomass collapses when the rate of change is 48.

https://doi.org/10.1371/journal.pone.0253003.g006
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With the current rates of environmental change [1,26], the question arise what kind of sys-

tems are sensitive to rate-induced tipping. A way to see if a model potentially can have rate tip-

ping is to test for forward basin instability [6]. This can be tested numerically by comparing

the effects of a gradual change of the driver to a specific value, with an instantaneous change to

the same value of the driver. In our model, there is a range of initial conditions where rate tip-

ping can occur. As our model has one state variable, forward basin instability can easily been

seen from the bifurcation diagram. Due to the hump-shaped bifurcation diagram, there are

initial conditions where an instantaneous change in conditions (here an increase in light)

brings the state to the other basin of attraction (see orange arrow in Fig 3). When the condi-

tions stay long enough at that level the system will tip to the alternative basin of attraction (rate

tipping). For models with more than one state variables the conditions of forward basin stabil-

ity are less obvious, and need to be determined numerically [27]. In addition, rate-tipping can

also occur in systems that do not have alternative states, but that have coupled slow and fast

non-linear processes [9]. For example, in the climate-carbon cycle model of Luke and Cox

(2011), where the soil carbon decomposition rate increase exponentially with soil temperature.

In this model, a runaway feedback can arise when the heat from microbial respiration is gener-

ated more rapidly than it can escape from the soil to the atmosphere [28]. Another example is

the Rosenzweig-MacArthur predator-prey model used by Vanselow, Wieczorek and Freudel

(20119) and Siteur et al (2016).

Although it is not difficult to show mathematically if a model can potentially have rate tip-

ping, it is still difficult to predict more intuitively if a certain ecosystem has a critical rate. We

know already that for alternative stable states we need to have a positive feedback (Van Nes

et al 2016). In addition, systems that are sensitive for rate tipping often include a key process

with an optimum. For instance in the model of Scheffer et al. (2009 this optimum was a func-

tional response with an optimum prey density for feeding. The current model includes an opti-

mum light availability for phytoplankton growth. Such optimum conditions are rather

common in ecosystems. For instance in the reaction of species growth to temperature, there is

often an optimum temperature involved, and species niches are commonly defined as optima

(for instance [29]). Although this gives us clues where to look for, the identification of rate sen-

sitive species or ecosystems in the real world might be more difficult; rate-induced tipping has

not yet been observed in real ecosystems. It seems hard to prove that real ecosystem tip due to

the rate of change only instead of crossing a critical value. A number of experimental studies,

however, do show rate-dependent outcomes [30–33]. For example, Perron, Gonzakez and

Buckling (2008) [33], showed that both the rate of change of antibiotics concentrations and

immigration had a significant effect on the probability of evolving resistance in an experimen-

tal population of Pseudomonas euruginosa. Whereas Lindsey et al. (2013) [30] allowed hun-

dreds of populations of Escherichia coli to evolve under different rates of increase in

antibiotics. Their results show that there are more chances for mutations to occur under lower

rates of change. One of the factors that makes it difficult to predict the effect of rapid environ-

mental change on ecosystems, is that different species may respond differently to changes in

the environment. Besides shifting in abundance, species may respond by shifting their spatial

or temporal range, by phenotypic plasticity or by adaptive microevolution [34–37]. Each of

these mechanisms may have their own critical rate, but the rate will be species and event spe-

cific. Thus, further exploration of rate-sensitivity in ecosystems will require a better under-

standing of how different species within the ecosystem respond to environmental change. In

addition, we need to explore whether ecosystem models that include multiple species with dif-

ferent responses to environmental change, also show rate-induced critical transitions, and if

so, whether these systems have similar features. Despite our limited understanding of their

occurrence, the possibility of wide-spread rate-induced tipping in ecosystems has profound
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implications for the way we assess the impact of global change on ecosystems, and the way we

manage our ecosystems. Besides identifying and quantifying planetary boundaries in order to

create a safe operating space for our ecosystems [38,39], we now also need to incorporate criti-

cal rates of change.

Supporting information
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the used methods and additional analyses. Specifically, this document contains additional
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