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Abstract: Deep Neural Networks (DNNs) deployment for IoT Edge applications requires strong
skills in hardware and software. In this paper, a novel design framework fully automated for Edge
applications is proposed to perform such a deployment on System-on-Chips. Based on a high-level
Python interface that mimics the leading Deep Learning software frameworks, it offers an easy way
to implement a hardware-accelerated DNN on an FPGA. To do this, our design methodology covers
the three main phases: (a) customization: where the user specifies the optimizations needed on
each DNN layer, (b) generation: the framework generates on the Cloud the necessary binaries for
both FPGA and software parts, and (c) deployment: the SoC on the Edge receives the resulting files
serving to program the FPGA and related Python libraries for user applications. Among the study
cases, an optimized DNN for the MNIST database can speed up more than 60× a software version
on the ZYNQ 7020 SoC and still consume less than 0.43 W. A comparison with the state-of-the-art
frameworks demonstrates that our methodology offers the best trade-off between throughput, power
consumption, and system cost.

Keywords: cloud computing; deep neural networks (DNNs); edge computing; field programmable
gate array (FPGA); hardware acceleration; high-level synthesis (HLS) tools; internet of things (IoT);
low-power; low-cost; Python framework

1. Introduction

Over the last few decades, both Artificial Intelligence (AI) and the Internet of Things
(IoT) have seen considerable development and adoption in numerous domains [1–4].
Although they were not originally meant to be merged, some specific applications require
the accuracy and performance offered by AI algorithms, specifically by Deep Neural
Networks (DNN), while being constrained by typical IoT considerations, such as the low
power consumption [5]. This is for example the case of edge computing, with the local
acquisition and processing of peripheral data. Consequently, particular challenges due
to the deployment of DNNs to the edge have arisen [5–7]. The main technical difficulties
originate (1) from the high computing demand of the DNN-related algorithms, whereas the
edge and IoT nodes generally offer a limited computational power, and (2) from the usually
high power consumption requirement, also not compatible with the target deployment
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platform. To solve these problems, dedicated embedded systems have been proposed:
using reconfigurable circuits, the Field Programmable Gate Arrays (FPGA), and System-
on-Chips (SoC), a complete system embedded on a single chip, which specifically targets
the deployment of DNN for edge computing and the Internet of Things. Nevertheless, a
major challenge remains the design flow which requires a know-how combining hardware
design on FPGA with neural network architectures, to be able to build the appropriate
network for the chosen application [8]. An additional challenge is to make the use of very
distinct design and application flows compatible and transparent. This challenge has been
partly mitigated by the appearance of High-Level Synthesis (HLS) tools that help to divide
the tasks between the CPU and the FPGA in an optimized way, performing the so-called
hardware acceleration.

In this paper, we propose a solution that simplifies the design and deployment of a
deep neural network architecture to the edge: a fully automated framework that provides
a Python interface to create and optimize a DNN, run the synthesis on the Cloud, and
deploy the resulting network directly on the IoT user application node, i.e., the Edge
platform. Compared to other works proposing a configurable black box, development and
optimization of results are accessible, revealing the impact of implementation choices in
a simple, concise, and controlled way. The framework, based on the co-design approach,
consists of simultaneously designing the software and hardware parts of the neural network
architecture to improve the quality and consistency of the deployed solution.

In addition, by offering a Python interface while relying on low-level hardware design,
it brings together hardware designs and software development skills, which helps to
fasten and improve the design process [9,10]. The detailed work presented in this article
is considered as a continuation of our published work [11], where we have presented in
depth the optimization of the hardware architecture as well as a model to estimate the
performance that can be achieved depending on the level of optimization. Many figures
have been provided for space exploration depending on the level of optimization and the
size of the DNN topology. In this paper, we go forward to provide a new full Edge-to-Edge
automated generation environment. In summary, contributions of this work are listed
bellow:

• A Python interface allows the user to customize the DNN implementation at the
Edge based on the target platform’s limited hardware resources and the desired
performance.

• Balancing the optimization techniques as well as the interface protocols of each IP
in order to meet design-entry requirements and FPGA restrictions. For that, the
customization process starts from a C++ template that has several default input
parameters to optimize and encapsulate the IP layer to be generated. The generated
IPs will be stacked to build such DNN topology.

• Once the customization is complete, the framework generates a TCL file that runs the
pre-installed tools on the host server (or a commercial cloud such as AWS or Google
Cloud) where all the necessary HLS development tools are pre-installed.

• The IP hardware (bitstream file) and the cloud-generated software library can easily
be deployed to the Edge from the user application. The generated DNN can also be
uploaded to a website platform (e.g., Github, the AWS Marketplace) to be shared with
other users.

• Thanks to our new design flow, the user can easily customize, optimize, generate,
and use DNN models on the Edge without needing to master hardware development
tools, as is the case with almost all cutting-edge works. To our knowledge, this is the
first automated environment that develops and deploys DNN architectures based on
end-to-end FPGA acceleration.

This paper is organized as follows: Section 2 reviews the state-of-the-art hardware
optimization techniques as well as frameworks that offer co-design and methodologies for
the deployment of neural networks to the edge. Section 3 presents a general overview of
the proposed framework, whereas Sections 4–6 explain the implementation details of the
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DNN configuration (on the Edge), the generation of the FPGA architecture (on the Cloud),
and the communications between the Cloud and the Edge, respectively. Section 7 describes
and compares the results with the state of the art. Finally, Section 8 draws the conclusions.

2. Related Works

Many works in the literature proposing reconfigurable computing to enhance DNN
algorithms have demonstrated a speed increase when compared to CPU and GPU im-
plementations [12–15]. The latter is commonly employed to speed up DNN topologies
because it provides better outcomes in terms of pure processing performance. However,
regarding the processing performance for the power consumption ratio, a high-throughput
GPU is proved to be inefficient. Consequently, GPUs are not widely used for embedded
edge computing [16]. On the other hand, FPGA-based acceleration solutions have proven
to be as close as some high-end GPUs while maintaining a low power consumption; this
explains their popularity in this domain [14,17].

However, due to size and memory limits [18], hardware acceleration on embedded
reconfigurable devices remains a difficulty, as illustrated by the platform investigation
made in [13]. Therefore, several optimization techniques at the hardware level, such as
parallel computing, pipeline, or systolic array, should be carefully used in order to meet
the constraints.

The authors of [19] suggest ‘DLAU’, an FPGA-based accelerator for large-scale DNNs.
The DLAU architecture employs three accelerated pipeline processing units. The hardware
deployed on the Xilinx ZYNQ Zedboard platform in conjunction with an ARM Cortex-A9
processor consumes less power. Hardware resources can be consolidated into a single
DLAU core that handles all layers, enabling large-scale DNN implementations at the
expense of lower throughput.

