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Abstract
Geometric morphometrics is routinely used in ecology and evolution and morphomet-
ric datasets are increasingly shared among researchers, allowing for more comprehen-
sive studies and higher statistical power (as a consequence of increased sample size). 
However, sharing of morphometric data opens up the question of how much nonbio-
logically relevant variation (i.e., measurement error) is introduced in the resulting data-
sets and how this variation affects analyses. We perform a set of analyses based on an 
empirical 3D geometric morphometric dataset. In particular, we quantify the amount 
of error associated with combining data from multiple devices and digitized by multi-
ple operators and test for the presence of bias. We also extend these analyses to a 
dataset obtained with a recently developed automated method, which does not re-
quire human-digitized landmarks. Further, we analyze how measurement error affects 
estimates of phylogenetic signal and how its effect compares with the effect of phylo-
genetic uncertainty. We show that measurement error can be substantial when com-
bining surface models produced by different devices and even more among landmarks 
digitized by different operators. We also document the presence of small, but signifi-
cant, amounts of nonrandom error (i.e., bias). Measurement error is heavily reduced by 
excluding landmarks that are difficult to digitize. The automated method we tested 
had low levels of error, if used in combination with a procedure for dimensionality re-
duction. Estimates of phylogenetic signal can be more affected by measurement error 
than by phylogenetic uncertainty. Our results generally highlight the importance of 
landmark choice and the usefulness of estimating measurement error. Further, meas-
urement error may limit comparisons of estimates of phylogenetic signal across stud-
ies if these have been performed using different devices or by different operators. 
Finally, we also show how widely held assumptions do not always hold true, particu-
larly that measurement error affects inference more at a shallower phylogenetic scale 
and that automated methods perform worse than human digitization.
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1  | INTRODUCTION

Geometric morphometrics has become the method of choice for 
quantitative morphological studies because it combines statistical 
rigor and ease of visualization and allows for a separation of shape 
and size (Adams, Rohlf, & Slice, 2004, 2013; Zelditch, Swiderski, & 
Sheets, 2004). For these reasons, geometric morphometric data are 
frequently generated for a wide range of organisms and their parts and 
to address a wide array of evolutionary questions. With increasing fre-
quency, geometric morphometric datasets are also shared among re-
searchers. Data are shared among researchers in the same laboratory 
and among researchers in different laboratories through private con-
tact or public repositories. Data are increasingly shared through either 
specialized (Copes, Lucas, Thostenson, Hoekstra, & Boyer, 2016) or 
generic (e.g., Dryad, http://datadryad.org/) public repositories. Indeed, 
a search for “geometric morphometrics” in Dryad reveals a clear trend 
of increase in the number of deposited morphometric datasets (Fig. 
S1). Data are typically shared in the form of landmark coordinates or 
as the raw data on which landmarks are digitized—for example, pic-
tures for 2D analyses and surface models for 3D analyses. The sharing 
of morphometric datasets has many advantages, including a potential 
increase in statistical power due to increased sample sizes and the 
ability to tackle broader questions with datasets which include more 
and more species. Indeed, it has recently been suggested that “crowd-
sourcing” the acquisition of geometric morphometric data is a viable 
option to reduce the time researchers spend acquiring data (Chang & 
Alfaro, 2016). However, sharing morphometric datasets also creates 
the situation in which data obtained from multiple devices and/or op-
erators are combined. This, in turn, creates the risk that variation in 
the way data have been acquired distorts subsequent analyses (i.e., 
can potentially increase measurement error). Although no empirical 
investigation is free from measurement error, its extent and its ef-
fect on inference are largely unexplored in geometric morphometrics 
(Arnqvist & Mårtensson, 1998; Fruciano, 2016). In particular, random 

measurement error increases variance and is typically thought to con-
found biological patterns by decreasing the “signal-to-noise ratio” 
(Arnqvist & Mårtensson, 1998; Fruciano, 2016; Yezerinac, Lougheed, 
& Handford, 1992). A reasonable—but largely untested—consequence 
of this is that measurement error should affect analyses more seriously 
when biological signal is relatively weak. For instance, measurement 
error might be more serious in intraspecific, as opposed to interspe-
cific data. Another issue is that nonrandom measurement error (i.e., 
bias) has the potential to affect the computation of means, so that 
differences induced by error are incorporated in the analysis as true 
differences between groups (Fruciano, 2016). Here, we investigate 
the magnitude of random measurement error introduced by combin-
ing 3D geometric morphometric data obtained with multiple devices 
and digitizing operators. Further, we ask whether combining these 
data introduces significant bias (i.e., change in means). We also extend 
these analyses to a procedure for the automated analysis of surfaces 
(Pomidor, Makedonska, & Slice, 2016), which does not require human 
digitization of landmarks. Finally, we investigate the effects of mea-
surement error on the commonly used computation of phylogenetic 
signal. In doing this, we also evaluate the relative contribution of mea-
surement error and phylogenetic uncertainty to variation in measured 
phylogenetic signal. To also gauge the effect of landmark choice, we 
perform landmark-based analyses on two sets of landmarks: a “full” 
and a “reduced” set in which the most difficult to digitize landmarks 
have been removed. By showing how pervasive measurement error 
can be and which factors are its most important contributors, we hope 
to increase awareness on the implications of combining data from dif-
ferent sources.

