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Single-cell studies have demonstrated that somatic cell reprog-
ramming is a continuous process of cell fates transition. Only
partial reprogramming intermediates can overcome the molec-
ular bottlenecks to acquire pluripotency. To decipher the un-
derlying decisive factors driving cell fate, we identified induced
pluripotent stem cells or stromal-like cells (iPSCs/SLCs) and
iPSCs or trophoblast-like cells (iPSCs/TLCs) fate bifurcations
by reconstructing cellular trajectory. The mesenchymal-epithe-
lial transition and the activation of pluripotency networks are
the main molecular series in successful reprogramming. Corre-
spondingly, intermediates diverge into SLCs accompanied by
the inhibition of cell cycle genes and the activation of extracel-
lular matrix genes, whereas the TLCs fate is characterized by
the up-regulation of placenta development genes. Combining
putative gene regulatory networks, seven (Taf7, Ezh2, Klf2,
etc.) and three key factors (Cdc5l, Klf4, and Nanog) were indi-
vidually identified as drivers of the successful reprogramming
by triggering downstream pluripotent networks during
iPSCs/SLCs and iPSCs/TLCs fate bifurcation. Conversely, 11
factors (Cebpb, Sox4, Junb, etc.) and four factors (Gata2,
Jund, Ctnnb1, etc.) drive SLCs fate and TLCs fate, respectively.
Our study sheds new light on the understanding of decisive fac-
tors driving cell fate, which is helpful for improving reprog-
ramming efficiency through manipulating cell fates to avoid
alternative fates.

INTRODUCTION
Yamanaka factors Oct4, Sox2, Klf4, and cMyc (OSKM) which reprog-
rammed somatic cells into induced pluripotent stem cells (iPSCs) was
a milestone breakthrough in the field of cell biology. It holds great
promise for applications in cell transplantation therapy, disease
modeling, and drug screening.1,2 Over the past decade, advancements
in high-throughput sequencing technologies have deepened our un-
derstanding of this process.3

In general, somatic cell reprogramming involves the down-regulation
of somatic programs and activation of pluripotency networks. This
process is accompanied by a series of necessary molecular events,
such as mesenchyme-epithelial transition (MET),4,5 and resetting of
global histone and DNA methylation patterns.6,7 The discovery of
induced pluripotency has further proved that transcription factors
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(TFs) are key determinants of cell fate, which can induce the expres-
sion of genes necessary for obtaining a pluripotent state.8–12 Some
researchers have tried to replace or improve the classical OSKM re-
programming system, including chemical cocktails13,14 and the
seven-factor system (Jdp2, Jhdm1b, Mkk6, Glis1, Nanog, Essrb, and
Sall4).8 The success of somatic cell reprogramming alternatives and
optimization cocktails have proven that the identification and appli-
cation of key factors can further overcome the reprogramming obsta-
cles and improve reprogramming efficiency.15,16 Analysis based on
single-cell data indicated that only a small fraction of intermediate-
state cells can successfully overcome molecular barriers to be reprog-
rammed into iPSCs. Many cells stagnate on this path or deviate from
it to other cell states. These alternative fates include stromal-like cells
in the early stage of reprogramming, trophectoderm-, extraembry-
onic endoderm-, and neural-like cells in the late stage of reprogram-
ming.17–19 Some studies have reconstructed the continuous trajectory
of cell fate transformation during somatic cell programming through
densely sampled single-cell sequencing data and identified some key
bifurcations of cell fate.20,21 However, the key cell fate decision events
and their detailed molecular mechanisms in somatic reprogramming
remain largely unknown.

In this study, we combined relevant algorithms to construct the cell
trajectory in the OSKM-induced secondary reprogramming system,
and identified two key fate decision events in this process, which
led to the successful reprogramming of intermediate-state cells or
the alternative fates of stromal-like cells (SLCs) and trophoblast-like
cells (TLCs). By dissecting the molecular processes, we deciphered
the decisive factors that can drive pluripotency and alternative fate.
This study has improved our understanding for the molecular mech-
anism of cell fate decisions in the reprogramming process.
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Figure 1. The global transcriptome profiles of somatic cell reprogramming

(A) Overview of single-cell mRNA-seq experimental workflow in raw data. (B) The UMAP analysis of all single cells. Cells sampled at different time points are represented by

different colors. (C and D) Hierarchical clustering showing that the reprogramming process can be divided into three stages. The representative markers and enriched Gene

ontology (GO) terms are listed to the right.
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RESULTS
The somatic cell reprogramming can be divided into three

stages

To explore the global molecular dynamics during Yamanaka fac-
tors-induced somatic cell reprogramming, we collected the single-
cell RNA sequencing (scRNA-seq) dataset of mouse embryo fibro-
blasts (MEFs) induced into iPSCs by ectopic expression of OSKM
via a secondary reprogramming system from the Gene Expression
Omnibus (GEO) database.20 The dataset covers cells intensively
sampled from key time points during reprogramming, as well as
individually picked Oct4-EGFP+ cells (iPSCs-2i, Figure 1A). After
2 Molecular Therapy: Nucleic Acids Vol. 34 December 2023
preprocessing, 23,760 high-quality single cells were left, and the cu-
mulative number of detected genes was 16,662. Uniform Manifold
Approximation and Projection (UMAP) analysis showed that D0
to D8 cells separated well from each other, and D9-2i to D12-2i cells
quite mixed together. Part of the D10-2i, D11-2i, and D12-2i cells
were separated from the scattered D9-2i to D12-2i mixture and
moved closer to the D16-2i/iPSCs (Figure 1B). The hierarchical
clustering analysis revealed that cells sampled at these time points
can be divided into three stages: stage I (D0 to D8 cells), stage II
(D9-2i to D12-2i cells), and stage III (D16-2i cells and iPSCs)
(Figure 1C).
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Next, 194 differentially expressed genes (DEGs, log2FC > 0.5 and
adjusted p value <0.05) were obtained among the three stages using
Seurat22 analysis (Figure 1D). These DEGs were specifically expressed
in corresponding stages. The stage I markers mainly exhibited MEF
related characteristics, such as Serpine1, Thbs1, and Fbln2,23,24 which
were largely involved in the regulation of "wound healing." The stage
II cells exhibited epithelial (Krt8 and Cldn4),4,25 trophoblast (Krt18,
Cdkn1c,Hspb1, Phlda2, Tmem37, and Car2)26 and embryonic mesen-
chyme (Cdkn1c, Itm2a, Tsc22d1, and H19)26 signatures, and the en-
riched biological processes were mainly associated with cell cycle.
The stage III cells were characterized by pluripotency markers (e.g.,
Dppa5a, Nanog, and Klf2), and the embryonic pattern specification
was the representative enriched gene ontology (GO) term.

