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Genomic copy number variations (CNVs) are considered as a significant source of genetic diversity and
widely involved in gene expression and regulatory mechanism, genetic disorders and disease risk, sus-
ceptibility to certain diseases and conditions, and resistance to medical drugs. Many studies have tar-
geted the identification, profiling, analysis, and associations of genetic CNVs. We propose herein two
new fuzzy methods, taht is, one based on the fuzzy inference from the pre-processed input, and another
based on fuzzy C-means clustering. Our solutions present a higher true positive rate and a lower false
negative with no false positive, efficient performance and consumption of least resources.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The human genome sequence is subject to variations of differ-
ent sizes, ranging from a single nucleotide base to an entire chro-
mosome (Montgomery et al., 2013). Structural variations are
defined as those with lengths that exceed 1000 bases (Guan and
Sung, 2016; Perry, 2008). Copy number variations/alterations
(CNVs/CNAs), are considered among the most important structural
variations (Montgomery et al., 2013; Macé et al., 2018) because
they are located in 12% of human genomes (Redon et al., 2006),
influence the protein expression process (Flores et al., 2013; Shao
et al., 2019), known to affect susceptibility to some disorders
(Shlien and Malkin, 2009; Wang et al., 2019; Yan et al., 2018;
Kendall et al., 2019), correlated with several diseases (Usher and
McCarroll, 2015) such as cancer, diabetes and autism, and sug-
gested to be associated with drug resistance in some health condi-
tions (Wang et al., 2019).

The remainder of this section provides a review of the previous
work to discover copy number variations in comparative genomic
hybridization array (arrayCGH) data. Section 2 describes the data-
set, the process of preparing the experiment data, and the solutions
we propose to solve the detection problem. Section 3 specifies how
the experiments are conducted and presents the results. Section 4
discusses our findings and the comparison used to evaluate our
solutions. Section 5 summarizes our conclusions. Finally, Section 6
sheds light on the future work.

1.1. Problem statement

The computational discovery of CNVs has been an important
research subject for over a decade. With the advances in biotech-
nology and the emergence of high-throughput platforms, an
increasing number of studies are targeting this problem with
new methodologies and improvements of existing ones. The fol-
lowing three main platforms may lend their output for the compu-
tational inference of genetic copy numbers: single nucleotide
polymorphism (SNP) arrays, microarray comparative genomic
hybridization (array CGH), and Next Generation Sequencing (NGS).

In array CGH, two DNA pools (i.e., a test and a control) are
labeled differently with fluorescent dyes and hybridized to an
array. After the array processing, its image is captured and digitally
analyzed to quantify the color intensity at each array site. This
combined intensity is seen as the ratio between the test and con-
trol fluorescence intensities, which consequently represents the
copy number ratio between the two clones for each target (Yao
et al., 2018; Kallioniemi et al., 1992).

An array CGH platform makes it possible to map CNVs to a DNA
sequence and allows for increasingly high resolutions with the past
advancements of the microarray technology. This platform is tech-
nically not the most advanced one. Nevertheless, with the tremen-
dous repository of array data that were accumulated over the years
and the rapidly increasing resolution with the falling cost of
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running nowadays, microarrays keep the array CGH in the center of
CNV detection studies and make it a central tool for analyzing
structural variations and verifying the findings of newer technolo-
gies (Shah et al., 2006).

1.2. Related work

The subsequent sections will present an extensive survey of the
computational methods of detecting CNVs using the array CGH
platform in the literature. We chose to better compare and contrast
their underlying mechanisms:

a. Smoothing-based methods
b. Clustering-based methods
c. Hidden Markov Model-based methods
d. Recursive segmentation methods

1.2.1. Smoothing-based methods
These methods try to restore the original signal by assuming a

Gaussian noise interference. Usually, the first step is filtering out
the outlying observations interrupting its consistent neighbors.
The next step is to fit continuous curves to the long bursts of these
neighbors. The points within these curves demonstrate a consis-
tent likelihood measure among their neighbors. A sharp change
of the likelihood marks a boundary, that is the end of the curve
and the start of the next one.