2  | MATERIALS AND METHODS

A schematic representation of the workflow of the analyses in this 
study is presented in Figure 1.

F IGURE  1 Schematic representation 
of the workflow of the present study. 
Red boxes represent data acquisition and 
preparation. Light blue boxes represent 
analyses of measurement error and 
bias. Dark blue boxes indicate analyses 
on the effect of measurement error on 
phylogenetic signal

http://datadryad.org/
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2.1 | Data acquisition and processing

We obtained 3D surface reconstructions from skulls (one skull per spe-
cies) of 23 macropodoid marsupials, a group that includes kangaroos 
and wallabies (Table S1). These species were chosen based on prelimi-
nary evaluations of surface reconstructions to comprise a range of in-
termediate sizes large enough to obtain good scans across devices but 
small enough that differences in resolution could still be noticeable. For 
each skull, we obtained surface meshes using three different devices: 
two laser scanners and photogrammetry. The two laser scanners were a 
NextEngine 3D Ultra HD and a Solutionix Rexcan CS+, a commonly used 
laser scanner and a higher-end device, respectively. Photogrammetry is 
a technique which allows surface models to be generated from pho-
tographs (Falkingham, 2012) and which is getting increasing atten-
tion from morphometricians (Aldridge, Boyadjiev, Capone, DeLeon, & 
Richtsmeier, 2005; Cardini, 2014; Muñoz-Muñoz, Quinto-Sánchez, & 
González-José, 2016; Weinberg et al., 2009). We obtained photogram-
metric models with a combination of a Nikon D5200 DSLR camera and 
the software Agisoft Photoscan (Agisoft LLC, St. Petersburg, Russia). 
Further details on devices, settings, and postprocessing can be found 
in the Appendix S1. In general, as these are very different devices and 
there are several choices that can influence the surface models ob-
tained, we tried to make them comparable using the time spent to ob-
tain each model (about one hour per scan) as a criterion.

Using the surface meshes thus obtained, two operators digitized 
independently with IDAV Landmark Editor (Wiley et al., 2005) a set of 
31 type I landmarks (sensu Bookstein, 1991; Fig. S2), inspired by a pre-
vious study of macropod cranial variation (Milne & O’Higgins, 2002). 
These landmarks were chosen following a preliminary examination of 
surface scans where they were clearly visible (please, see the Appendix 
S1 for further details). The choice of using only type I landmarks (i.e., 
fixed landmarks on homologous points) was made to avoid the poten-
tially confounding effect of using a sliding procedure (Bookstein, 1997; 
Gunz, Mitteroecker, & Bookstein, 2005) on semilandmarks.

For the subsequent analyses, each focal subset was subjected to 
generalized Procrustes analyses (Rohlf & Slice, 1990) in the R pack-
age Morpho (Schlager, 2016). For instance, when performing a com-
parison between Solutionix and NextEngine surface scans digitized by 
Operator 1, we combined the landmarks digitized by Operator 1 on 
Solutionix and NextEngine scans—and only those—and performed on 
this combined focal subset a single generalized Procrustes analysis. 
This analysis removes variation in translation, rotation, and scale in a 
set of landmark configurations. Using generalized Procrustes analysis 
on each focal subset guarantees the minimum possible shape dis-
tances among landmark configurations. On the contrary, using a single 
generalized Procrustes analysis on all the combinations of operators 
and devices combined prior to subsetting, distances between individ-
ual shapes might be larger.

To avoid a few particularly difficult landmarks affecting the con-
clusions of the study, the analyses were repeated excluding the seven 
(three bilateral landmarks, one on the midline) most problematic land-
marks. These were chosen based on subjective reports from each op-
erator where each operator ranked landmarks in order of perceived 

difficulty and then a consensus of the most difficult landmarks was 
drawn (see Appendix S1 for details). We will refer to this set of land-
marks as “reduced.” Unless otherwise specified, all analyses were per-
formed on the symmetric component of shape variation (Klingenberg, 
Barluenga, & Meyer, 2002; Klingenberg & McIntyre, 1998). Prior to 
specific analyses, preliminary principal component analyses (PCA) were 
performed and we produced scatterplots of the scores along the first 
two principal components, which were inspected for nonrandom pat-
terns of dispersion. Similarly, scatterplots of scores along the first two 
between-group principal components (species used as group) were 
used as an exploratory tool to visualize grouping of observations by 
species (as we used only one skull per species, all variation within spe-
cies is due to operator and device). Between-group PCA (Boulesteix, 
2005) is an ordination technique increasingly used in geometric mor-
phometrics (Firmat, Schliewen, Losseau, & Alibert, 2012; Franchini, 
Colangelo, Meyer, & Fruciano, 2016; Franchini et al., 2014; Fruciano, 
Franchini, Raffini, Fan, & Meyer, 2016; Fruciano, Pappalardo, Tigano, & 
Ferrito, 2014; Schmieder, Benítez, Borissov, & Fruciano, 2015), as the 
ordinations do not exaggerate the extent of separation between groups, 
which is one of the typical drawbacks of the commonly used scatter-
plots of canonical variate scores (Mitteroecker & Bookstein, 2011).