Two fate bifurcations were detected during reprogramming

Our understanding of the potential molecular mechanism that con-
trols cell fate decisions during reprogramming is limited because
the intermediates toward different fates are difficult to distinguish.
Hence, we reconstructed a cellular trajectory in which cells were ar-
ranged in pseudotime according to the similarity of gene expression
patterns27 (Figure 2A). Notably, two critical cell fate decision points
were detected, which began to appear at D8 and D10-2i, respectively
(Figure S1). The cellular trajectory can be divided into five branches,
namely pre-branch 1 (PB1), failed branch 1 (FB1), pre-branch 2
(PB2), failed branch 2 (FB2), and successful branch (SB) (Figure 2B).
PB1 was mainly composed of D0 to D6 cells, and the majority of cells
in SB were derived fromD16-2i cells and iPSCs-2i. FB1, PB2, and FB2
were part of D8 to D12-2i cells, illustrating stage II was a critical stage
of cell fate decision (Figures 1C and 2C). Given that Dppa5a is an in-
dicator of successful reprogramming,21 we checked the proportion of
Dppa5a+ cells in each branch. As expected, Dppa5a+ cells sequentially
increased in PB1, FB1, PB2, FB2, and SB branches (Figure 2D). Addi-
tionally, only the cell cycle activity of SB cells increased significantly
compared with PB1 cells. The proportion of FB1, PB2, and FB2 cells
in the G1 phase increased to varying degrees, and the proportion of
cells in the S/G2/M phase decreased (Figure 2E).

To quantitatively assess the differentiation potential changes of the
cells along the FB1, FB2, and SB branch, we introduced the SLICE al-
gorithm.28 The SLICE utilizes scRNA-seq to quantitatively measure
cell differentiation potential based on single-cell entropy (scEntropy),
and a high scEntropy corresponds to a high differentiation potential.
The analyses revealed that FB2 and SB branch cells obtained gradually
increased differentiation potential along the cellular trajectory,
consistent with the progressive activation of the pluripotency pro-
gram (Figure 2F), while the differentiation potential of FB1 branch
cells does not fluctuate much.

The reported markers also reflected the distinct molecular mecha-
nisms among different branches.29 Specifically, fibroblast markers
(Prrx1, Thy1, Col1a2, etc.) were expressed in PB1 and FB1 cells (Fig-
ure 2G). Epithelial markers had higher expression levels in PB2 and
FB2 cells, and some of them (Cldn3, Cldn4, and Epcam) also had
higher expression levels in SB cells. Embryonic development markers
(Msx2 and Gata2) were specifically expressed in FB2 cells. Early
pluripotent and late pluripotent genes were specifically expressed in
SB cells as expected.

These findings have connected the cell fate branches with differential
gene expression patterns during somatic cell reprogramming,
providing new clues for further exploration of the key factors driving
cell fate.

Pluripotency and alternative cell fates in somatic cell

reprogramming

The reprogramming intermediates and fate terminal cells often do
not belong to a certain specific cell type.3,20 The accurate description
of the cell state transition is crucial to the analysis of the molecular
mechanism of the reprogramming process. We mentioned above
that Oct4-EGFP+ cells (iPSCs-2i) and most of D16-2i cells were
concentrated at the end of the SB branch, implying that the SB branch
was a successfully reprogramming trajectory (Figure 2B). However,
the other two alternative fates still need to be further identified.

To this end, we identified 33, 34, and 98 marker genes (Table S1) in
FB1 terminal cells (FB1TCs), FB2 terminal cells (FB2TCs), and SB
terminal cells (SBTCs), respectively. The expression levels of
FB1TC and SBTC markers gradually increased along their respective
branches, and FB2TC markers also activated in FB2TCs as expected
(Figures 3A–3C). Stromal, trophoblast, and pluripotency signatures
accounted for the highest proportion in markers of FB1TCs,
FB2TCs, and SBTCs, respectively. Thus, FB1TCs, FB2TCs, and
SBTCs were defined as SLCs, TLCs, and iPSCs, respectively.

The UMAP showed that D0MEFs and terminal cells of the three fates
were well separated from each other (Figure 3D). As expected, fibro-
blast genes (e.g., Thy1, Sdpr, and Tagln2), stromal cell genes (e.g.,
1500015O10Rik, Serpine2, and Ephx1), trophoblast genes (e.g.,
Krt18 and Krt8) and pluripotency genes (e.g., Sox2, Nanog and
Dppa5a) were specifically expressed in MEFs, SLCs, TLCs, and iPSCs,
respectively (Figure S2). Correspondingly, D0 markers were involved
in typical fibroblast characteristics, such as response to wounding,
extracellular matrix organization, and collagen fibril organization
(Figure 3E). SLC markers were enriched in several processes related
to Schwann cell migration, regulation of hemopoiesis, and epithelial
cell proliferation. TLC markers were mainly enriched in some pro-
cesses related to placenta development, response to wounding, and
epithelial cell migration. The iPSC markers were enriched in some
processes closely related to pluripotency, such as DNA methylation,
gastrulation, regulation of cell cycle, and embryonic pattern
specification.