Maria et al. [20] presented DNN implementations in FPGA employing Stacked Sparse
Autoencoders (SSAE) to enable low power architectures for real-time object detection in
autonomous systems and robots looking for edge solutions. OpenCL, a programming
language for heterogeneous parallel systems, was used to model the accelerator. To
categorize the CIFAR-10 color dataset, a Stratix V D5 FPGA was utilized to accommodate
a stacked autoencoder. The use of a high-level programming language does not prevent
achieving high performance and power consumption efficiency on FPGAs, where 0.357 W
and 45 FPS were achieved for a 3072-2000-750-10 SSAE topology.

Coutinho et al. [21] designed an implementation based on Stacked Sparse Autoen-
coders. Parallel processing elements (PEs) have been used to calculate the basic neuron
operation as well as a systolic array technique for streaming DNN weights to enhance the
overall throughput. Their systolic network, combined with an entirely hand-written RTL
code, makes their solution almost 2.2× faster compared to [20].

It has to be noted that the proposals found in [19–21] were about optimization tech-
niques rather than design automation. However, the best results presented in [21] will
challenge our proposal, as the resulting DNN implementation is highly optimized.

FPGA-based accelerators take substantially longer to design than software solutions.
They demand a high level of electronics skill, especially when it comes to custom opti-
mizations using Hardware Description Languages (HDL). As a result, various efforts have
concentrated, in recent years, on specialized frameworks and tools enabling the automatic
generation of DNN architecture designs for FPGAs combining customized RTL designs
and high-level languages, as detailed in [15,22–25]. Specific frameworks that offer such
design automation will now be reviewed.

Mouselinos et al. [22] presented the ‘TF2FPGA’ framework to inference and accelerate
TensorFlow DNNs on FPGAs. Several techniques were used, such as 1-bit input mapping, 8-
bit unsigned integer quantization, and a pre-built VHDL library, to optimize the accelerator
performance. The weights are extracted from the TensorFlow model and stored as ROM on-
chip memory. However, this technique limits the flexibility of the design, as a mandatory
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rebuild of the whole FPGA architecture must be done if any change on the user application
is performed. The experimental results were performed on ZYNQ 7010 SoC.

Mousouliotis et al. [23] created CNN-Grinder, an automated workflow to map a CNN
on Low-end-low-cost FPGA ZYNQ 7020 SoC. It includes templates that guide the user
through creating, verifying, and converting a part of an algorithm into an HLS definition.
The user must define in C/C++ the software application (i.e., the main file) as well as the
HLS description for FPGA acceleration using pragmas.

In [15], a high-level design automation framework was presented to enhance the
mapping of regular and irregular CNNs models. Their automated design technique, based
on Synchronous Data Flow (SDF), allows for fast exploration of architectural alternatives.
Within the same power budget, designs implementing this framework performed 6.65×
faster than massively parallel GPUs and 2.94× faster than cutting-edge CNN FPGA-based
implementations.

Acosta et al. [24] also present a tool that automatically builds customized FPGA-based
hardware accelerators for CNN models, which TensorFlow inspires. Using a Graphical
User Interface (GUI), the proposed tool allows the user to select the dataset and customize
CNN models. MNIST, CIFAR-10, and STL-10 datasets were used to train CNN models.
Five CNN models were developed with Tensorflow and compared in that research. The
results for the original LeNet-5 design reveal a latency per frame of 1.08 ms for 32-bit
architectures and 0.58 ms for 16-bit architectures.

Mazouz et al. [25] proposed a design flow for automating FPGA-based reconfigurable
CNN models using MATLAB. Indeed, the proposed framework is automated using a
workflow technique that allows a designer to get a CNN architecture as well as the option
of introducing new latency and space constraints. Via loop reordering, unrolling, and
pipelining, the framework automatically generates multiple design spaces to find a trade-
off on the latency for resource utilization by varying PEs.

These design frameworks are good examples of the various strategies which can be
used to automate and optimize the deployment of hardware accelerators, but they are still
not close enough to non-experts in hardware design looking for embedded solutions.

In this paper, we incorporate the previous techniques to create an end-to-end frame-
work for automating optimized DNNs for advanced applications on low-power embedded
platforms. Indeed, as presented in the state-of-the-art, we took several advantages of
hardware techniques that have been proven effective for DNN implementations, especially
pipelining, parallel processing, and systolic array, as discussed in [19–21]. In addition, our
design methodology supports a front-end user interface to customize the DNN topology
and balance the optimization techniques in order to achieve the best trade-off between
FPGA architecture performance and hardware limitations. This balancing method does
not cover only PEs as detailed in [25], but also the interfacing of each customized IPs (i.e.,
DNN layers), in order to meet performance requirements (as presented in Section 5.1)
and satisfy the variety of communication interfaces available on the platform used. To
overcome the barrier that is struggling non-experts (i.e., software developers) to deploy
the proposed methodologies, especially those presented in [15,22,23,25], we provide a
Python library to define the DNN at the software control layer level in a similar manner as
popular frameworks, such as TensorFlow and Keras, as detailed in Listing 2 and Section 6.
In addition, we provide a novel approach to generate the FPGA architecture from the
Edge by the bias of a harmony communication between the hardware board and the host
server or commercial Cloud technologies, e.g., Amazon Web Service or Google, where all
the necessary HLS tools are pre-installed and configured. With this method, the user can
customize, generate, and deploy DNNs models directly on the Edge without the need of the
board’s tools (i.e., Xilinx tools) or any additional commercial tool like MATLAB as in [25].
Based on our knowledge, our work presents the first design automation methodology to
deploy DNNs based-FPGA acceleration from Edge-to-Edge. Further explanation details
are provided in the following sections.
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3. General Overview of the Proposed Framework

Most SoCs support a combination of peripherals (e.g., SPI, HDMI, UART, USB) as
well as some General Purpose Input/Output pins (GPIO). In the case of PYNQ boards
such as Z1, Z2, Ultra96, RFSoC 2x2, etc., additional peripherals can be connected from
general-purpose interfaces including Pmods and Arduino via adapters [26]. Besides this
adaptability, the ZYNQ 7000 SoC (the integrated chip on the PYNQ board) can offer the best
solution by providing hardware acceleration through its programmable part (i.e., FPGA).

Exploiting this compact and low-power embedded system, we present in Figure 1 an
overview of our novel Edge-to-Edge framework aimed to fully automate DNN-based FPGA
acceleration. The figure presents three main parts depicted into three columns: Things, Edge
Computing, and Cloud/Host server on the left, middle, and right column, respectively.

Automated HLS Tools 
environment

Generate and 
encapsulate the 
customized IPs

ZYNQ 70xx 
Low power 

SoC, e.g., 7010, 
7020 User application and 

DNN acceleration
deployement on 
FPGA using .bit file

THINGS EDGE COMPUTING CLOUD / HOST SERVER

TCL Scripts 
controlling the 

HLS tools

Linking the layer to 
build the desired
DNN topology

Receive the 
FPGA 

Biststream
file 

Synthesis and 
generate the FPGA 
architecture

Python library
for DNN 
configurartion
and generation

Figure 1. Proposed framework for fully automating the generation and deployment of DNN models based on embedded
FPGA acceleration. (Things) Sensors are connected to the input ports available on the board, e.g., HDMI, USB, SPI, etc.
(Edge Computing) is considered as the main SoC chip (embedded FPGA + CPU) driving our fully automated framework.
The latter consists of mainly two parts: a Python library to configure, encapsulate, and generate DNN layers, and the user
application part where the user can deploy the bitstream of the auto-generated DNN model. (Cloud/Host Server) The board
is connected to the server where all needed HLS tools to generate such FPGA architecture are pre-installed. The framework
sends a TCL file commanding the tools. Once the latter completes their synthesis compilations, the framework gets back the
generated bitstream file to configure the FPGA.