2.2 | Levels of measurement error in landmark data

The relative amount of measurement error on the datasets (full and 
reduced configurations of landmarks, including all the operator/device 
combinations or only some of them) was measured using Procrustes 
ANOVA (Klingenberg & McIntyre, 1998; Klingenberg et al., 2002) in 
MorphoJ (Klingenberg, 2011). This approach partitions the total vari-
ation in aligned landmark coordinates (i.e., Procrustes residuals) into 
terms, allowing us to gauge the impact of variation among devices and 
operators relative to biological variation among individuals (species) 
and directional and fluctuating asymmetry. We also used the mean 
squares obtained from the Procrustes ANOVA (in this case only on 
the symmetric component of shape and using the “Individual” term as 
unique predictor) to compute an analogue of the intraclass correlation 
coefficient (also called “repeatability”; Arnqvist & Mårtensson, 1998), 
as described in Fruciano (2016).

2.3 | Testing for bias in landmark data

Whether landmark data contain significant bias (i.e., nonrandom error) 
is a question distinct from how much variation is attributable to meas-
urement error. Bias would be expected if systematic differences ex-
isted between devices or users. The question of whether significant 
bias is present can then be rephrased to ask whether a certain treat-
ment (e.g., use of different device or operator) induces a change in 
mean. We investigated this question with a series of pairwise com-
parisons among surfaces digitized by the same operator (to test for 
bias due to device) and surfaces from the same device but digitized 
by the two operators (to test for bias due to operator digitization). 
We repeated this analysis using the dataset with all the landmarks 
and the dataset with a reduced number of landmarks. To test the null 
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hypothesis of no difference in mean shape across repeated measures, 
we used a permutation test (1000 random permutations), permuting 
within subjects (see Appendix S1 for further information).

2.4 | Use of automated methods of surface analysis

Recently, various methods that hold promise for decreasing the 
time necessary in acquiring data have been proposed. In particular, 
Pomidor et al. (2016) have proposed a new method to obtain from 
surface scans/models an analogue of Procrustes distance and perform 
superimpositions on a set of surfaces. This method has been imple-
mented in the GPSA software (Pomidor et al., 2016), which outputs a 
set of principal coordinate scores obtained through principal coordi-
nate analysis of the set of distances among surface models.

Here, we use this method on our set of scans from three differ-
ent devices. To study how data acquired automatically from surfaces 
was affected by variation due to the device used, we computed the 
amount of measurement error (as repeatability) and tested for bias 
as described above for landmark data. We applied these analyses to 
the full set of principal coordinate scores obtained from the software 
GPSA and using a subset of principal coordinate scores, as determined 
using a dimensionality reduction approach. The dimensionality reduc-
tion was based on the observed explained variance of nonzero princi-
pal coordinates and the variance expected under a broken stick model 
(see Appendix S1 for details).

2.5 | Measurement error and phylogenetic signal

As a statistic to quantify and test for phylogenetic signal we use Adams’ 
KMULT (Adams, 2014), a recently proposed measure of phylogenetic 
signal which consists of a generalization of Blomberg’s K statistic 
(Blomberg, Garland, & Ives, 2003) to multivariate data. As a reference 

phylogeny, we inferred a dated phylogeny based on a 33767-base pair 
alignment of DNA sequences for 57 species (which we then pruned 
to match our morphometric data as appropriate) and a set of four 
node calibrations using a relaxed molecular clock (Drummond, Ho, 
Phillips, & Rambaut, 2006) in BEAST 1.8.3 (Drummond, Suchard, Xie, 
& Rambaut, 2012). In BEAST, we performed two independent runs 
of 20 million generations, sampled every 2000 generations, and dis-
carded the first 20% as burn-in. Employing this widely used software 
that integrates molecular dating over phylogenetic uncertainty with a 
few well-supported calibrations reflects our effort to study the effect 
of measurement error in a typical phylogenetic comparative study, 
with realistic levels of phylogenetic uncertainty (see Appendix S1 for 
details).

We investigated the interplay of measurement error and phylo-
genetic signal at two different levels. At the first level, we computed 
KMULT for different subsets of our dataset using the best supported 
phylogeny from the posterior distribution (Figure 2, Fig. S3). This 
is the typical approach used in phylogenetic comparative studies. 
Specifically, we computed KMULT for each unique combination of de-
vice and operator (three devices, two operators, for a total of six 
unique combinations) and then computed the coefficient of variation 
across the six KMULT estimates. This analysis was performed on both 
the full dataset and the dataset excluding problematic landmarks. 
The analysis was repeated for the dataset comprising all the species 
in the phylogeny matching our morphometric dataset (Figure 2) and 
for four subclades. This allows us to verify the widespread assump-
tion (Arnqvist & Mårtensson, 1998; Fruciano, 2016; Yezerinac et al., 
1992) that, as the total variation in a sample is reduced (e.g., moving 
from interspecific to intraspecific samples or moving to shallower 
phylogenetic scales), measurement error will have stronger effect on 
inference (as the “signal-to-noise ratio” decreases). If this assump-
tion were met in our sample, we would find a lower coefficient of 

F IGURE  2 Phylogenetic tree used in 
analyses of phylogenetic signal, pruned to 
match the most comprehensive dataset 
used. Clade A and Clade B highlight two of 
the subsets used (see text and Appendix 
S1) Aepyprymnus rufescens