Further, we found SLCs and iPSCs contained finer subpopulations
(Figure S3). SLCs can be divided into two subclusters (Figure S3A).
Subcluster 1 mainly contains partial D8 to D12-2i cells. Subcluster
2 contains partial D8 to D12-2i cells, D16-2i cells, and iPSCs-2i cells
(Figure S3B). Eighteen DEGs could clearly specify the two SLC sub-
clusters. For example, Ly6a and Fth1 have higher expression levels
Molecular Therapy: Nucleic Acids Vol. 34 December 2023 3
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Figure 2. Identification of critical cell fate bifurcations during somatic cell reprogramming

(A) Pseudotime analysis was performed in the reprogramming progress based on monocle2. (B) The different branches in the cellular trajectory. PB1, pre-branch 1; FB1,

failed branch 1; PB2, pre-branch 2; FB2, failed branch 2; SB, successful branch. (C) The Sankey diagram showing the distribution of the cells in different branches at each

sampling time point. (D) Histogram showing the ratio of Dppa5a+ cells in different branches. (E) Histogram showing the cell ratio in different cell cycle stages. (F) The fitting

curve represents the dynamic trend of single-cell entropy during MEFs to three different cell fates. (G) The violin diagram showing the expression pattern of representative

genes in different branches.
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in subcluster 1, while genes such as Col3a1 and Bgn have higher
expression levels in subcluster 2 (Figure S3C). The iPSCs can be
divided into three subclusters, and subclusters 1 to 3 gradually
approach the end of iPSC fate in the cellular trajectory (Figure S3D).
Subcluster 1 mainly included D10-2i to D12-2i cells. Subclusters 2
and 3mainly included D16-2i and iPSCs-2i cells (Figure S3E), respec-
tively. Twenty-four DEGs were identified among the three subclusters
(Figure S3F). It is reported that sustained co-expression of Epcam,
4 Molecular Therapy: Nucleic Acids Vol. 34 December 2023
Nanog, and Sox2 is thought to be required to progress toward iPSCs.30

Of note, Epcam was significantly down-regulated in subclusters 2 and
3, which indicates that Epcam may play a role in pluripotency acqui-
sition rather than pluripotency maintenance.

Compared with iPSCs, the DEGs up-regulated in SLCs and TLCs also
displayed their unique stromal-like and trophoblast-like characteris-
tics (Figures 3F and 3G), while the DEGs up-regulated in iPSCs



Figure 3. Characterization of branch terminal cells at different reprogramming fates

(A–C) The average expression levels of terminal cell markers are displayed on the cellular trajectory. Among them, the stromal, trophoblast, and pluripotency signatures

accounted for the highest proportion, respectively. (D) UMAP analysis showing the distribution of MEFs (D0), SLCs, TLCs, and iPSCs. (E) Heatmap showing the differentially

expression genes among MEFs (D0), SLCs, TLCs, and iPSCs. The representative genes and gene ontology (GO) terms were listed to the right. (F) Scatterplot showing the

(legend continued on next page)
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contained representative pluripotent genes (e.g., Dppa5a, Nanog, and
Sox2). Given that MEFs belong to stromal cells, and FB1TCs are also
identified as stromal-like cells, hence, the potential molecular differ-
ence under the significant separation of MEFs and SLCs in UMAP
results needs to be further clarified. We sought to annotate their mo-
lecular characteristics by comparing their shared markers with those
of all tissue-specific stromal cells.26 The results indicated that MEFs
exhibited the highest similarity to stomach and embryonic mesen-
chyme cells, sharing 35 common markers. Meanwhile, SLCs demon-
strated their closest resemblance to mammary gland and neonatal
muscle cells, sharing 33 overlapping markers (Figure 3H).

Molecular roadmap among different cell fates

To investigate the temporal dynamics of DEGs between successful
and failed reprogramming fates, we identified the significant
branch-dependent DEGs and divided them into different clusters ac-
cording to kinetic trends. A total of 2,809 DEGs were filtered in iPSCs/
SLCs bifurcate and divided into three clusters (Figure 4A). The global
kinetic patterns of genes in cluster 1 (n = 1483) were rapidly down-
regulated in iPSCs fate and up-regulated in SLCs fate (Figures 4A
and 4B). The DEGs in cluster 1 were largely involved in the regulation
of stromal cells related to biological processes such as extracellular
matrix organization, response to wounding, and collagen fibril orga-
nization (Figure 4C). The global dynamics of DEGs in cluster 2
(n = 205) and cluster 3 (n = 1121) were progressively up-regulated
in iPSCs fate and down-regulated in SLCs fate (Figures 4A and 4B).
Cluster 2 genes contained some placenta-specific TFs (Rhox6, Tfap2c,
Philda2, andHic2)31 and were enriched in "embryonic placenta devel-
opment" process (Figure 4C). Cluster 3 contains many pluripotency
TFs, and these DEGs were mainly involved in biological processes
such as chromosome segregation, DNA replication, and mitotic cell
cycle phase transition (Figure 4C).

Notably, we found that MEF genes (n = 117) only appear in cluster 1,
epithelial genes (n = 8) only appear in cluster 2, and pluripotency
genes (n = 146) only appear in cluster 3. As expected, the expression
patterns of these genes were consistent with the overall kinetic pat-
terns of their respective clusters (Figure 4D). However, we found
that most genes have different expression patterns only when they
are close to the branch terminals of the two fate bifurcations, which
cannot reflect the molecular basis near the fate bifurcations. So, 25
DEGs were identified near the iPSCs/SLCs bifurcation, of which seven
genes (subset of cluster 3) were continuously expressed in iPSCs fate
and immediately down-regulated in SLCs fate after iPSCs/SLCs bifur-
cation, respectively (Figure 4D). Functional annotation showed that
these seven genes were mainly involved in cell cycle processes such
as "positive regulation of mitotic cell cycle phase transition" (Cdk1,
Rrm2, Ube2c, Cenpa, and Pclaf) and "nucleobase-containing
compound biosynthetic process" (Rrm2, Pclaf, Dut, and Hmgb2),
corresponding to the decrease of cell cycle activity in FB1 cells. The
differentially expressed genes between iPSCs and SLCs, with some previously repor

between iPSCs and TLCs, with some previously reported genes highlighted. (H) Top:

specific stromal cells. Bottom: Histogram exhibiting the count of overlapping markers b
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remaining 18 genes (Acta2, Car4, Ccl2, etc.) were subsets of cluster
1, which were immediately down-regulated in iPSCs fate and up-
regulated in SLCs fate after iPSCs/SLCs bifurcation (Figure S4A).
They were mainly involved in the biological process of regulation of
leukocyte cell-cell adhesion, regulation of protein localization to
membrane, and neutrophil degranulation (Figure S4B). These results
indicated that the inhibition of cell cycle program and the activation
of stromal program represent the main molecular series in SLCs fate.
The rapid down-regulation of stromal program and up-regulation of
the epithelial program, as well as sustained expression of cell cycle
genes represent the early molecular series in iPSCs fate.