The left column refers to the uncountable peripherals that can easily be connected to
the board via the external I/O ports, such as security cameras, microphones, industrial
sensors, and actuators. These are treated as the data to be processed by the DNN approach.

Since I/O port IPs are already available and free to use on open source platforms [27],
our framework focuses on the most challenging part, which is the DNN acceleration IP. This
task is ensured by an automated environment in both Edge and Cloud sides shown on the
middle and left columns, respectively. At the Edge, Computing level is considered the SoC
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board (i.e., PYNQ), where a Linux OS runs on the ARM CPU. All automation processes are
controlled via the interactive web application ‘Jupyter Notebook’ pre-installed on the Linux
system. At this level, our framework is composed of two sub-Python sections: (1) automate
configuration, optimization, and generation of DNN topologies, and (2) automate FPGA
bitstream deployment and user application integration, presented with the top and bottom
gray squares, respectively. In the first section, the user defines his DNN topology by
customizing the layers. The framework generates and stacks layers, creating a unique
hardware kernel accelerator (i.e., IP) for each layer. Several optimization parameters, such
as pipeline, parallel processing, systolic array, or interface communication, can be applied
to ensure a suitable hardware implementation. In the second section, the user will receive
the bitstream file to configure the FPGA and the hardware description architecture (i.e.,
C/C++ dynamic library) once the HLS tools finish compilation. With these files, the user
can automate the deployment of the DNN accelerator. In addition, we developed a Python
interface to adapt the generated hardware architecture to the user application as described
in Section 6.

As HLS tools cannot be used directly on embedded platforms, the compilation process
is performed on the host server or commercial clouds such as AWS or Google Cloud,
where all HLS tools are pre-installed and configured for automatic compilation. Moreover,
third-party DNN IPs can be stored there and deployed when needed. The compilation
flow is presented in the right column in Figure 1. In fact, the automation process is
driven by a TCL script generated by the framework once the user completes the DNN
configuration. The TCL file contains an equivalent “directive” for each layer parameter
and the necessary commands to execute the tools. This automation is applied on a C/C++
template specifying the main functionality of layers. More details about each part of the
framework are presented in the following sections.

4. Framework at the Edge: DNN Configuration and TCL Generation
4.1. IP Layer C/C++ Base Template

Starting with a C/C++ template representing the layer to be customized, the proposed
framework generates a DNN model FPGA-based acceleration. In order to create such a
DNN topology, it generates several layers based on this template by building a specific
hardware acceleration IP for each one. Additionally, IPs can be customized with various
parameters to maximize performance and meet device constraints. Several optimization
parameters, such as pipeline, parallel processing, and interface communication, have been
used to customize the hardware implementation of each kernel.

The C/C++ template represents the mathematical form of each DNN layer as shown in
Figure 2. Equation (1) describes the yj output of j-th neuron for a given layer. The variable
N is the number of outputs, i.e., number of neuron. xi is the i-th input for the current
neuron. b value is the bias and Wbj its weight for the j-th neuron. Wij is the weight of i-th
input for j-th neuron. Finally, f (∗) represents the activation function.
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CPU

FPGA

In-1

In-2

In-N

B(+1)

Out-1

Out-N

Input 
layer

Hidden layer (1)

Hidden layer (k-1)

Output layer (k)

B(+1) B(+1)

B(+1)

IP
(k-1)
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x2
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b
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(k-1)
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(k-1)
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ACPGP HP

IP Control
Data 

transfers
weights
transfers
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Figure 2. FPGA architecture of the DNN topology. The mathematical representation of such DNN
is presented at the top of the figure. Each layer is implemented as a single IP on the FPGA. IPs are
connected with an internal bus. The communications between FPGA and CPU are performed via
AXI port interfaces (i.e., GP, ACP, HP ports). Data transfers, as well as IPs control, are achieved
through AXI bus and AXI interconnects manager.

yj = f

(
N

∑
i=1

(
xi ∗ Wij

)
+ Wbj ∗ b

)
. (1)

Our C/C++ template is composed of three iteration loops (Listing 1): the first of
which is used to multiply the bias by its weight, as depicted in Figure 2. The second loop
multiplies and accumulates the input data with DNN weights, while the third is used to
produce layer outputs, in other words, the activation function for each output neuron. This
organization is done in order to provide flexibility in the layer implementation and full
control on the RTL IP version. Section 4.2 explains this in more detail:
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Listing 1. Pseudo-code for the C/C++ template used for a DNN layer.

/ / M u l t i p ly t h e b i a s v a l u e by t h e we ig h t o f j − th neuron
for j = 1 to N_Output
B [ j ] = Wb[ j ] * b
end

/ / M u l t i p ly and a c c u m u l a t e l a y e r w e i g h t s f o r a l l neurons
for i = 1 to N_Input
for j = 1 to N_Output
X[ j ] = X[ j ] + x [ i ] * W[ j ]
end
end

/ / Add w e i g h t e d b i a s and w e i g h t e d neurons and p r o d u c e o u tp ut neurons
/ / r e s u l t v i a a c t i v a t i o n f u n c t i o n
for j = 1 to N_Output
y [ j ] = f (X[ j ]+B [ i ] ) / / a c t i v a t i o n f u n c t i o n o f e a c h neuron a t k−th l a y e r
end

4.2. Python Library: DNN Customization and TCL Script Generation

A couple of HLS directives will be generated automatically to define various level
optimizations and the communication interface of each IP. These directives that were
chosen consider a highly optimized implementation and appropriate hardware resources
in light of the embedded system limitations. However, the user can alter drive them by
defining his optimizations to explore other implementation alternatives. Each directive
has a different effect on the RTL design synthesized by HLS tools. The main effects can
be divided into two categories: the optimization category, where the pipeline and parallel
computing can be performed, and the interfacing category containing several AXI interface
protocols for different needs.

Directives AXI—Advanced eXtensible Interface [28,29]—define the I/O IP layer com-
munications protocol. AXI is a standard on-chip communication protocol that allows IP
to be reused across various modern SoC platforms. Encapsulating the IPs layer with this
standard helps to facilitate scalability and compatibility between the generated IPs and
different commercial IPs, as well as to other AXI IPs sensors as showed in [27]. For that,
there is no lack of adopting our framework with these types of IPs.