Jong et al. (2003) proposed two genetic local search algorithms
(Moscato, 1989) to find the most N probable breakpoints yielding
clusters of clones of the same copy number value. These algorithms
use a fitness function that combines the maximum-likelihood and
a penalty adjustment to discourage high model dimensionality.

Hupé et al. (2004) used an iterative adaptive weight smoothing
technique (Polzehl and Spokoiny, 2000) that tries to find piecewise
approximated constant functions for regions with maximum local
likelihood while preserving the contrasts on both sides of the
breakpoint.

Eilers and de Menezes (2005) smoothed the array data using a
penalized quantile regression algorithm (Eilers, 2003). This method
helped in the visual detection of changes in the smoothed median
trend. However, the choice of the penalization parameter was
manually made, and the model significantly relied on the robust-
ness of the patterns within the data.

Stamoulis and Betensky (2011) applied signal decomposition
(SD) in the first step to increase the signal-to-noise ratio (SNR). A
second waveform-matching filter (MF) step was then taken to
maximize the SNR in the matching regions. Considering the depen-
dency of the algorithm’s detection sensitivity on the frequency of
the underlying CNVs, a modification was introduced (Stamoulis
and Betensky, 2016) to optimize the signal decomposition matched
filtering (SDMF) method such that it compares the SNR changes to
a threshold selected by studying the behavior of the algorithm
through a series of simulations.

1.2.2. Clustering-based methods
Autio et al. (2003) proposed a three-stage visual segmentation

tool, called CGH-Plotter, that uses a moving median/mean filter
to denoise the signal, three-means clustering to discover the num-
ber of changes per chromosome, and dynamic programming that
relies on the minimum mean square sum to recognize the change
points.

Wang et al. (2005) proposed the Cluster Along Chromosome
(CLAC) hierarchical algorithm that starts with each probe in a sep-
arate cluster, then repeatedly merges the adjacent clusters of a
small relative distance. Three measurements were used to select
the clusters of interest, namely, the maximum relative distance
between two nodes in the cluster, size of all sub trees with respect
to each node, and mean values of the log ratios of all subtrees’
leave nodes.

1.2.3. Hidden Markov model (HMM) methods
The basic idea in using HMMmethods, is to have the underlying

copy number at each chromosome loci represented by a hidden
state. The goal then becomes inferring these hidden states starting
from the initial state and moving iteratively to the following states
using a set of transition probability matrices and suitable emission
probability functions.

Fridlyand et al (2004) fitted a k-state HMM to break clones into
segments of the same real copy numbers, where the number of
states (k) was determined by trying all values between 1 and kmax,
which is the number of clones on the chromosome, penalizing each
trial with a negative log-likelihood, and then choosing the model
with a minimum penalty. The neighboring segments with median
distance less than a given threshold were then merged, reducing
the k. In the second stage, the clone’s copy number was estimated
by removing the outliers and considering the following three fac-
tors: 1) whole chromosomal changes; 2) focal amplifications and
aberrations; and 3) double stranded breaks.

This work was extended by Marioni et al (2006) to incorporate
the distance between the neighboring segments and the close
quality using a homogenous HMM method, called BioHMM. The
transition probability in this method depends on the distance
between the midpoints of two adjacent segments; hence, the link
between far-apart consecutive segments will have less
significance.

Shah et al (2006) proposed another modification to fix the over-
segmentation problem that results from sensitivity to outliers. This
issue was tackled at two levels. The previously assumed Gaussian
model for observation was replaced by two Gaussian components
(i.e., one for the recovered state and one for the outliers), which
enables the incorporation of prior knowledge on the frequencies
of the copy number polymorphisms (CNPs) in the outlier compo-
nent at the next level.