For the second fate bifurcation, 178 DEGs were identified toward
iPSCs or TLCs fates and divided into two clusters (Figure S5). Cluster
1 (n = 86) was gradually up-regulated in iPSCs fate and down-regu-
lated in TLCs fate, which contains 40 pluripotency genes (e.g., Klf4,
Nanog, Nr0b1, Trim28, Klf2, Rpp25, and Cdc5l), 16 trophoblast genes
(Cacybp, Ube2c, Cenpa, etc.) and 15 common genes of pluripotency
and trophoblast (Dtymk, AA467197, Dut, etc.) (Table S1). The GO
analysis showed cluster 1 was mainly involved in pluripotency-related
biological processes, such as "positive regulation of mitotic cell cycle"
and "embryonic pattern specification" (Figure S5). Cluster 2 (n = 92)
was progressively down-regulated in iPSCs fate and up-regulated in
TLCs fate, which included seven epithelial genes (e.g., Cldn4, Cldn3,
and Epcam) and 28 trophoblast genes (e.g.,Mxd4,Gata2, and Phlda2)
(Table S1). Cluster 2 was mainly involved in biological processes
related to trophoblast, such as "embryonic placenta development"
and "cell differentiation involved in embryonic" (Figure S5).

Deciphering decisive factors driving cell fate bifurcations

Studies for the induced pluripotency and transdifferentiation have re-
vealed that TFs are master regulators of cell fate decisions.7,32 To
explore how the key TFs determine gene expression programs and
further establish cell fates during reprogramming, we used
SCENIC33 to infer gene regulatory networks (GRNs) from the
scRNA-seq data. Based on default filter parameters, 439 regulons
(i.e., TFs and their target genes) were identified. The hierarchical clus-
tering for 14,048 selected cells (MEFs, SLCs, TLCs, and iPSCs) based
on the binarized regulon activity showed most of the same cell types
were clustered together except a small part of MEFs separated from
others (Figure 5A). Meanwhile, we found that some regulons display
cell type-specific activation patterns, and the motifs of representative
TFs were listed next to them. Consistent with iPSCs identity, nearly all
iPSCs showed high pluripotency regulons activity, such as Nanog(+),
Klf4(+), Sox2(+). The other three cell types also have highly active
regulons corresponding to cell identity signatures.

We then focused on cells that followed the successful reprogramming
trajectory, which can be further classified into five clusters based on
pseudotime order and their activity score (Figures S6A and S6B).
ted genes highlighted. (G) Scatterplot showing the differentially expressed genes

Histogram exhibiting the count of overlapping markers between MEFs and tissue-

etween SLCs and tissue-specific stromal cells.



Figure 4. Dynamic trends of gene expression among different cell fates

(A) Gene expression heatmap of 2809 DEGs between the iPSCs and SLCs fates. The cellular trajectory of iPSCs and SLCs fates are displayed on the left and right,

respectively. These DEGs were divided into three clusters (1, 2, 3) according to their expression patterns, and the representative DEGs are listed. (B) The kinetic trends (fitted

using the Loess algorithm) of DEGs in the three clusters depicted in (A). The cell types are shown in different colors. (C) Gene ontology analyses of each gene cluster depicted

in (A). (D) The expression dynamics of representative genes in different fate branches. The red dashed line represents the time point of the iPSCs/SLCs bifurcation occurring

on the stretched pseudotime axis of iPSCs fate.
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Figure 5. The decisive factors driving fate bifurcations

(A) The heatmap displayed the binarized activity scores of regulons among MEFs, SLCs, TLCs, and iPSCs. The cell-specific regulons were listed adjacent to the heatmap,

with colors matching their respective cell types. The representative motifs of key TFs are also listed beside. (B) The expression patterns of cell fate decision key genes

(CFDKGs) for iPSCs fate at the iPSCs/SLCs bifurcation. (C) The expression patterns of cell fate decision key genes (CFDKGs) for iPSCs fate at the iPSCs/TLCs bifurcation. (D)

The putative CFDKGs of iPSCs fate can target and activate iPSCs-specific network. The larger the node, the more genes interact with in the GRN. (E) Summary model of cell

fate bifurcation during reprogramming.
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A total of 269 regulons showed temporal activation patterns in these
five cell clusters (Figure S6C). Overall, somatic-specific regulons were
gradually down-regulated (e.g., Runx1(+), Foxc2(+))34 and pluripo-
tency regulons were up-regulated in the five clusters sorted by
pseudotime. Some regulons associated with the embryo development
process were transiently activated in this process, such as regionaliza-
tion, formation of primary germ layer, and embryonic morphogenesis
8 Molecular Therapy: Nucleic Acids Vol. 34 December 2023
(Figure S6D). Our findings are consistent with the reported the acti-
vation of developmental programs in parallel to iPSC formation.3

Finally, combining DEGs between different fates and putative GRNs,
we focused on identifying cell fate decision key genes (CFDKGs).
CFDKGs were defined to fulfill two conditions, i.e., exhibiting differ-
ential expression patterns between fate bifurcations, and acting as
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upstream TFs to activate specific GRNs of fate terminal cells. Success-
fully reprogrammed cell fates undergo two critical cell fate decisions
(Figure 2B). Seven (Ezh2, H2afy, Klf2, Klf3, Mycn, Taf7, and Trp53)
and three (Cdc5l, Klf4, and Nanog) CFDKGs of iPSCs fate were iden-
tified at the iPSCs/SLCs and iPSCs/TLCs bifurcation, respectively
(Figures 5B, 5C, and S7). Among them, Taf7 had the highest number
of iPSCs-specific downstream target genes and Nanog had the lowest
number of iPSCs-specific downstream target genes (Figure 5D). Most
of the genes in the 10 CFDKGs belong to the pluripotency-related
TFs, including Mycn, Taf7, Klf2, Trp53, Cdc5l, Klf4, and Nanog,20

while Ezh2, H2afy, and Klf3 were reported to be highly expressed in
trophoblast progenitor cells, neutrophils, and gastric epithelial cells,
respectively.26 Here, we showed for the first time that Ezh2, H2afy,
and Klf3 have important effects on promoting somatic cell reprog-
ramming. Similarly, we also identified their respective CFDKGs in
two alternative cell fates. Eleven TFs (Cebpb, Mxd4, Creb3, Fos,
Hoxa7, Sox4, Jun, Hoxa9, Dbp, Junb, and Hoxa10) were identified
as CFDKGs of SLCs, which were up-regulated in SLCs fate branch,
and as upstream TFs activating specific GRNs of SLCs (Figure S8).
Among them, Mxd4, Fos, Sox4, Jun, Dbp, Junb, and Hoxa10 have
been identified as stromal cell-specific TFs in previous studies.26