In order to allow the user to configure easily, interface and modify the default opti-
mization parameters, a Python library has been developed. In fact, the latter generates a
TCL script containing the appropriate HLS directives for each custom IP layer. As a result,
the user has control over the hardware implementation and performance. Listing 2 shows
our Python library that extends TensorFlow-like functions for FPGA implementation.

Default settings have been provided to simplify configuration. However, the user can
provide their own for each layer via the arguments of the Python function. An example of
custom parameter modifications related to loops and AXI protocols for the first and second
layers are shown in Listing 2. The layer size, however, is a mandatory parameter required
for each function, as shown in the last layer declaration.

The Framework automatically sets up and generates the TCL script with the directives
once the configuration of layers is complete. When the model.compile() function is
called, the framework starts to compile the DNN hardware model according to the TCL
script. In fact, the script is sent to the server, where the HLS tools are pre-installed. The
automated process will synthesize and encapsulate the IP layers and generate the full
FPGA architecture by running the script. Section 5 covers this process in more detail.
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Listing 2. Python framework to automate the configuration and generation of the DNN
model for a specific FPGA.

from DNN_framework_lib . l a y e r s import Input layer , Hiddenlayer , Outputlayer
from DNN_framework_lib . models import~Sequent ia l

# C o n f i g u r a t i o n
input_ layer = Input layer (
s i z e =input_s ize ,
loop1=" u n r o l l i n g " ,
loop3=" pipe l ine_and_unrol l ing " ,
input_ layer="AXI−MM"
output_layer="AXI−Stream "
)
hidden_layers = [
Hidden_layer (
s i z e = l a y e r 2 _ s i z e ,
loop3=" pipe l ine_and_unrol l ing " ,
input_ layer="AXI−Stream " ,
output_layer="AXI−MM"
) ,

. . .

Hiddenlayer (
s i z e =layerN_size ,
loop1=" u n r o l l i n g "
]
output_layer = Outputlayer (
s i z e =output_size ,
)
model = Sequent ia l ( board_name , . . . )
mode . add ( input_ layer )
for l a y e r in hidden_layers :
model . add ( l a y e r )
model . compile ( )

5. Framework on the Cloud: Automate HLS Tools for Generating FPGA Architecture

After the framework generates the TCL script in the first phase of our design flow,
the second phase of Cloud or Host server automated IP generation begins. This automated
process can be presented as a sequence of three main tasks: generation of the IP layer,
the bitstream file, and a dynamic library (i.e., the .so file), as depicted in Figure 3. The TCL
script contains all requested layer configurations as detailed in pseudo-TCL script Listing 3.
The latter will drive and control the HLS tools in order to provide the appropriate FPGA
architecture of such DNN. In this section, we will present these tasks in more detail.
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Figure 3. Automated process of HLS tool configuration and synthesis on the Cloud or Host server by the TCL script.
The TCL file received from the Edge is responsible for: (a) optimizing, interfacing, and generating an IP for each layer based
on our C/C++ template; (b) specifying the data motion between IPs inside the FPGA and the CPU, configuring AXI ports to
be used for each I/O layer, and generating the entire hardware architecture; (c) generating the dynamic library to facilitate
the control and the execution of different C/C++ function calls from our Python interface.

5.1. Auto IP Layer Generation

The left square in Figure 3 shows the first task. The task starts with our C/C++
layer template to generate the IP—first, setup, optimization, and synthesis, followed
by interfacing the I/O with the appropriate AXI interface protocol. Then, the compiler
encapsulates the IP by generating the corresponding RTL design of the latter. It is important
to mention that the optimization and interfacing configuration parameters of each layer
have an equivalent ‘HLS directive’ as shown in Listing 3.

The directive unroll is used to ensure concurrent computation by generating several
instances of the same loop. The internal operands (i.e., Bi, Xj, etc.) will be implemented
using one block of RAM, which has only two data ports. Therefore, to increase the number
of RAM ports which ensure the parallel computing, splitting these arrays into multiple
smaller arrays (multiple block RAMs) is mandatory. To do that, we use the directive
array_partition for each operand. With the same reasoning, multiple operators (i.e.,
multiplication, addition, division) instances will be implemented similarly. The latter
ensured by using the directive allocation_operation_DSP. This optimization strategy is
a powerful method for improving IP throughput. However, on the other hand, parallel
computing significantly increases hardware resources, which goes directly against the
embedded FPGA limitations. For that, we limit the instance number to only two, as detailed
Listing 3.

The directive pipeline has the advantage of reducing the latency of the whole process.
As a result, more hardware resources, such as registers, are needed. However, when
compared to the unroll directive, which provides parallel execution, the pipeline is less
expensive. For this reason, we recommend using the first directive for all layers instead
of unroll. Still, the user can explore other configurations to meet the application needs
according to the available FPGA resources, as shown in Listing 2.
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The second step is interfacing the IP using the AXI bus protocol. The AXI standard
has three interface types, each of which is suitable for a specific type of communication.
The AXI-Lite requires fewer resources since it allows only one data transfer per transaction.
Therefore, we exploited it for IP control and forwarding bias values. The Memory Mapped
AXI (AXI-MM) interface is intended for off-chip data exchange, i.e., between IPs and
the user application running on the embedded CPU. We use this interface to send the
DNN input data; the weights are stored in the DDR memory (off-chip). The last type,
the AXI-Stream, is used for inter-IP layer data exchange to ensure high-speed streaming
data transactions in a systolic array manner. The systolic array technique bridges the gap
between serial and fully parallel architectures [30]. This technique allows serial data to be
received and the IP layers to perform their operations asynchronous (the next layer begins
to work before the end of the previous one). However, this technique consumes more
on-chip memory than the AXI-MM, considering the additional FIFO memory required for
data streaming. Listing 3 details the necessary AXI interfacing directives.

Listing 3. TCL script that automates HLS tools on the Cloud/Host server.

# C r e a t e p r o j e c t , add IP t e m p l a t e , and~ c h o o s e t h e SoC
c r e a t e _ p r o j e c t DNN
a d d _ f i l e s IP_template_cpp
se t_ top layer_fpga
s e t _ p a r t { ZYNQ_7020 }
c r e a t e _ c l o c k −period 10 −name~default

# S e t t h e a p p r o p r i a t e o p t i m i z a t i o n d i r e c t i v e s a c c o r d i n g t o u s e r c o n f i g u r a t i o n s
s e t _ d i r e c t i v e _ a l l o c a t i o n − l i m i t 2 −type operat ion DSP_fmul
s e t _ d i r e c t i v e _ a l l o c a t i o n − l i m i t 2 −type operat ion DSP_fdiv
s e t _ d i r e c t i v e _ a l l o c a t i o n − l i m i t 2 −type operat ion DSP_fadd
s e t _ d i r e c t i v e _ a r r a y _ p a r t i t i o n − f a c t o r 2 " layer_1 " local_memory
s e t _ d i r e c t i v e _ u n r o l l " layer_1/loop1 "
s e t _ d i r e c t i v e _ p i p e l i n e " layer_1/loop3 "
s e t _ d i r e c t i v e _ u n r o l l " layer_1/loop1 "
. . .