Dendrolagus goodfellowi
Dendrolagus lumholtzi

Dendrolagus matschiei

Macropus agilis

Macropus giganteus
Macropus irma

Macropus parryi

Macropus rufogriseus

Macropus rufus

Onychogalea fraenata
Onychogalea unguifera

Petrogale assimilis
Petrogale herberti
Petrogale penicillata

Petrogale persephone

Petrogale purpureicollis
Petrogale xanthopus

Setonix brachyurus

Thylogale stigmatica
Thylogale thetis

Wallabia bicolor
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variation in KMULT in datasets comprising all the species compared to 
subsets. We extended this analysis by computing variation in KMULT 
across device/operator combinations for random subsets of taxa in 
our phylogeny. This was done by randomly drawing a fixed number 
of taxa and computing on these taxa phylogenetic diversity (ex-
pressed as total branch lengths) with the package caper (Orme et al., 
2013). For each of the six combinations of operator and device, 
these taxa were subjected to a Procrustes fit and the phylogenetic 
signal of each combination was computed as KMULT. Finally, the vari-
ation of KMULT across different combinations of operator and device 
was expressed as coefficient of variation. The above algorithm was 
repeated 1000 times each for 5, 10, and 15 taxa and both landmarks 
sets (full and reduced).

In the second level of investigation, we incorporated phylogenetic 
uncertainty by computing KMULT on each tree of the posterior distri-
bution of trees (excluding the burn-in). While estimating, reporting, 
and accounting for phylogenetic uncertainty is commonplace in phy-
logenetics and phylogenetic comparative studies (Felsenstein 1985, 
Huelsenbeck et al. 2000), investigations applying phylogenetic com-
parative approaches to geometric morphometric data typically use a 
single reference tree, thereby disregarding variation due to phyloge-
netic uncertainty and how this would affect inference. To ascertain 
the levels of variation in KMULT due to phylogenetic uncertainty rel-
ative to variation in KMULT due to measurement error (i.e., variation 
among devices and operators), we performed a resampling-based 
version of analysis of variance (see Appendix S1 for details).

3  | RESULTS

Scatterplots of the scores along the first two principal components 
on the full dataset (Fig. S4) show an apparent pattern of association 
between repeated measures of the same specimen and the second 
principal component. This pattern disappears in the dataset reduced 

to easily recognizable landmarks, where repeated measurements of 
the same specimens tend to cluster more tightly (Fig. S4). This pat-
tern is confirmed by the scatterplots of the scores along the first two 
between-group principal components (Figure 3). PCA scatterplots for 
residuals from species means show some nonrandom patterns associ-
ated with variation among devices and, even more clearly, variation 
among operators (digitization; Fig. S4).

3.1 | Levels of measurement error in landmark data

In the Procrustes ANOVA of various datasets and their subsets 
(Tables 1, S2), the levels of measurement error are relatively low—but 
not trivial—when compared to the variation among species. The mean 
squares for the “Device” and “Operator” terms are, respectively, 1.7% 
and 2.1% of the mean squares for the “Individual” term in the dataset 
comprising all observations and all landmarks (Table 1). Device and 
operator explain, respectively, 5.4% and 10.2% of total variation (as 
computed by dividing the sum of squares for each term by the total 
sum of squares). This is also observed in subsets of the dataset includ-
ing all the landmarks (Table S2). Variation between the two operators 
digitizing on the models obtained by a single device (Table S2) accounts 
between 8.09% (Solutionix scanner) and 12.06% (NextEngine scan-
ner) of total variation and the mean squares for the term “Operator” is 
between 4.58% and 7.17% of the term “Individual” (variation among 
species). Variation between surface models digitized by the same op-
erator for the dataset with all landmarks ranges between 9.22% and 
11.25% of total variation (Table S2). This is confirmed by the value 
of repeatability for the dataset comprising all the landmarks, which is 
0.83 in the full dataset (Table 1) and ranges between 0.78 and 0.88 in 
the various subsets (Table S2).

When compared to the terms related to directional and fluctuating 
asymmetry (i.e., “Side” and “Individual x Side”) in the analysis of the 
dataset comprising all landmarks, the terms “Device” and “Operator” 
have mean squares with similar order of magnitude and account for 

F IGURE  3 Scatterplot of the scores along the first two between-group principal components (species used as group) for the dataset 
comprising all the landmarks and a dataset in which the most difficult landmarks had been removed
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more variation (Table 1). This suggests that analyses of asymmetry 
could be unreliable.

Most importantly, simply eliminating landmarks that are difficult 
to digitize has substantial impact in reducing the level of measurement 
error. Indeed, in the full dataset with a reduced number of landmarks, 
the terms “Device” and “Operator” account for 2.07% and 2.26% of 
total variance and repeatability increases to 0.96 (Table 1). Similar pro-
portions are obtained for subsets, where repeatability is 0.95 or higher 
(Table S2).