Four TFs (Gata2, Jund, Ctnnb1, and Klf6) were identified as
CFDKGs of TLCs, which were up-regulated in TLCs fate branch
and function as upstream TFs to activate specific GRNs of TLCs (Fig-
ure S9). Among them, Gata2 has been identified as a trophoblast-spe-
cific TF in previous reports.26 Collectively, we identified two key cell
fate decision events in the secondary reprogramming system in this
study. The first cell fate decision occurs after dox withdrawal at day
8, and the reprogramming intermediates expressing 11 key genes
(Cebpb, Sox4, Junb, etc.) tend to SLCs fate, whereas the reprogram-
ming intermediates expressing 7 key genes (Taf7, Ezh2, Klf2, etc.)
tend to become precursor cells for successful reprogramming. Subse-
quently, reprogramming intermediates underwent a second cell fate
decision, with reprogramming intermediates expressing Cdc5l, Klf4,
and Nanog tending to successful reprogramming, and those express-
ing Gata2, Jund, Ctnnb1, and Klf6 tending to TLCs fate (Figure 5E).

DISCUSSION
In recent years, single-cell analysis has revealed some rare but
important mechanisms that have evaded us so far during somatic
cell reprogramming, but it has also demonstrated the unexpected
complexity of their molecular mechanisms. This study was
built upon a published dataset and revealed previously unnoticed pat-
terns and mechanisms through novel perspectives and diverse
methodologies.

First, we identified the three stages during reprogramming: stage I
(D0 to D8 cells), stage II (D9-2i to D12-2i cells), and stage III
(D16-2i/iPSCs cells). These three stages can be characterized by
MEFs, epithelial/trophoblastic/mesenchymes, and pluripotency sig-
natures, respectively. By reconstructing the cellular trajectory,
iPSCs/SLCs and iPSCs/TLCs cell fate bifurcation were detected at
D8 and D10-2i, respectively. The fate that tends to be successfully re-
programmed at the iPSCs/SLCs bifurcation showed typical MET
characteristics, which was characterized by down-regulated expres-
sion of MEF genes and up-regulated expression of epithelial genes.5

Reprogramming intermediate cells diverge into SLCs at the iPSCs/
SLCs bifurcation with the up-regulated expression of extracellular
matrix gene and down-regulated expression of cell cycle genes.
Considering that MEFs also belong to stromal cells, the differences
between MEFs and SLCs are worth discussing. By comparing their
shared markers with those of tissue-specific stromal cells, we found
that MEFs are most similar to stomach and embryo mesenchyme-
specific stromal cells, while SLCs are most similar to the gland and
neural muscle-specific stromal cells. The second fate bifurcation rep-
resents the diversion of iPSCs and TLCs. The iPSCs fate was indicated
by the up-regulated expression of pluripotency signatures, while the
TLCs fate was characterized by the up-regulated expression of
trophoblast signatures.

Combining trajectory reconstruction andGRNs inference algorithms,
we putatively identified key TFs that drive different cell fates. The acti-
vation of seven key TFs (Taf7, Ezh2, Klf2, etc.) at the iPSCs/SLCs
bifurcation and three key TFs (Cdc5l, Klf4, and Nanog) at the
iPSCs/TLCs bifurcation greatly facilitates the successful reprogram-
ming of intermediate-state cells. In addition to some widely reported
pluripotency factors,20 we have also identified some previously over-
looked crucial regulators, such as Ezh2, H2afy, and Cdc5l. Notably,
269 regulons exhibited temporal activation patterns in the successful
reprogramming trajectory, with the majority enriched in embryo
development-related pathways, demonstrating shared regulatory
mechanisms between somatic cell reprogramming and embryonic
development. However, the up-regulation of 11 key TFs (Cebpb,
Mxd4, Creb3, etc.) and four TFs (Gata2, Jund, Ctnnb1, and Klf6) drive
cells toward alternative fates at the iPSCs/SLCs and iPSCs/TLCs fate
bifurcations, respectively. Among them, four TFs (Cebpb, Creb3,
Hoxa7, and Hoxa9) and three TFs (Jund, Ctnnb1, and Klf6) were
the first reported regulators of stromal and trophoblast fates in this
study, respectively.

Our study has illuminated critical cell fate bifurcations, depicted the
molecular route along pluripotency or alternative fates, and further
identified key TFs driving different fates. These findings provided a
reference for experimental biologists to manipulate cell fates and
improve reprogramming efficiency.

MATERIALS AND METHODS
Dataset collection

The single-cell RNA sequencing (scRNA-seq) data of mouse somatic
cell reprogramming were collected from the GEO database under
accession number GEO: GSE106340.20 The sampling process for the
somatic cell reprogramming included two stages. The first stage
included day 0 (D0), day 2 (D2), day 4 (D4), day 6 (D6), and day 8
(D8) cells that were cultured in the serum environment (containing
dox). The second stage is day 9 (D9-2i), day 10 (D10-2i), day 11
(D11-2i), day 12 (D12-2i), and day 16 (D16-2i) when doxwas removed
and cells were transferred to the 2i environment. The iPSCs-2i were
selected with endogenous Oct4 locus (Oct4-IRES-EGFP) as a reporter.
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The cells sampled at the above time points were sequenced together
with iPSCs-2i.

scRNA-seq data preprocessing

For scRNA-seq data preprocessing, all raw data were controlled
by FastQC software (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and were trimmed based on Trimmomatic (version
0.38)35 to remove low-quality reads.36,37 Next, filtered reads were
mapped to the UCSC mm10 genome using genome-aligner STAR
(version 2.5.1b) with default parameters. Then, UMI counts were per-
formed with cellranger from the 10X Genomics pipeline (version
1.1.0, with default parameters). All cells with fewer than 1,000
UMIs and 1,000 genes were detected per cell in total and all genes
that were expressed in fewer than 50 cells were discarded. Excluding
the D10-serum, D12-serum, D16-serum, and iPSCs-serum cells,
23,760 cells and 16,662 genes were retained for further analysis.

scRNA-seq dimensionality reduction, differentiation potential

assessment, and trajectory inference

For the dimension reduction, principal-component analysis (PCA)
was performed on the scaled expression of 2,000 highly variable
genes using the RunPCA function in Seurat (version 4.3.0).22

Following that, UMAP was implemented on the top 10 PCs via the
RunUMAP functions. The SLICE28 was used to quantitatively mea-
sure cell differentiation potential based on single-cell entropy with
default parameters. Monocle227 was utilized for inference single cell
trajectory with default parameters.