Mahmud and Schliep (2011) tried to improve the computa-
tional demand of these modifications by integrating a KD-tree
algorithm in CMCM sampling to approximate the data into com-
pressed blocks. Wiedenhoeft et al. (2016) noted that this enhance-
ment imposes rigidness of the compression block sizes that was
not CNVs’ nature and an inherent tendency for overfitting or weak
clustering. Hence, they combined a Haar wavelet smoother with
HMM segmenting, which helped shift the heavy computational
effort from obvious CNVs to problematic ones.

1.2.4. Recursive segmentation methods
Olshen et al (2004) used circular binary segmentation (CBS) to

analyze the copy number data through a recursive division of chro-
mosomes into segments, in which each has the same distribution
function for its intensities. The algorithm requires quadratic com-
plexity computations for verification; thus, Venkatraman and
Olshen (2007) proposed hybrid modification to achieve a linear
time computation. This method was further improved by Picard
et al. (2005).

The current methods in the above categories tried to restore the
original signal by combining the inferred characteristics of the ser-
ies density distribution and some assumptions about the distribu-
tions then predicting breakpoints wherever the distribution
characteristics change. The methods we propose in the following
section do not require knowledge nor make assumptions about
the underlying signal distribution.

Similar problems in other domains used some of the previous
solutions, however, they successfully employed other methods.
in the rest of this paper we propose, test and compare two new
fuzzy methods.
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2. Material and methods

We start by specifying the dataset and the basis of our selection.
We then try to extrapolate the literature to show how researchers
in other domains tackled similar problems, right up to the forma-
tion of our solution to the problem.
2.1. Dataset and data preparation

In this study, we used the Coriell array CGH data, consisting of
15 cell line samples. This data set is referred to as a gold standard
in studies of array CGH data analysis (Fridlyand et al., 2004; Hupé
et al., 2004; Carter, 2007; Sheha et al., 2016; Yin and Li, 2010). For
each sample, and on each of the 23 chromosomes, the genomic
positions of the array probes and their corresponding normalized
log2 ratios were stored in parallel vectors.

What distinguishes the Coriell dataset is the fact that the loca-
tions of the CNVs in the cell lines have been cryogenically verified
(Snijders et al., 2001).

Each sample is a pure cell line with two sets of chromosomes
(diploid). The cell lines were produced from fibroblast cells (12
samples), chorionic villi cells (2 samples) and one from lym-
phoblast. The strains were individually hybridized with bacterial
artificial chromosome (BAC) and spotted on 2276 probe microar-
rays in triplicate (Hupé et al., 2004).
2.2. Fuzzy inference method of copy number variations

The fuzzy inference system (FIS) uses fuzzy arithmetic and a set
of fuzzy conditional rules dealing with fuzzy input and fuzzy out-
put, rendering all mappings to a degree-based dependency. The
three main stages for processing data in the FIS are as follows:

1) Fuzzifying the input: a choice of membership function is
used to convert each variable from its crisp into a degree
of membership in the fuzzy set, using a choice of member-
ship function.

2) Applying fuzzy conditional rules: this stage comprises of
three steps by itself, namely the application of fuzzy logical
operators to extract a binary value summarizing the input,
assignment of a rule-based weight to the result, and aggre-
gation of the output of all rules for each output variable.

3) Defuzzifying the output variable: the output variable is
defuzzified by converting the aggregated fuzzy value into a
crisp number.

When designing a fuzzy system, the choice of the membership
function plays a significant role in system effectiveness. Zhao and
Bose (2002) evaluated the sensitivity and effectiveness of 12 com-
mon types of membership functions, and concluded that triangular
and trapezoidal membership functions yield a dominant
performance.

Fuzzy inference systems are widely used in segmentation
problems (Canny, 1986; Chaira, 2010; Shah et al., 2013; Haq
et al., 2015), but to our knowledge, the problem of CNV identi-
fication has not so far benefited from the potentials of this
method.