3.2 | Testing for bias in landmark data

Our pairwise comparisons of repeated measurements showed a strik-
ing contrast between comparisons of datasets using all landmarks and 
comparisons of datasets using a reduced set of landmarks (Table 2). 
When using the dataset with all landmarks and comparing surfaces 

digitized by the same operator, only one test (i.e., between landmarks 
digitized by Operator 1 on NextEngine and photogrammetry surfaces) 
is significant. All the other comparisons, both of surfaces of different 
devices digitized by the same operator and of different operators digi-
tizing surfaces from the same device, are not significant. On the other 
hand, all the comparisons using a reduced set of landmarks are sig-
nificant, except the ones comparing photogrammetry and NextEngine 
surfaces (for both operators; Table 2).

3.3 | Error and bias in automatically generated 
morphometric data

Plots of the first two principal coordinate scores as obtained by 
GPSA (Fig. S5) reveal a clustering of repetitions by species but also 
possible nonrandom patterns of variation associated with the de-
vice used to acquire the surface scans. The Procrustes ANOVA on 

TABLE  1 Procrustes ANOVAs of various marsupial cranial datasets

Effect SS %Var MS df F p Repeatability

Full dataset, all landmarks

Individual (species) 0.965853 83.19789 0.000954 1012 65.87 <.0001 0.832

Side 0.000724 0.062351 1.81E-05 40 1.25 .1415

Individual × Side 0.012751 1.098381 1.45E-05 880 0.91 .9638

Device 0.063118 5.436964 1.6E-05 3956 0.8 1

Operator 0.118464 10.20441 2E-05 5934

Full dataset, reduced landmarks

Individual (species) 0.910388 94.37447 0.001182 770 66.54 <.0001 0.961

Side 0.000742 0.076948 2.47E-05 30 1.39 .0812

Individual × Side 0.011728 1.215769 1.78E-05 660 2.66 <.0001

Device 0.01996 2.069179 6.68E-06 2990 1.37 <.0001

Operator 0.021836 2.263638 4.87E-06 4485

SS, sum of squares; %Var, percentage of variance accounted by the term (computed dividing the sum of squares for the term by the total sum of squares); 
MS, mean squares; df, degrees of freedom; F, F-statistic; p, p-value (parametric); repeatability, value of repeatability obtained using the formulas for the 
intraclass correlation coefficient on Procrustes ANOVA terms (see the text for details).

TABLE  2 Significance of the test of bias for different subsets of our marsupial cranial data. The table reports p-value based on a within-
subject permutation procedure (1000 random permutations). For comparisons between devices, p-values above the diagonal were obtained 
with landmark sets digitized by Operator 1 and p-values below the diagonal with datasets digitized by Operator 2. Significant comparisons in 
bold

Between devices digitized by the same operator Between operators, same device

Solutionix NextEngine Photogrammetry Solutionix NextEngine Photogrammetry

All landmarks

Solutionix – 0.11 0.32 0.25 0.12 0.09

NextEngine 0.52 – 0.04

Photogrammetry 0.19 0.17 –

Reduced set of landmarks

Solutionix – <0.001 <0.001 <0.001 <0.001 <0.001

NextEngine <0.001 – 0.17

Photogrammetry <0.001 0.14 –
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the full set of principal coordinates reveals substantial variation 
due to device, accounting for about 28% of total variance, with 
a repeatability (as equivalent of the intraclass correlation coeffi-
cient) of 0.58 (Table 3). However, when using only the first five 
principal coordinates (chosen with a dimensionality reduction pro-
cedure), variation due to device accounts for less than 5 percent 
of total variance and repeatability increases to 0.95. When testing 
for bias, most of the pairwise comparisons of the same skulls ac-
quired using different devices are significant (i.e., there is a varia-
tion in mean shape due to device; Table 3). However, the distances 
between skulls obtained using different devices are perceptibly 
lower when using only the first five principal coordinates (data not 
shown) and are not significant in the case of the comparison be-
tween surfaces acquired using the NextEngine scanner and photo-
grammetry (Table 3).

3.4 | Measurement error and phylogenetic signal

We computed KMULT based on a single reference tree for various 
datasets (Table S3) to test the expectation of higher variation in re-
sults at a shallower phylogenetic scale. Our results suggest that this 
expectation is not always met. Rather, the coefficient of variation 
for KMULT across different operator/device combinations is almost 
always lower when going from a phylogenetically more diverse data-
set to a dataset comprising only more similar species. When compar-
ing for the same set of species the coefficient of variation between 
the full set of landmarks and the reduced set, the latter has lower 
variation (Table S3). In addition to this, KMULT tends to be higher in 
the datasets with a reduced number of landmarks compared to their 
counterparts comprising all landmarks (Table S3). Extending the anal-
ysis to random subsets of taxa fails to reveal any clear association 
between the variation in KMULT across operator/device combinations 

(expressed as coefficient of variation in KMULT) and phylogenetic 
diversity (Figure 4).

Analyzing the values of KMULT obtained using the full posterior 
distribution of trees to incorporate phylogenetic uncertainty further 
corroborates these results. In fact, for the most comprehensive set 
of landmarks, two distributions of KMULT are clearly distinct from the 
other distributions but greatly overlap when excluding the most diffi-
cult landmarks (Figure 5). It is worth noticing that in some cases, the 
distribution of KMULT changes not only in mean but also in shape. This 
is most apparent when focusing on the analyses on the various device/
operator combinations for the genus Macropus when using all land-
marks (Table S4). In these subsets, the standard deviation of KMULT 
ranges between 0.004 and 0.017. More in general, 95% confidence 
intervals for KMULT computed on the posterior distribution of trees for 
various subsets (Table S4) are as narrow as 0.015 and as wide as 0.212. 
Otherwise, computing KMULT on the posterior distribution of trees for 
various subsets (Table S4) shows patterns broadly in agreement with 
the computations of KMULT based on a single “best” tree (Table S3). 
Indeed, both the mean and the median of KMULT are generally higher 
when excluding the most problematic landmarks.