Identification of DEGs

The DEGs analysis was performed using Seurat.22 The Seurat func-
tion “find_all_markers” (thresh.test = 1, test.use = "roc") was used
to identify unique cluster-specific marker genes. For two given clus-
ters, DEGs were identified by the find.markers function with the
following parameters: thresh.use = 1, test.use = "roc." For a certain
gene, the roc test generated a value ranging from 0 (for "random")
to 1 (for "perfect"), representing the "classification power." Genes
with a fold change R2 or %0.5 and a power R0.4 were regarded
as DEGs.

Single-cell gene regulatory network inference

The workflow of pySCENIC33 (https://pypi.org/project/pyscenic/0.6.
6/#tutorial) was used to inference the GRNs. In pySCENIC workflow,
RcisTarget38 package determined TFs and their predicted target genes
(i.e., targetomes) based on the correlation of gene expression across
cells, and GRNBoost39 identified whether the predicted target genes
have the corresponding TF motifs to refine targetomes. The
RaacFold predicted functional domain and active sites.40–42 Finally,
active targetomes were recognized in each cell. The regulatory net-
works driving cell fates were screened out and visualized by Cytoscape
(version 3.7.0).43

GO enrichment and statistical analysis

GOenrichment analysiswas performed basedon the Rpackage cluster-
Profiler (version 3.14.3).44 Representative GO terms with p value <0.05
10 Molecular Therapy: Nucleic Acids Vol. 34 December 2023
were summarized. Statistical analyses were implemented with R
(version 4.0.3, http://www.r-project.org).

DATA AND CODE AVAILABILITY
All sequencing data associated with this study were downloaded from
the Gene Expression Omnibus (GEO) database under accession num-
ber GSE106340.20

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.omtn.2023.102044.

ACKNOWLEDGMENTS
The authors would like to thank Prof. Eric S. Lander (Broad Institute
of MIT and Harvard) for sharing their scRNA-seq data of somatic cell
reprogramming in the GEO database under accession number GEO:
GSE106340. This work was financially supported by the National
Natural Science Foundation of China (62061034, 62171241); the Nat-
ural Science Foundation Project of Inner Mongolia Autonomous Re-
gion (2022ZD13); the key technology research program of Inner
Mongolia Autonomous Region (2021GG0398); the Science and Tech-
nology Leading Talent Team in Inner Mongolia Autonomous Region
(2022LJRC0009); and the innovation team development plan of col-
leges and universities in Inner Mongolia Autonomous Region
(NMGIRT2204).

AUTHOR CONTRIBUTIONS
Y.Z. and C.L. conceived and designed the study. C.L. and H.L. per-
formed the bioinformatics and statistical analysis of the data. C.L.
and H.L. wrote the manuscript. P.L., L.C., Y.H., J.Z., and Q.X. contrib-
uted to the revision of the manuscript. All authors read and approved
the manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

REFERENCES
1. Ohnuki, M., and Takahashi, K. (2015). Present and future challenges of induced

pluripotent stem cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140367.
https://doi.org/10.1098/rstb.2014.0367.

2. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from
mouse embryonic and adult fibroblast cultures by defined factors. Cell 126,
663–676. https://doi.org/10.1016/j.cell.2006.07.024.

3. Apostolou, E., and Stadtfeld, M. (2018). Cellular trajectories and molecular mecha-
nisms of iPSC reprogramming. Curr. Opin. Genet. Dev. 52, 77–85. https://doi.org/
10.1016/j.gde.2018.06.002.

4. Li, R., Liang, J., Ni, S., Zhou, T., Qing, X., Li, H., He, W., Chen, J., Li, F., Zhuang, Q.,
et al. (2010). A mesenchymal-to-epithelial transition initiates and is required for the
nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51–63. https://doi.org/
10.1016/j.stem.2010.04.014.

5. Samavarchi-Tehrani, P., Golipour, A., David, L., Sung, H.K., Beyer, T.A., Datti, A.,
Woltjen, K., Nagy, A., and Wrana, J.L. (2010). Functional genomics reveals a
BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell re-
programming. Cell Stem Cell 7, 64–77.

6. Papp, B., and Plath, K. (2013). Epigenetics of reprogramming to induced pluripo-
tency. Cell 152, 1324–1343. https://doi.org/10.1016/j.cell.2013.02.043.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://pypi.org/project/pyscenic/0.6.6/
https://pypi.org/project/pyscenic/0.6.6/
http://www.r-project.org
https://doi.org/10.1016/j.omtn.2023.102044
https://doi.org/10.1016/j.omtn.2023.102044
https://doi.org/10.1098/rstb.2014.0367
https://doi.org/10.1016/j.cell.2006.07.024
https://doi.org/10.1016/j.gde.2018.06.002
https://doi.org/10.1016/j.gde.2018.06.002
https://doi.org/10.1016/j.stem.2010.04.014
https://doi.org/10.1016/j.stem.2010.04.014
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref5
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref5
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref5
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref5
https://doi.org/10.1016/j.cell.2013.02.043


www.moleculartherapy.org
7. Hochedlinger, K., and Jaenisch, R. (2015). Induced Pluripotency and Epigenetic
Reprogramming. Cold Spring Harbor Perspect. Biol. 7, a019448. https://doi.org/10.
1101/cshperspect.a019448.

8. Wang, B., Wu, L., Li, D., Liu, Y., Guo, J., Li, C., Yao, Y., Wang, Y., Zhao, G., Wang, X.,
et al. (2019). Induction of Pluripotent Stem Cells fromMouse Embryonic Fibroblasts
by Jdp2-Jhdm1b-Mkk6-Glis1-Nanog-Essrb-Sall4. Cell Rep. 27, 3473–3485.e5.