We describe herein a fuzzy identification approach for the
discovery of CNVs. Unlike the reviewed statistical methods,
our algorithm does not require a prior knowledge on the dis-
tributions of the signal or its segments. Fig. 1 presents the
block diagram of the proposed system, and highlights its main
stages and functional components, which will be explained
afterwards.
2.3. Fuzzy c-means clustering of copy number variations

The traditional Hard C-Means (HCM) clustering algorithm,
which is also known as K-means clustering, partitions observations
into K mutually exclusive clusters based on the distances between
data points. Each cluster is characterized by its centroid; hence, the
distances between the cluster points and its centroid are minimal,
while those distances between the cluster points and the other
clusters’ centroids are maximal.

On the contrary, fuzzy c-means (FCM) is a clustering method
that groups observations into N clusters and allows each observa-
tion to belong to each cluster with different membership degrees
(Dunn, 1973; Bezdek, 1981). HCM can then be defined as FCM with
a Boolean membership (i.e., each observation belongs to one clus-
ter with a membership degree of 1, and to other clusters with
member degrees equal to 0).

Our second solution to the discovery of the CNV problem uses
fuzzy C-means clustering to partition the input into segments of
similar neighboring points. Pre-processing the input requuires
the application of smoothing, interpolating and curve fitting alter-
native steps as in the FIS-based solution. However, the differentia-
tion herein aims to catch the main changing parts of the curve and
the number of clusters (Fig. 2).

Fig. 3 shows the main steps and processing components of the
FCM-based solution for CNVs discovery.

While FIS provide ease of application and transparency and
flexibility in number of inputs and classes, it requires balancing
the number of rules, which may grow precipitately. On the other
hand, FCM algorithm reduces intra-cluster variances, but as the
number of clusters increases, its efficiency depends on the param-
eters’ initialization.

3. Results

The smoothing step greatly affects the result; therefore we
experimented several smoothing algorithms to choose that which
better serves the processing. What we were looking for is a
smoothing algorithm that eliminates outliers and ignores small
frequent fluctuations, but preserves the general pattern of the sig-
nal with a sufficient precision level. Fig. 4 shows a visual compar-
ison of five smoothing algorithms: quadratic regression (loess),
move mean, move median, Savitzky-Golay filter (golay), and linear
regression (lowess).

The input observations were not uniformly spaced; thus, we
could not evaluate the results at the intermediate positions (i.e.,
between the actual observations). To overcome this problem, we
assumed that a function f(x) approximates the input data and
can be relied on to represent all points even if they do not appear
in the input. Such a function can be obtained by interpolation and
curve fitting.

The intermediate date was estimated through interpolation,
assuring that the interpolating function will typically pass through
the given input data by fitting a different 3rd-degree polynomial
between each pair of data points for curves (cubic spline).

Unlike interpolation, curve fitting does not guarantee that the
fitted function will pass through the input data. Instead, a function
is considered a good fit to the data in some sense by means of
approximation.

The Sugeno fuzzy model was mainly selected for the following
reasons:

1) linearity of the time complexity for defuzzifying the output,
and

2) our application’s requirement of constant values for the out-
put, which is one of the attributes of the Sugeno model.



Fig. 1. Block diagram of the FIS-based solution.

Fig. 2. FCM-based algorithm for calling CNVs from array CGH.
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Fig. 5 shows the structure of the surgeon fuzzy inference system
with three input (i.e., log2 ratio of the Current locus, log2 ratio of
the Previous locus and 1st Derivative and) and one output (copy
number Variation).

For the first and second inputs (Log2 Ratio of the current locus,
and the previous locus), Gaussian combination membership func-
tions were chosen for the ‘‘Low” and ‘‘High” sets, while Gaussian
distribution function was the membership function of the ‘‘Base”
set. These selections were based on experimentation. For the third
input (i.e., First Derivative), trapezoidal functions were chosen for
both ‘‘Steady” and ‘‘Opima” sets.

A set of logical rules was compiled and tested. These rules
mapped fuzzified input to the output (Table 1).