# I n t e r f a c i n g t h e IP l a y e r with t h e a p p r o p r i a t e AXI p r o t o c o l f o r e a c h I /O p o r t
s e t _ d i r e c t i v e _ i n t e r f a c e s _ a x i l i t e " layer_1 "
s e t _ d i r e c t i v e _ i n t e r f a c e s _ a x i l i t e " layer_1 "
s e t _ d i r e c t i v e _ i n t e r f a c e −mode m_axi −depth s i z e _ l a y e r _ 1 weight_bias
s e t _ d i r e c t i v e _ i n t e r f a c e −mode m_axi −depth s i z e _ l a y e r _ 1 layer_weights
s e t _ d i r e c t i v e _ i n t e r f a c e −mode m_axi −depth s i z e _ l a y e r _ 1 input
s e t _ d i r e c t i v e _ i n t e r f a c e −mode a x i s layer_1 output
. . .

# Launch s y n t h e s i s and e n c a p s u l a t e t h e IP
csynth_design
export_design − r t l vhdl −format~ip_package

# T a r g e t t h e b o a r d and s p e c i f y t h e name o f t h e dynamic l i b r a r y
PLATFORM = PYNQ−z1
LIBRARY = l i b \_DNN.so

# C r e a t e an o b j e c t f i l e f o r e a c h l a y e r
l a y e r _ 1 _ f p g a . o : layer_1
l a y e r _ 2 _ f p g a . o : layer_2
l a y e r _ 3 _ f p g a . o : layer_3
. . .

# C r e a t e C/C++ s h a r e d l i b r a r y f o r t h e DNN FPGA a r c h i t e c t u r e
{LIBRARY} : l a y e r _ 1 _ f p g a . o l a y e r _ 2 _ f p g a . o l a y e r _ 3 _ f p g a . o~−shared

# G e n e r a t e t h e b i t s t r e a m f i l e o f t h e FPGA
c r e a t e {LIBRARY} . b i t
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The final step is to export the resulting RTL design to be used forward by other
HLS tools in our design flow. Vivado HLS tools support the compilation, synthesis,
encapsulation, and exporting of IP design flow. The generated package can be received
from the Cloud and stored on Jupyter repository via the get_IP_package command as
explained in Listing 2. Developers can share their own custom architectures on websites
such as Github or AWS market-place, as indicated in the workflow of Figure 4 and detailed
further in Section 6. This option helps users to save and share all developed architectures
as well as create a private DNN library.

5.2. Auto IP Layer Integration and Software Control

To build an FPGA-based acceleration architecture for the developed DNN topology,
the generated IP layers should be stacked and linked, as shown in the middle box in
Figure 3. Since in the previous task all the IPs were perfectly encapsulated with the
appropriate interface, there is no obstacle for the compiler to understand the data flow and
necessary inter-IP links. The latter also covers linking with CPU interface ports. As our
framework is based on the PYNQ Xilinx environment, the target Edge Computing devices
are ZYNQ SoC. On them, the software side has three AXI port interfaces with the hardware:
General Purpose (AXI_GP), Accelerator Coherency Port (ACP), and High Performance
(HP) ports [31].

The AXI GP port is a 32-bit data bus that allows the FPGA and CPU to communicate
at low and medium speeds. This port is therefore suitable for IP layer control (i.e., AXI
Lite), where only few control commands are required. ACP is a single asynchronous
connection between the FPGA and the Snoop Control Unit (SCU) of the CPU. This port is
used to ensure coherency between CPU caches and hardware accelerators (i.e., IP layers)
within the FPGA. HP interfaces provide FIFO buffers for a burst read/write behavior and
high-speed communications. Our framework can instantiate IPs with both ACP and HP
AXI, ports for input/output data, and DNN weights, as shown in Figure 2. The HLS tool
automatically instantiates an ‘AXI-interconnect’ IP to manage data transactions within
the FPGA. In addition to the TCL script, our framework generates a C/C++ header file
containing some pragmas driving HLS tools to achieve this configuration.

Once finishing port interfaces’ configurations, the compiler generates a software
control driver, a standard object (.o) file, for each IP layer, in order to synchronize com-
munication and data motion of hardware accelerators with the software part (i.e., CPU).
The DNN weights and I/O data are passed between the CPU and the accelerator, and the
software program will access them after the IP acceleration is completed. Both IPs layers
and data motion control are accomplished using the sds_lib library of the SDSoC HLS
tool [32]. The latter is used for off-chip (i.e., DDR) memory allocation as well as for the
C/C++ shared library, as will be detailed in the following section. It is important to mention
that our framework invokes the SDSoC sds++ compiler to accomplish these tasks.

5.3. Auto Dynamic Library and FPGA Binary Generation

In the previous section, we described how to integrate and link the IPs. A software
control driver, a specific C/C++ library (sds_lib), helps to orchestrate data motions between
CPU and FPGA. It is important to remind that our objective is to easily deploy a resulting
FPGA-DNN to the Python environment (i.e., Jupyter Notebook) without the need to re-
generate a hardware architecture for each new user application. To do that, the framework
invokes the compiler to build a shared library (.so) of C/C++ software functions with entry
points into the auto generated IPs layer implemented in FPGA. This library includes a
program review of all IP caller relationships, as well as the execution procedure of the
DNN. As shown, the right box shows in Figure 3 the generated shared library contain the
sds_lib library as well. The latter is needed by our framework for the entry point from
Python environment, as detailed in Section 6.

Once all compilations are successfully complete, the framework will send the binary
FPGA (i.e., .bit file) and the dynamic library (i.e., .so file) files to Edge, where the user can
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adapt the customized DNN to his application. Some additional configurations to harmony
communications between the Cloud/Host server environment and the Edge are presented
in Section 6.

6. Framework to/from Cloud to Edge: Communication between the Cloud and the
Edge Applications

This section describes the communications between the client (i.e., PYNQ on the Edge)
and the server (i.e., Cloud). The client side runs on the board. When used by IP developers,
the client runtime generates the TCL script and sends it to the server to be executed as
described in the pseudo-code Listing 4. The server receives and executes the scripts. In the
case of users, as well as for developers, the server will return the resulting hardware binary
(.bit) and library (.so) files of the accelerated code. The next step is to upload the (.bit) into
the FPGA and create a Python interface for the shared library.

Listing 4. Pseudo-code of the function that generates the bitstream (.bit) and the shared
libraries (.so) files.

c l a s s Sequent ia l :
. . .
def compile ( s e l f ) :
s e l f . g e n e r a t e _ t c l _ t e m p l a t e s ( )
s e f . send_commands ( host=" a d r e s s _ t o _ s e r v e r " )
b i t s t ream = s e l f . g e t _ b i t s t r e a m ( )
shared_ l ib = s e l f . get_SO_l ibrary ( )
return bits tream , shared_ l ib # pa th t o t h e f i l e s

The Host or Cloud server is configured with all the necessary tools to compile cus-
tomized DNN. A containerized solution using “docker” was developed with all the re-
quired configuration to run the tools and facilitate the deployment to the host server or a
commercial Cloud platform like AWS or Google Cloud. The runtime communicates with
the board via TCP, as the server-side waiting for commands such as receiving, sending
data, and executing the TCL script as specified in the pseudo-code Listing 5.