9. Li, H., Long, C., Hong, Y., Chao, L., Peng, Y., and Zuo, Y. (2022). The Cumulative
Formation of R-loop Interacts with Histone Modifications to Shape Cell
Reprogramming. Int. J. Mol. Sci. 23, 1567. https://doi.org/10.3390/ijms23031567.

10. Chao, L., Yang, S., Li, H., Long, C., Xi, Q., and Zuo, Y. (2022). Competitive binding of
TET1 and DNMT3A/B cooperates the DNA methylation pattern in human embry-
onic stem cells. Biochim. Biophys. Acta. Gene Regul. Mech. 1865, 194861. https://doi.
org/10.1016/j.bbagrm.2022.194861.

11. Zhao, L., Long, C., Zhao, G., Su, J., Ren, J., Sun, W., Wang, Z., Zhang, J., Liu, M., Hao,
C., et al. (2022). Reprogramming barriers in bovine cells nuclear transfer revealed by
single-cell RNA-seq analysis. J. Cell Mol. Med. 26, 4792–4804. https://doi.org/10.
1111/jcmm.17505.

12. Xu, B., Liu, D., Wang, Z., Tian, R., and Zuo, Y. (2021). Multi-substrate selectivity
based on key loops and non-homologous domains: new insight into ALKBH family.
Cell. Mol. Life Sci. 78, 129–141.

13. Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K.,
et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-mole-
cule compounds. Science 341, 651–654. https://doi.org/10.1126/science.1239278.

14. Guan, J., Wang, G., Wang, J., Zhang, Z., Fu, Y., Cheng, L., Meng, G., Lyu, Y., Zhu, J.,
Li, Y., et al. (2022). Chemical reprogramming of human somatic cells to pluripotent
stem cells. Nature 605, 325–331. https://doi.org/10.1038/s41586-022-04593-5.

15. Li, H., Song, M., Yang, W., Cao, P., Zheng, L., and Zuo, Y. (2020). A Comparative
Analysis of Single-Cell Transcriptome Identifies Reprogramming Driver Factors
for Efficiency Improvement. Mol. Ther. Nucleic Acids 19, 1053–1064.

16. Li, H., Ta, N., Long, C., Zhang, Q., Li, S., Liu, S., Yang, L., and Zuo, Y. (2019). The
spatial binding model of the pioneer factor Oct4 with its target genes during cell re-
programming. Comput. Struct. Biotechnol. J. 17, 1226–1233.

17. Liu, X., Ouyang, J.F., Rossello, F.J., Tan, J.P., Davidson, K.C., Valdes, D.S., Schröder,
J., Sun, Y.B.Y., Chen, J., Knaupp, A.S., et al. (2020). Reprogramming roadmap reveals
route to human induced trophoblast stem cells. Nature 586, 101–107. https://doi.org/
10.1038/s41586-020-2734-6.

18. Xing, Q.R., El Farran, C.A., Gautam, P., Chuah, Y.S., Warrier, T., Toh, C.X.D., Kang,
N.Y., Sugii, S., Chang, Y.T., Xu, J., et al. (2020). Diversification of reprogramming tra-
jectories revealed by parallel single-cell transcriptome and chromatin accessibility
sequencing. Sci. Adv. 6, eaba1190. https://doi.org/10.1126/sciadv.aba1190.

19. Parenti, A., Halbisen, M.A., Wang, K., Latham, K., and Ralston, A. (2016). OSKM
Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent
Stem Cells. Stem Cell Rep. 6, 447–455. https://doi.org/10.1016/j.stemcr.2016.02.003.

20. Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subramanian, V., Solomon, A., Gould,
J., Liu, S., Lin, S., Berube, P., et al. (2019). Optimal-Transport Analysis of Single-Cell
Gene Expression Identifies Developmental Trajectories in Reprogramming. Cell 176,
928–943.e22. https://doi.org/10.1016/j.cell.2019.01.006.

21. Guo, L., Lin, L., Wang, X., Gao, M., Cao, S., Mai, Y., Wu, F., Kuang, J., Liu, H., Yang, J.,
et al. (2019). Resolving cell fate decisions during somatic cell reprogramming by sin-
gle-cell RNA-Seq. Mol. Cell 73, 815–829.e7.

22. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J.,
Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal sin-
gle-cell data. Cell 184, 3573–3587.e29.

23. Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark, N.R., and
Ma’ayan, A. (2013). Enrichr: interactive and collaborative HTML5 gene list enrich-
ment analysis tool. BMC Bioinf. 14, 128. https://doi.org/10.1186/1471-2105-14-128.

24. Lattin, J.E., Schroder, K., Su, A.I., Walker, J.R., Zhang, J., Wiltshire, T., Saijo, K., Glass,
C.K., Hume, D.A., Kellie, S., and Sweet, M.J. (2008). Expression analysis of G Protein-
Coupled Receptors in mouse macrophages. Immunome Res. 4, 5. https://doi.org/10.
1186/1745-7580-4-5.
25. Takaishi, M., Tarutani, M., Takeda, J., and Sano, S. (2016). Mesenchymal to Epithelial
Transition Induced by Reprogramming Factors Attenuates the Malignancy of Cancer
Cells. PLoS One 11, e0156904.

26. Han, X., Wang, R., Zhou, Y., Fei, L., Sun, H., Lai, S., Saadatpour, A., Zhou, Z., Chen,
H., Ye, F., et al. (2018). Mapping the Mouse Cell Atlas by Microwell-Seq. Cell 172,
1091–1107.e17.

27. Qiu, X., Mao, Q., Tang, Y.,Wang, L., Chawla, R., Pliner, H.A., and Trapnell, C. (2017).
Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14,
979–982. https://doi.org/10.1038/nmeth.4402.

28. Guo, M., Bao, E.L., Wagner, M.,Whitsett, J.A., and Xu, Y. (2017). SLICE: determining
cell differentiation and lineage based on single cell entropy. Nucleic Acids Res. 45,
e54. https://doi.org/10.1093/nar/gkw1278.

29. Zhao, T., Fu, Y., Zhu, J., Liu, Y., Zhang, Q., Yi, Z., Chen, S., Jiao, Z., Xu, X., Xu, J., et al.
(2018). Single-cell RNA-seq reveals dynamic early embryonic-like programs during
chemical reprogramming. Cell Stem Cell 23, 31–45.e7.