We performed ANOVAs on the value of KMULT for random subsa-
mples of the distributions to gauge the relative contribution of phy-
logenetic uncertainty and measurement error to variation in KMULT 
estimates. Our results (Table S5) quantitatively confirm the observa-
tions on distributions of KMULT. In fact, excluding the most difficult 
landmarks generally results in a sharp increase of the proportion of 
variance accounted for by the term “Tree” (which we interpret as vari-
ation in KMULT due to phylogenetic uncertainty) relative to the pro-
portion of variance accounted for by the other terms (which reflect 
variation in KMULT due to measurement error). However, while in some 
cases the “Tree” term explains the clear majority of variance in KMULT, 

TABLE  3 Results of analyses of measurement error on data automatically acquired using GPSA with and without dimensionality reduction

df SS MS Rsq F Z p Repeatability

Procrustes ANOVA, full set of nonzero principal coordinates

Species 23 11394.1 495.4 0.72365 5.1235 2.1345 .001 0.58

Residuals 45 4351.1 96.69

Total 68 15745.3

Procrustes ANOVA, first five principal coordinates

Species 23 7061.6 307.024 0.96809 59.364 2.8411 .001 0.95

Residuals 45 232.7 5.172

Total 68 7294.3

Solutionix NextEngine Photogrammetry

p-values for the pairwise tests of bias

Solutionix – <0.001 <0.001

NextEngine 0.02 – 0.006

Photogrammetry <0.001 0.172 –

df, degrees of freedom; SS, sum of squares; MS, mean squares; Rsq, r squared; p, p-value; in the pairwise test for bias, above the diagonal test based on the 
full set of nonzero principal coordinates and below the diagonal test based on the first five principal coordinates.
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in most cases variation in KMULT due to other terms (i.e., due to mea-
surement error) is nontrivial (Table S5).

4  | DISCUSSION

Here we have analyzed measurement error in 3D geometric morpho-
metrics, with a focus on the situation of combining data obtained from 
different devices or operators. We have explored three main areas: 
(1) the existence and the extent of both random measurement error 
and bias in landmark-based geometric morphometrics, (2) the extent 
of measurement error and bias in automatically generated geomet-
ric morphometric data, and (3) the sensitivity of a commonly used 

measure of phylogenetic signal to realistic levels of measurement 
error. A descriptive summary of the results can be found in Table 4.

4.1 | Levels of measurement error in landmark data

Our results highlight the importance of landmark choice. Excluding 
from the analyses a few landmarks that the operators found harder to 
digitize generally resulted in an impressive reduction of measurement 
error. This result is, in part, expected, but it points out an important 
issue. The difficulty in digitizing landmarks could depend on the indi-
vidual operator and on the samples, so relying heavily on published or 
existing landmark sets can produce unwanted levels of measurement 
error if the new operator finds the landmarks difficult to digitize.

F IGURE  4 Plots of the coefficient of variation of KMULT (across unique device/operator/landmark set combinations) against phylogenetic 
diversity for randomly drawn taxa (5, 10, 15)
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It is also interesting to notice that in our analyses, a much larger 
amount of variance was explained by the operator compared to the 
device. If this pattern were common, this would mean that—when pro-
vided with the choice—it is better to combine existing surface scans 

and have a single operator to digitize landmarks than combining exist-
ing sets of landmarks, even if obtained from the same device. However, 
a recent study on a small intraspecific sample of wolf skulls comparing 
surface scans and photogrammetric surfaces (Evin et al., 2016) has 

F IGURE  5 Distribution of the value of KMULT for subsets (unique device/operator/landmark set combinations) computed using the posterior 
distribution of trees obtained from the phylogenetic analysis
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TABLE  4 Descriptive summary of the results

Analysis Results

Levels of error (human-digitized 
landmarks)

Using all landmarks, measurement error accounts for about 10% of total variance (repeatability around 0.8)
Removing landmarks difficult to digitize, measurement error accounts for 1%–4% of total variance (repeatability 

usually >0.95) 
Effect size of measurement error of the same order of magnitude as asymmetric components
Error due to digitizing operator higher than error due to device

Presence of bias (human-
digitized landmarks)

Using all landmarks, generally no significant bias
Removing landmarks difficult to digitize, bias is generally significant

Levels of error (automated 
method)

Using all the nonzero principal coordinates, error accounts for almost 30% of variance (repeatability 0.58) 
Performing dimension reduction, error accounts for less than 5% of variance (repeatability 0.95)

Presence of bias (automated 
method)

Significant bias generally present

Measurement error and 
phylogenetic signal, single tree

In some cases, the value of KMULT for unique operator/device combinations is more variable at a broader than at 
a shallower phylogenetic scale (KMULT differences between subsets between 0.01 and 0.18). No clear 
association of phylogenetic diversity and variation in KMULT estimates across operator/device combinations for 
random samples of taxa. 