Listing 5. Pseudo-code of the server runtime main loop.

while True :
cmd, args = recv_cmd ( )
i f cmd == " g e t _ b i t s t r e a m " :
s e n d _ f i l e ( path=" path_to_bi t s t ream " )
e l i f cmd == " g e t _ s h a r e d l i b " :
s e n d _ f i l e ( path=" path_to_sharedl ib " )
e l i f cmd == " exec " :
execute_cmd ( args )
e l i f cmd == " recv " :
recv_data ( args )
. . .

The Python API shown in Listing 6 is created using “ctypes”, where we can identify
and execute the (.so) inside Python. The framework will wrap all the (.so) functions to
abstract the low-level pointer manipulation and memory allocation that need particular
alignment. To configure the FPGA, we use the class “Overlay” from the PYNQ library,
where it is already pre-installed with the Python package.



Sensors 2021, 21, 6050 14 of 24

Listing 6. Pseudo-code of the our Python API for the Model creation.

from DNN_framework_lib import Sequent ia l
from pynq import Overlay
import~ctypes

c l a s s Sequent ia l :
. . .
def _ _ i n i t _ _ ( s e l f , board_name=None ) :
s e l f . board_name = board_name
def load_model ( s e l f , i n t e r f a c e ) :
. . .
def p r e d i c t ( s e l f , X) :
return s e l f . i n t e r f a c e . p r e d i c t (X)
. . .

def Create_Model ( bi ts tream , s h a r e d _ l i b r a r y ) :
overlay = Overlay ( b i t s t ream ) # l o a d b i t s t r e a m i n t o FPGA
shared_ l ib = ctypes .CDLL( s h a r e d _ l i b r a r y ) # l o a d l i b i n t o memory
i n t e r f a c e = c r e a t e _ i n t e r f a c e ( shared_ l ib ) # a d p a t C f u n c t i o n s t o t h e python
model = Sequent ia l ( ) . load_model ( )
return model

From the perspective of the user that only wants to use an already existing architecture,
he can import the two generated files (the .bit and .so) into the framework and use them as
shown in the pseudo-code Listing 7.

Listing 7. Pseudo-code shows the adaptation and utilization of the Model.

from DNN_framework_lib import *

model = Create_Model ( bi ts tream , s h a r e d _ l i b r a r y )
model . p r e d i c t (X)

Figure 4 describes the possible utilization of the framework. Here, we have two
different uses; developer (1) and regular (2), with different possible workflows. The dashed
arrows indicate an optional task as opposed to regular arrows that are obligatory ones.
Here, the user 1, the IP developer, is responsible for the creation of the DNN architecture
and export the generated files in his job or to upload them on some website (e.g., Github,
AWS marketplace) to be used by someone else. The user 2, a regular user, on the other side,
exemplifies the process of utilizing an already generated architecture; here, this user can
download and adapt the existing architecture to his application.

API

FPGA

Off-chip 

memory

Adapt DNN Model 

with user applications 

Github / Market-

place website 

Generate DNN 

model
shared library

bitstream

shared

library

bitstream

weights / data

Edge and Cloud environment Only Edge environment

User 1

User 2

Mandatory flow Optional flow

Figure 4. Development workflow, shows an overview of the utilization of the framework.
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7. Experimental Results and Discussion

The synthesis results of a developed IP layer using our automated system are detailed
in the first part of this section. The Vivado HLS tools were used to obtain the all performance
measurements (synthesis and simulation results). The implementation results of many
applied DNN topologies are presented as well. For easy and fair comparison with the
state-of-the-art, in our evaluations, we used the MNIST dataset as a case of study [33]. A
Xilinx PYNQ open source Python environment [34] is operated on the low cost and low
power ZYNQ 7020 SoC board, since our framework’s target domain is Edge Computing
and IoT applications. In fact, Edge Computing and real-time embedded systems make
extensive use of the above [35–39]. On the PYNQ’s Linux OS image system, a Jupyter
Notebook and associated Python package are already configured and installed. In the
second part, we compare our design flow with the state-of-the-art and provide a brief
discussion about the benefits of our design flow and framework.

7.1. Synthesis and Implementation Results

Figure 5 depicts the hardware resources of a generated custom IP layer using the
default directives. The number of Flip-Flops (FF) and Look-up Tables (LUT) consumed as
a function of IP size (i.e., the number of neurons) are represented in Figure 5a. The almost
linear growth of hardware resources with the IP size can be seen. Given the large variety
and number of neuron (from 50 to 2000), the growth is still acceptable. Furthermore, for the
largest IP size (2000 neurons), the FF and LUT occupations are less than 6% and 8% of the
total available, respectively. The DSP and BRAM block units are represented in Figure 5b.
In the covered range of the IP size, both occupations were also quite low. Indeed, as with
the prior ones, the utilization percentage is modest, less than 10% and 9%, respectively.

The latency of the entire IP layer is represented in clock cycles in Figure 6. The values
were first obtained from simulations and later confirmed by implementation results. The ob-
tained results with our default optimization directives are shown in orange bars, while the
latency without optimization is shown in blue bars. The default directives have a noticeable
positive effect. In fact, for a customized IP layer with 50 to 1000 neurons, the number of
clock cycles decreases by almost 19×. By adjusting the IP layer configuration parameters
as defined in Section 5.1 and Listing 2, the user can easily explore other outcomes suitable
for the target FPGA and desired output. The impact of the optimizations and the type of
the IP interface on the entire DNN architecture are detailed in Tables 1 and 2.
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Figure 5. Hardware resources as a function of the IP layer size (i.e., number of neurons). (a) blue and
orange curves represent the Flip Flop and Look-up Tables units, respectively; (b) blue and orange
curves represent the DSP and BRAM blocs, respectively.
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Figure 6. Latency in clock cycles for different IP layer sizes (i.e., number of neurons). The blue
and orange bars represent the latency of IP without and with default optimization configuration
parameters, respectively.

To assess design exploration abilities and allow subsequent software version compar-
isons, Table 1 lists the most prominent topologies auto-generated and implemented by
our framework. It is worth noting that the 32-bit floating-point data format is used in the
hardware implementation. With this choice, it is indeed very easy to place ourselves in a
case where our tool wins on all aspects used for comparison and results discussion. In addi-
tion, we could challenge our tool that offers automated optimization versus ‘hand-written’
optimization. In terms of precision, this alternative guarantees a fair comparison with the
pure software version. Indeed, the accomplished accuracy for the deployed topologies is
sustained between 96.2% and 99.2%, as predicted.