30. Tran, K.A., Pietrzak, S.J., Zaidan, N.Z., Siahpirani, A.F., McCalla, S.G., Zhou, A.S.,
Iyer, G., Roy, S., and Sridharan, R. (2019). Defining Reprogramming Checkpoints
from Single-Cell Analyses of Induced Pluripotency. Cell Rep. 27, 1726–1741.e5.
https://doi.org/10.1016/j.celrep.2019.04.056.

31. Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O.,
Benner, C., and Chanda, S.K. (2019). Metascape provides a biologist-oriented
resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523. https://
doi.org/10.1038/s41467-019-09234-6.

32. Spitz, F., and Furlong, E.E.M. (2012). Transcription factors: from enhancer binding to
developmental control. Nat. Rev. Genet. 13, 613–626.

33. Aibar, S., González-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H.,
Hulselmans, G., Rambow, F., Marine, J.-C., Geurts, P., Aerts, J., et al. (2017).
SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14,
1083–1086. https://doi.org/10.1038/nmeth.4463.

34. Chronis, C., Fiziev, P., Papp, B., Butz, S., Bonora, G., Sabri, S., Ernst, J., and Plath, K.
(2017). Cooperative Binding of Transcription Factors Orchestrates Reprogramming.
Cell 168, 442–459.e20. https://doi.org/10.1016/j.cell.2016.12.016.

35. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bio-
informatics/btu170.

36. Zheng, L., Liang, P., Long, C., Li, H., Li, H., Liang, Y., He, X., Xi, Q., Xing, Y., and Zuo,
Y. (2023). EmAtlas: a comprehensive atlas for exploring spatiotemporal activation in
mammalian embryogenesis. Nucleic Acids Res. 51, D924–D932. https://doi.org/10.
1093/nar/gkac848.

37. Li, H., Long, C., Hong, Y., Luo, L., and Zuo, Y. (2023). Characterizing Cellular
Differentiation Potency and Waddington Landscape via Energy Indicator.
Research 6, 0118.

38. Verfaillie, A., Imrichova, H., Janky, R., and Aerts, S. (2015). iRegulon and i-cisTarget:
Reconstructing Regulatory Networks Using Motif and Track Enrichment. Curr.
Protoc. Bioinformatics 52, 2.16.1–2.16.39.

39. Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). Inferring regu-
latory networks from expression data using tree-based methods. PLoS One 5, e12776.

40. Zheng, L., Liu, D., Yang, W., Yang, L., and Zuo, Y. (2021). RaacLogo: a new sequence
logo generator by using reduced amino acid clusters. Briefings Bioinf. 22, bbaa096.

41. Zheng, L., Liu, D., Li, Y.A., Yang, S., Liang, Y., Xing, Y., and Zuo, Y. (2022). RaacFold:
a webserver for 3D visualization and analysis of protein structure by using reduced
amino acid alphabets. Nucleic Acids Res. 50, W633–W638.

42. Zuo, Y., Li, Y., Chen, Y., Li, G., Yan, Z., and Yang, L. (2017). PseKRAAC: a flexible
web server for generating pseudo K-tuple reduced amino acids composition.
Bioinformatics 33, 122–124. https://doi.org/10.1093/bioinformatics/btw564.

43. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N.,
Schwikowski, B., and Ideker, T. (2003). Cytoscape: A Software Environment for
Integrated Models of Biomolecular Interaction Networks. Genome Res. 13, 2498–
2504. https://doi.org/10.1101/gr.1239303.

44. Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for
comparing biological themes among gene clusters. OMICS 16, 284–287. https://
doi.org/10.1089/omi.2011.0118.
Molecular Therapy: Nucleic Acids Vol. 34 December 2023 11

https://doi.org/10.1101/cshperspect.a019448
https://doi.org/10.1101/cshperspect.a019448
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref8
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref8
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref8
https://doi.org/10.3390/ijms23031567
https://doi.org/10.1016/j.bbagrm.2022.194861
https://doi.org/10.1016/j.bbagrm.2022.194861
https://doi.org/10.1111/jcmm.17505
https://doi.org/10.1111/jcmm.17505
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref12
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref12
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref12
https://doi.org/10.1126/science.1239278
https://doi.org/10.1038/s41586-022-04593-5
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref15
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref15
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref15
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref16
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref16
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref16
https://doi.org/10.1038/s41586-020-2734-6
https://doi.org/10.1038/s41586-020-2734-6
https://doi.org/10.1126/sciadv.aba1190
https://doi.org/10.1016/j.stemcr.2016.02.003
https://doi.org/10.1016/j.cell.2019.01.006
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref21
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref21
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref21
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref22
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref22
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref22
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1186/1745-7580-4-5
https://doi.org/10.1186/1745-7580-4-5
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref25
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref25
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref25
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref26
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref26
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref26
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1093/nar/gkw1278
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref29
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref29
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref29
https://doi.org/10.1016/j.celrep.2019.04.056
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref32
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref32
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1016/j.cell.2016.12.016
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/nar/gkac848
https://doi.org/10.1093/nar/gkac848
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref37
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref37
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref37
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref38
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref38
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref38
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref38
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref39
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref39
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref40
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref40
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref41
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref41
http://refhub.elsevier.com/S2162-2531(23)00262-7/sref41
https://doi.org/10.1093/bioinformatics/btw564
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
http://www.moleculartherapy.org

	Deciphering the decisive factors driving fate bifurcations in somatic cell reprogramming
	Introduction
	Results
	The somatic cell reprogramming can be divided into three stages
	Two fate bifurcations were detected during reprogramming
	Pluripotency and alternative cell fates in somatic cell reprogramming
	Molecular roadmap among different cell fates
	Deciphering decisive factors driving cell fate bifurcations

	Discussion
	Materials and methods
	Dataset collection
	scRNA-seq data preprocessing
	scRNA-seq dimensionality reduction, differentiation potential assessment, and trajectory inference
	Identification of DEGs
	Single-cell gene regulatory network inference
	GO enrichment and statistical analysis

	Data and code availability
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References