The experiments were conducted with three different pre-
processing configurations. First, we smoothed the data using
locally weighted scatter plot smoothing. In the second run, we
used cubic spline interpolation to estimate the values between
the input data. Finally, we used polynomial curve fitting (Table 2).
Fig. 5 and Fig. 6 shows the results of applying the FIS-based solu-
tion to chromosome 17 of sample GM13031 and chromosome 9
of sample GM01750 respectively.

The setup in this experiment was similar to that of the
FIS-based experiment. The three different preparatory processes
of the input are as follows: locally weighted scatter plot smoothing,
cubic spline interpolation, and polynomial curve fitting.

The absolute values of the normalized first derivative were used
to find the major changepoints. The small changes in the deriva-
tives and minor local extrema were suppressed. In contrast, the
higher derivative values were boosted and magnified. The precise
locations of the change point were not of interest. The processing
step mainly aims to estimate the number of differentiated pieces
of data fed as a number of clusters to the next step.

The fuzzy C-means clustering was performed with the following
parameters:

N : number of clusters estimated in the previous step;
E : exponent of the fuzzy membership matrix U used to control

the amount of fuzzy overlap between clusters; we experimented
Fig. 3. Block diagram of th
with E = 2 and E = 3, and the reported results corresponded to
the latter;

I : maximum number of iterations set to 100; and
e : minimum improvement in the objective function between

two consecutive iterations set to 0.00001
Fig. 7 and Fig. 8 show the results of applying the FIS-based solu-

tion to chromosome 17 of sample GM13031 and chromosome 9 of
sample GM01750 respectively.
4. Discussion

When we evaluated the results of our method, we adopted the
following three criteria borrowed from edge detection in the
images (Canny, 1986):

1) Low rate for false positives and false negatives.
2) Minimal distance between the detected breakpoint and the

center of the edge.
3) Each breakpoint must be called once and once only.

First, we compared our findings with the published verifications
of the studied dataset. The online supplemental material of (Sni-
jders et al., 2001) summarizes the CNVs in the curated dataset.
We reported the type (loss or gain) and the start and end positions
of the segment for each detected CNV to perform an assessment
based on the second criterion. We also calculated the distance
between our detected boundaries and the verified ones. Futher-
more, we calculated the ratio of the error to the segment size to
put the distance error in perspective when assessing compliance
with the criteria.

Note that the distance was calculated according to the positions
stored in the dataset. That is, we found the distance between the
breakpoint resulted in our approach and the closest point in the
dataset to the published breakpoint.

As shown, no false positives existed. Our method found all CNVs
except for the deletion of chromosome 15 of sample (GM07081).
Other methods also encountered this alteration (Hupé et al.,
2004). We believe that the microarray processing of this sample
did not yield an adequate representation of the genetic content.
Access to the detail results of the actual sample triplicates is
needed to confirm this speculation. This option is not available in
the time being.

Table 3 presents the distance error in terms of the number of
missing probes between the breakpoint we found and the pub-
lished one. Probes are not evenly distributed on the genomic
strand. Moreover, the dataset suffers from missing data. In this
case, the number of probes that the algorithm skipped would more
accurately characterize the error. Fig. 9 explains this point.
e FCM-based solution.



Fig. 4. Comparison of five smoothing methods.

Table 1
Fuzzy rules for the inference system.

Current Previous Derivative Variation

01 IF LOW AND LOW THEN LOSS
02 IF BASE AND BASE THEN DIPLOID
03 IF HIGH AND HIGH THEN GAIN
04 IF LOW AND BASE AND OPTIMA THEN LOSS
05 IF HIGH AND BASE AND OPTIMA THEN GAIN
06 IF LOW AND BASE AND STEADY THEN DIPLOID
07 IF HIGH AND BASE AND STEADY THEN DIPLOID
08 IF BASE AND LOW AND OPTIMA THEN DIPLOID
09 IF HIGH AND LOW AND OPTIMA THEN HIGH
10 IF BASE AND LOW AND STEADY THEN LOW
11 IF HIGH AND LOW AND STEADY THEN LOW
12 IF LOW AND HIGH AND OPTIMA THEN LOW
13 IF BASE AND HIGH AND OPTIMA THEN DIPLOID
14 IF LOW AND HIGH AND STEADY THEN HIGH
15 IF BASE AND HIGH AND STEADY THEN HIGH

Table 2
Distance error means for boundaries of the variation segments.