Despite these high quality results, energy consumption remains low, with the smallest
topology consuming only 0.26 W and the largest consuming less than 0.43 W. Our archi-
tecture not only offers an easy-to-use hardware interface, but also significant acceleration
performance, as seen by the speedup results. Table 1 summarizes each accelerated DNN
implementation speedup, which is nearly 61× for all alternative topologies as opposed
to the pure software variant running on the embedded CPU Cortex A9 Dual-core, at up
to 1 GHz. The speedup seems to be relatively high because, in the CPU code, there are
many sub-optimal operations. In fact, a simple function like calling a math function from
an external library takes at least a thousand instructions since it needs to go through the
dynamic loader to find the library, then allocate if needed and load into the memory, then
calculate the addresses set up the stack, jump to the global offset table, and finally run the
code that we need. In contrast, the same function in the FPGA could be executed directly
in a few hundred cycles.

Moreover, the achieved performance results, especially those of power consump-
tion, show that the proposed design flow allows for meeting low power requirements.
This is critical for IoT applications exploiting the Edge Computing, since the increasing
computational effort affects battery lifetime of many mobile devices [5].

Table 1. Performance achieved with the DNN topologies auto-generated and implemented on a ‘Zynq
7020’ board with the proposed framework, for a frequency of 100 MHz, tested on the MNIST database.

Topology
Throughput

Speed-Up Accuracy (%) Power (W)
CPU-Only CPU + FPGA

784-32-32-10 60 3636 60.6× 96.2 0.266
784-100-50-10 19 1160 61.05× 99.2 0.380

784-100-50-20-10 19 1153 60.68× 99.2 0.430
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7.2. State-of-the-Art Comparison and Discussion

We chose some reference DNN solutions to evaluate the position of our framework in
the context of hardware acceleration, as well as to assess its embedded capabilities. Mean-
while, we have reported the analysis of three alternative implementations for the same
DNN topology, the 784-100-50-10, while balancing between the flexible parameters (i.e.,
pipeline and parallel optimizations; and AXI interfaces) as detailed in Listing 2, in order
to assess the optimization impact on the performance results. Table 2 summarizes the
findings of state-of-the-art works for the using MNIST database. Topology, clock frequency,
throughput in Frames per second (FPS), and power consumption are some of the imple-
mentation and performance parameters mentioned in the table. Since not all topologies are
equally implemented, we also include the data type, topology complexity presented in the
number DNN parameters, and the throughput in terms of Million parameters per second
(Mps). The latter may aid in understanding the correlation between the throughput and
the topology complexity.

Our first alternative provides an implementation devoid of any kind of optimization.
This is expressed in the performance result, where the throughput record just 1.59 Mps
and 19 FPS, the lowest possible results. We adopted a pipeline and parallel optimizations
strategy in the second alternative. When compared to the first alternative, the throughput
increases up to 9.917 Mps and 118 FPS, which is more than 6× faster. The third alternative
implementation is the best strategy, as we used an AXI-Stream at the inter-layer communi-
cation protocol in addition to the previous optimizations of the second alternative in order
to perform a systolic array technique. As compared to the first and second implementation
alternatives, the overall results increased by 61.3× and 9.8×, respectively. As less AXI-MM
are used, the power consumption was reduced by almost 100 mW, from 0.49 W to 0.38 W.

Comparing with the state-of-the-art, the authors in [21] propose an SSAE optimized
at the low level, custom RTL, to achieve the best process efficiency in terms of throughput
and power consumption. Indeed, this proposal has the highest throughput and uses the
least amount of resources. Nevertheless, they use 12-bit data types to achieve this efficiency,
resulting in lower accuracy. However, since this work is aimed at high-performance
computing, the proposal was deployed using high-end powerful boards like the Virtex-6.
The latter does not present a perfect solution for IoT applications looking to its high price,
which costs more than 1821 US Dollars (USD) according to the “Digikey” website [40].

Mazouz et al. in [25] propose a design flow for automating FPGA-based reconfigurable
DNN models. For the MNIST classifier, they introduced many topologies. Table 2 depicts
the chosen topology 1-2-4, with three hidden convolutional layers and seven filters, where
the total parameters are almost 41 k. Notice that the implementation was done in much
larger ZYNQ, the ZYNQ 7100, which costs around $4043 USD, but just using 16-bit fixed-
point data values instead of 32-bit, which slightly reduces the accuracy (98.6 %). However,
the throughput do not illustrate any of this (still low at 526 FPS). Furthermore, although the
power consumption is not high, the efficiency (26.35 mW/Mps) is somehow.

Rivera-Acosta et al. [24] provided a GUI for generating several CNN topologies
automatically using only RTL templates. For the outcome assessment, they have used
Cyclone IV FPGA. They achieved a high throughput of 925 FPS with their LeNet-5 topology
and 32-bit data types. However, the throughput in Mps (55.5 Mps) is relatively low with
a limited number of parameters opposed to others. They did not, however, present any
details related to power consumption.
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Table 2. Comparison of performance between state-of-the-art DNN topologies and three implementation alternatives auto-generated with the proposed framework, at a frequency of
100 MHz (information not available for [25]). The mark (*) means: Higher is better. The mark (**) means: Lower is better.

Work Topology Chip Data (Bit, Type) Parameters (Number) Accuracy (%)
Throughput

Power (W) Power/Throughput (mW/Mps) **
(FPS) (Mps) *

[21] 784-100-50-10 Virtex 6 12, fixed 84.05 k 93.3% 1250 105.062 0.3 2.855
[25] 1-2-4 Zynq 7100 16, fixed 41.71 k 98.6% 526 21.934 0.578 26.35
[24] LeNet-5 Cyclone IV 32, float 60 k - 925 55.5 - -

Ours, #1 784-100-50-10 Zynq 7020 32, float 84.05 k 99.2% 19 1.59 0.478 300.6
Ours, #2 784-100-50-10 Zynq 7020 32, float 84.05 k 99.2% 118 9.917 0.49 49.4
Ours, #3 784-100-50-10 Zynq 7020 32, float 84.05 k 99.2% 1160 97.498 0.38 3.89
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Even with high-level synthesis and 32-bit data types, our automated approach de-
livered considerably outstanding results in terms of throughput, both in FPS and Mps,
compared to [21,24]. Furthermore, the power and efficiency figures are very similar to
those obtained using optimized RTL models as in [21]. Additionally, it is important to
note that our implementations were done using a low cost SoC-based FPGA accelerator,
the ZYNQ 7020 ($125 [40]), which presents a better solution for IoT applications compared
to [24,25], where ZYNQ 7100 ($4043 USD) and Cyclone IV ($340 USD) are used, respec-
tively. With this analysis, our framework resulting in the best balance of throughput, power
consumption, efficiency, and system cost.

Figure 7 illustrates our framework features related to hardware optimization flexibility
(y-axis) and the level of automation (x-axis) compared with the state-of-the-art works. Each
colored square represents a specific work or methodology, where its spread area in the
plane x-y reflects the work’s capabilities. Our framework has the largest area colored
in blue.