When reducing measurement error by eliminating the landmarks which are hardest to digitize, phylogenetic 
signal increases

Measurement error and 
phylogenetic signal, posterior 
distribution of trees

When using all landmarks, typically 60%–80% of variance due to error
When using the reduced set of landmarks, 70%–95% of variance due to phylogenetic uncertainty
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reported the opposite pattern (higher proportion of variance due to 
device than due to digitization). Clearly, in the more common case of 
combining landmark sets digitized by multiple operators on surface 
scans obtained from multiple devices, both sources of variation will be 
present in the final dataset.

The error components of variance are also in the same order of 
magnitude—and often larger—than the components reflecting asym-
metry (Side and Individual x Side). This means that combining different 
datasets or surfaces for studies of asymmetry can be particularly prob-
lematic. The idea of asymmetry being potentially heavily affected by 
measurement error is certainly not new (Fruciano, 2016; Klingenberg 
et al., 2010; Leamy & Klingenberg, 2005). However, here we show em-
pirically that this is the case for the error due to variation among oper-
ators and devices. We imagine that this pattern may be quite general, 
except perhaps in cases of a very large asymmetric component.

4.2 | Bias in landmark data

We show that bias can be pervasive and that significant bias is often 
detected when appropriate statistical procedures are used for test-
ing. This reinforces the suggestion (Fruciano, 2016) that the pres-
ence of bias in geometric morphometric datasets has previously gone 
unnoticed either because of lack of testing or due to inappropriate 
statistical procedures (i.e., using permutation schemes designed for 
independent observations, as opposed to permuting within subjects 
as we did). Furthermore, in most cases, bias only becomes significant 
when removing the landmarks that are more difficult to digitize. In 
other words, when a large amount of probably random variation due 
to certain landmarks is removed, subtler differences due to nonran-
dom variation between operators and devices become apparent. 
This bias is unlikely to cause serious problems because it accounts 
for a small proportion of variance. However, this nonrandom variation 
could be incorporated in inference if care is not taken. For instance, if 
one combined data for two populations of the same species, with each 
population digitized by a different operator and then tested for differ-
ence in mean shape between the two populations, then differences 
due to operator—minor as they might be—would be “mixed” with true 
biological differences between populations.

4.3 | Error and bias in automatically generated 
morphometric data

Our analyses of automatically generated morphometric data obtained 
with GPSA (Pomidor et al., 2016) provided some surprising results. 
A reasonable assumption is that automated methods perform worse 
than data digitized by human operators. This assumption is clearly 
met when using all the nonzero dimensions produced by GPSA using 
a principal coordinate analysis of distances, which have poor repeat-
ability. However, this does not apply when a dimensionality reduction 
is used, with levels of error similar to the ones observed in the more 
error-free human-digitized datasets. Interestingly, when using a simi-
lar dimensionality reduction approach on the landmark datasets, we 
did not observe an improvement in repeatability (first five principal 

components of the full configuration: repeatability 0.79; first four 
components of the reduced configuration: repeatability 0.95; see 
Table 1 for the repeatabilities obtained without dimensionality reduc-
tion). In addition to this, the dimensionality reduction procedure re-
sults in a reduction of bias and lack of its significance in one case. This 
suggests that the method implemented in GPSA might be a promis-
ing alternative to human landmarking of surface scans when surfaces 
from different sources are combined, if used in combination with di-
mensionality reduction as suggested by its authors. The high repeat-
ability of the GPSA method when followed by dimension reduction 
most likely comes at the cost of substantial loss of information on fine 
details of surfaces. However, this might be acceptable in situations 
where larger-scale shape variation is of interest. It is also important 
to note that the consequences and effectiveness of dimension reduc-
tion might depend on the sample and on the method of dimension 
reduction used. In current geometric morphometrics, analyzing the full 
dimensional (tangent) shape space is preferred and dimensionality re-
duction should be approached with caution. It is also unclear whether 
dimensionality reduction has reduced the measurement error due to 
the use of different devices or variation introduced by the GPSA pro-
cedure itself. Further, it is worth noting that these findings on GPSA 
do not necessarily generalize to other methods for the automated 
acquisition of morphometric data. In fact, previous studies on other 
automated methods (Gonzalez, Barbeito-Andrés, D’Addona, Bernal, & 
Perez, 2016) have shown these can compare poorly to human-assisted 
digitization of landmarks.

4.4 | Measurement error and phylogenetic signal

As a further aim, we set out to understand how variation due to 
measurement error affects the results of downstream statistical anal-
yses, and in particular the estimation of phylogenetic signal. To this 
aim, we measured phylogenetic signal as KMULT (Adams, 2014), a re-
cently proposed—and increasingly popular—metric which generalizes 
Blomberg’s K (Blomberg et al., 2003) to multivariate data. This statistic 
and its use in hypothesis testing has a number of attractive properties, 
including insensitivity to dimensionality, appropriate type I error rate, 
and high power (Adams, 2014). Here, the question is whether and to 
what extent the estimation of phylogenetic signal is affected by meas-
urement error and how the variation produced by measurement error 
compares to other sources of variation and uncertainty. Phylogenetic 
uncertainty is an obvious source of uncertainty in phylogenetic com-
parative analyses, but, at the same time, it is often neglected in geo-
metric morphometric studies. Further, we could also test empirically 
the widely held assumption of a stronger effect of measurement error 
on statistical inference at shallower phylogenetic scales.