FIS FCM

smooth interpolate fitting smooth interpolate fitting

DF 21
Error mean 7.87% 16.83% 16.17% 9.99% 11.14% 20.92%
Error SD 0.420 �0.168 �0.162 �0.100 �0.111 �0.209
t-value 1.791 1.842 1.822 2.141 1.822 2.256
p-value 0.044 0.040 0.041 0.022 0.044 0.0174

Fig. 5. Application of the FIS-based solution to the A) smoothed, B) interpolated and, C) curve fitted, data of chromosome 17 of sample 13031.
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Fig. 6. Application of the FCM-based solution to the A) smoothed, B) interpolated and, C) curve fitted, data of chromosome 9 of sample GM01750.

Fig. 7. Application of the FCM-based solution to the A) smoothed, B) interpolated and, C) curve fitted, data of chromosome 17 of sample GM13031.

Fig. 8. Application of the FCM-based solution to the A) smoothed, B) interpolated and, C) curve fitted, data of chromosome 9 of sample GM01750.

Table 3
Distance error expressed in terms of missing probes.

Sample Ch Distance (kb) Distance (probes)

01GM03563 9 2528 1
03GM05296 10 2780 2
03GM05296 10 1500 2
03GM05296 11 1490 2
05GM01750 9 9144 9
05GM01750 14 28,030 19
06GM03134 8 3940 3
07GM13330 1 11,500 11
07GM13330 4 4900 12
09GM01535 5 11,200 12
10GM07081 7 2100 3
14GM13031 17 1050 1
15GM01524 6 4190 2
15GM01524 6 8700 5
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We compared our results with three other methods that used
the same benchmark. Table 4 shows that our fuzzy approaches
outperformed the considered methods in all comparison factors:
true positives, false positives and false negatives.
We also calculated the precision, recall, and F-measure to better
demonstrate how our solutions perform compared to the selected
methods (Table 5).
5. Conclusions

The literature review showed that array CGH is still a potential
platform for the discovery and analysis of copy number variations.
Furthermore, the current detection methods do not offer a precise
efficient solution to the problem, and there is plenty of room for
new solutions. In general, fuzzy inference systems are important
tools in segmentation problems.

We designed a fuzzy-based algorithm to detect the copy num-
ber variations in the array CGH data. The results that our solutions
can detect all known CNVs, except for one alteration known to be
problematic. Our methods did not report any false detection. Fur-
thermore, they demonstrated the highest recall of 96% and the
highest F-measure of 98% when compared to the prevailing
method in each category of the aCGH-based CNV detection meth-
ods. The performance of our solution was outstanding because
most of the calculations were done in linear time.



Fig. 9. Counting skipped probes as distance errors.

Table 4
Comparison of our results with those of other methods in terms of true positives, false
positives and false negatives.

Fuzzy Hupé et al CBS CRF_CNV

Discovered CNVs 22 36 28 21
True positives 22 21 12 20
False positives 0 15 16 0
False negatives 1 2 9 2

Table 5
Comparison of our results with those of other methods in terms of precision, recall
and F-measure.

Fuzzy Hupé et al CBS CRF_CNV

Precision 1 0.58 0.43 0.95
Recall 0.96 0.91 0.52 0.87
F-measure 0.98 0.71 0.47 0.91
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6. Future work

This work showed methods that were proved successful in sim-
ilar problems in other domains, which can be exploited and have
the potential to excel. In the future, we intend to investigate more
solutions that were studied for problems like segmentation and
detecting breakpoints in domains, such as data and time series
and images. The proposed fuzzy-based method can also be applied
to other platforms. One important area to investigate it to support
the detection of CNVs from array CGH by including related data
from other studies.
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