In Figure 7, the gray square represents the work of Coutinho et al. [21]. They have
used parallel Processing Elements (PEs) to calculate the basic neuron operation as well as a
systolic array technique for streaming DNN weights to enhance the overall throughout.
This work gives the best results in terms of power consumption and throughput since it
uses custom RTL PEs. However, this work does not offer any kind of design automation.
The green square depicts the basic PYNQ design methodology [41]. The user has to design
an “overlay”, the FPGA architecture (in our design terminology the bitstream), and the
project block diagram, a TCL file. To build a specific DNN model, the user can start with the
overall DNN model topology, or by layers (the IP layer in our framework) and then create
the FPGA architecture by doing the necessary connections between IPs and the processing
software (i.e., the embedded CPU). In this methodology, all types of optimization (pipeline,
parallel, systolic array, etc.) can be done at this design level. Using the VIVADO tool,
the RTL design of each IP can be automatically generated starting from C/C++ code. Still,
the user has to develop a specific Python interface in order to deploy and adapt the FPGA
DNN accelerator with the Python application. In the work of Acosta et al. [24], presented
in the yellow square, a full CNN model can be generated based on a graphic representation.
The optimizations were performed at the intra-layer level, where the PEs are multiplied
to ensure parallel and pipeline computing. There is no optimization ability for transfer
data between layers, such as systolic array or pipeline. For this purpose, the whole process
should be done for each new application, starting from training a CNN model to the
generated FPGA architecture design. The last compared work is presented in the orange
square, where Mazouz et al. [25] provide a framework to generate a unique RTL design
for custom DNN models using MATLAB. As in [24], a pipeline and parallel processing at
the PEs level was proposed in order to minimize the latency of the processing layers. They
propose a flexible optimization level, where the user can define the number of PEs running
in parallel. However, no optimization between layers was proposed. The resulting unique
RTL design can be online implemented on the target FPGA.
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Figure 7. A comparison between our framework features and the state of art works. The x-axis
represents the level of DNN automate generation where the y-axis represents the optimization that
can be performed by each proposed work.

In our framework, we offer the highest level in both design optimization flexibility and
design automation, generation, and deployment, compared to the previous works. In fact,
pipeline and parallel optimization were adopted at the intra-layer lavel as [21,24,25,41] and
a systolic array technique for data streaming as [21,41]. Furthermore, optimization balance
is proposed as in [25], in addition to a systolic array for data streaming between layers by
changing their interface type as described in Section 5.1 and Listing 2. In this manner, our
design flow offers the opportunity to generate a unique circuit tailored for each application,
in order to meet the user necessity and achieve better trade-off between performance and
hardware constraints. As presented in Figure 7, the whole process of our framework is
fully automated starting from basic RTL components (i.e., IP layers) to the adaptability
and re-usability with user applications as detailed in Sections 5.3 and 6. Besides what is
detailed on the state-of-the-art, we propose a novel Edge-to-Edge methodology to fully
control, customize, generate, and deploy DNN models from Edge. This methodology is
ensured by a harmony communication between the Python interface running on the Edge
and the HLS tools pre-installed on the Cloud or host server as shown in Figure 1.

7.3. Enhancement of Design Flow for IoT Applications-Based Edge Computing

The proposed framework enables the design to be done in a similar way to “pure
software” neural network applications using the popular Python interface. This feature
satisfies one challenge facing IoT applications-based edge computing, the “availability”,
a concept developed in [42] about the successful deployment of edge computing in IoT.
The “availability” includes three parameters, i.e., the mean time between failure, the failure
probability, and the mean time to recovery. Using the proposed edge-to-edge framework,
one can easily optimize the time to recovery thanks to the Python interface as well as
the fully automated generation process. In addition, the workflow of our framework
makes it possible to quickly recover the original generated architecture stored on the cloud
without any additional engineering work, as shown in Figure 4. It is also unique to edge-
to-edge applications as the usual design flow requires gathering many different tools and
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methodologies for the full development, whereas the proposed design flow unifies the
hardware (i.e., the acceleration) and the software under the same interface, and this will
automatically enhance the “availability” of the application.

The second challenge facing edge application is the adaptability of the architecture,
where standard protocols and interfaces are required, as mentioned in [5,42]. In fact,
different devices and sensors connect and communicate with one another and with the
edge server via communication protocols. Considering that different vendors manufacture
different devices in the IoT environment, standard protocols and interfaces should be
developed to enable communication among these heterogeneous devices [42]. In our design
flow, we respond to this obligation by using only the well-known AXI interface protocol,
where it is used for all generated IPs and the entire FPGA architecture, as mentioned in
Section 4.2.

The third feature enabled by the framework is the possibility of configuring the
hardware for each layer, where we can add and balance between loop unrolling, pipeline,
and other hardware accelerating methods in order to meet hardware resources’ limitations.
This feature helps deploy DNN architectures in a wide range of FPGAs, starting from the
minimal resources and power consumption devices to the latest powerful ones dedicated
to edge computing.

8. Conclusions

In this paper, we presented our novel design flow of DNN based embedded FPGA
acceleration on the Edge for low power and IoT systems. With little to no previous FPGA
or hardware design experience, developers of hardware-accelerated DNNs may use a
familiar Python-centric programming workflow to take advantage of FPGA acceleration.
Our design flow offers the opportunity to generate a unique circuit tailored for each Python
application in order to meet the user’s necessity.

Besides the automation of our design methodology, the latter is fully deployed on
the Edge. For that, the user starts with a Python interface where he customizes the
hardware implementation. A TCL script is generated automatically to drive the HLS tools
while respecting the user’s customization. Our novel approach is to command the tools
automatically from the Edge. In fact, a runtime is executed on both sides, Edge and Host
server or commercial Cloud, to harmonize the communications and transfer files. Once
the HLS tools finish compilations on the Cloud, they send back the necessary files for
FPGA configuration and its software control. An API wraps the received files in order to
adapt and re-use the generated DNN architecture easily. The user can share the designed
architecture in a public website (e.g., Github) or marketplace (e.g., AWS marketplace)
as well.

By using only a dedicated board, it can be possible now to generate with our frame-
work customized DNNs totally on the Edge without the need for private tools. Based
on our knowledge, our work presents the first Edge-to-Edge automation framework for
DNN-based FPGA acceleration. The state-of-the-art comparison shows that our frame-
work provides the best trade-off between the mandatory IoT criteria abstracted on power
consumption, low cost, and high throughput.

The framework has been extensively tested by using a scenario of handwritten digit
recognition, the training behind it made on the famous MNIST database. This can lead to
the development of a full edge application, such as the automatic recognition of license
plates or automatic online filling of handwritten bank transfers.

Our new Edge-to-Edge environment can integrate pure FPGAs design-flow to au-
tomate hardware implementation on another boards, other SoCs, and other brands by
simply adopting a unique TCL template for each commercial tool-chain. Besides what
we mentioned earlier, our future work is developing new IP templates that cover other
DNN layer types to generate more popular topologies like CNNs, RNNs, and GANs,
among others.
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