Our results only partially conform to this expectation. In fact, varia-
tion among estimates of phylogenetic signal in different datasets for a 
single reference phylogeny was in some cases lower in subclades (e.g., 
in Macropus) than in the full dataset. This could be explained by mea-
surement error, especially at certain landmarks, accumulating more in 
certain clades than in others and, generally, interacting with variation 
in biological features unpredictably. The same analysis showed that 
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in most cases, the reduced set of landmarks had higher phylogenetic 
signal. We hypothesize that reduced measurement error due to the re-
moval of problematic landmarks “exposes” more of the true, underly-
ing, phylogenetic signal. Downward biased estimates of phylogenetic 
signal due to unaccounted intraspecific variation (whether due to bi-
ological variation or measurement error) have also been supported by 
simulations of univariate traits (Ives, Midford, & Garland, 2007). The 
absence of a clear relationship between phylogenetic diversity and 
variation in estimates of KMULT was also found when using the same 
rationale on random subsets of taxa in the phylogeny.

When computing KMULT on distributions of trees so as to compare 
variation due to phylogenetic uncertainty and measurement error, a 
range of different situations occurred, probably reflecting local levels 
of phylogenetic uncertainty and error. This further reinforces sugges-
tions that measurement error, phylogenetic uncertainty, and biologi-
cally relevant variation can interact unpredictably. The most frequent 
pattern, however, was a relatively large effect of measurement error 
in the datasets with all landmarks. By contrast, measurement error 
was reduced with fewer landmarks and variation due to phylogenetic 
uncertainty became dominant. Thus, measurement error can have a 
substantial impact on estimates of KMULT but moderate levels of phy-
logenetic uncertainty in both topology and branch lengths most often 
have a reduced impact on KMULT. Then, while KMULT generalizes well to 
different numbers of dimensions and the main conclusions drawn from 
using KMULT in hypothesis testing are quite stable (they were generally 
significant, data not shown), the comparison of values of KMULT across 
different studies or datasets could be affected by measurement error.

4.5 | How to address measurement error? 
Strategies and conclusions

Two nonmutually exclusive approaches are available to address meas-
urement error when combining data from multiple sources: account-
ing for and reporting error. Discussing this at length is beyond the 
scope of this study (see previous extended discussions in Arnqvist 
and Mårtensson 1998 and Fruciano 2016). However, random meas-
urement error is often reduced by averaging repeated measurements 
(Arnqvist & Mårtensson, 1998; Fruciano, 2016). When measurement 
error has precise directions in shape space which can be modeled 
(even based on a subset of specimens during a preliminary study), it 
can often be removed from the data. This strategy—which is accom-
plished by projecting observations to the subspace orthogonal to a 
given vector in multivariate space (Gharaibeh, 2005; Valentin, Penin, 
Chanut, Sévigny, & Rohlf, 2008)—has been fruitfully used on empirical 
datasets to remove artefactual variation due to position of the head 
in pictures of human faces (Gharaibeh, 2005) and body arching in 
fish (Franchini et al., 2014; Fruciano, Tigano, & Ferrito, 2011, 2012; 
Fruciano, Franchini, Kovacova, et al., 2016; Ingram, 2015; Valentin 
et al., 2008), as well as variation due to sexual dimorphism (Fruciano 
et al., 2014). Similar procedures could also be used to estimate the 
amount of variation realistically attributable to measurement error. 
This could be especially useful in cases when measurement error is col-
linear with biologically relevant variation (i.e., has the same direction 

in shape space) and cannot be removed from a dataset. In this case, it 
might be possible to at least derive confidence intervals for estimates 
of parameters obtained in downstream statistical analyses. Here, we 
have used estimation of KMULT on a sample of trees from the Bayesian 
posterior distribution of trees obtained in phylogenetic inference to 
obtain estimates of variation of this statistic due to phylogenetic un-
certainty. We also provide the R code for this in the Supplementary 
Material, to facilitate computations of the variation due to phyloge-
netic uncertainty similar to ours. This is a relatively crude method to 
estimate variation due to phylogenetic uncertainty and it is likely that 
more refined approaches will be developed in the future.

To conclude, as we have highlighted that measurement error can 
be a source of substantial variation when combining different morpho-
metric datasets and can have a sometimes unexpected effect on pa-
rameter estimates, we want to point out that we do not have an “all or 
nothing” perspective on measurement error. Estimating measurement 
error might not always be possible. The time spent to estimate mea-
surement error could also be spent in generating more data, thereby 
potentially increasing statistical power, or making certain large-scale 
analyses simply possible. These are all considerations that have to be 
made in a case-by-case cost–benefit analysis. However, researchers 
willing to combine different datasets should at least consider the issue 
of measurement error and its potential impact on their inference. In 
most practical situations, the common suggestion of a preliminary 
study of measurement error on a small subset of specimens (Arnqvist 
& Mårtensson, 1998; Fruciano, 2016) represents a good compromise 
between costs and benefits.
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