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Production of beta-lactamases, the enzymes that degrade beta-lactam antibiotics, is
the most widespread and threatening mechanism of antibiotic resistance. In the past,
extensive research has focused on the structure, function, and ecology of beta-lactamases
while limited efforts were placed on the regulatory mechanisms of beta-lactamases.
Recently, increasing evidence demonstrate a direct link between beta-lactamase induction
and cell wall metabolism in Gram-negative bacteria. Specifically, expression of beta-
lactamase could be induced by the liberated murein fragments, such as muropeptides.This
article summarizes current knowledge on cell wall metabolism, beta-lactam antibiotics,
and beta-lactamases. In particular, we comprehensively reviewed recent studies on
the beta-lactamase induction by muropeptides via two major molecular mechanisms
(the AmpG–AmpR–AmpC pathway and BlrAB-like two-component regulatory system) in
Gram-negative bacteria. The signaling pathways for beta-lactamase induction offer a broad
array of promising targets for the discovery of new antibacterial drugs used for combination
therapies. Therefore, to develop effective mitigation strategies against the widespread
beta-lactam resistance, examination of the molecular basis of beta-lactamase induction by
cell wall fragment is highly warranted.
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INTRODUCTION
Bacteria should continuously maintain and shape their envelopes
to adapt enormous stresses they encounter in different niches and
to meet physiological needs, such as growth and multiplication.
Bacterial envelope is highly organized as a layer structure includ-
ing cell wall, membrane(s), and the possible space between them.
The structure of cell envelope varies in prokaryotes. In general,
Gram-positive bacteria contain a thick layer of cell wall as well as
a layer of cytoplasmic membrane. However, Gram-negative bac-
teria (e.g., Escherichia coli) typically contain an outer membrane,
an intervening periplasmic space where a thin layer of cell wall
resides, and a layer of cytoplasmic membrane.

The bacterial cell wall is unique to bacteria and plays a critical
role in maintaining cell integrity. In addition, the conserved cell
wall components, such as monomeric disaccharide tetrapeptide,
could serve as a signal to trigger host immunologic or pathologic
responses (Goldman et al., 1982; Melly et al., 1984; Viala et al.,
2004; Watanabe et al., 2004; Dziarski and Gupta, 2005; Cloud-
Hansen et al., 2006; Strober et al., 2006). Thus, given its significant
role in bacterial pathophysiology, cell wall has been an effective tar-
get for developing various antimicrobials with different mode of
actions, such as beta-lactam and glycopeptide antibiotics. Of these,
beta-lactam antibiotics are the most commercially available antibi-
otics in the market. Until 2010, beta-lactam antibiotics account
for sales of approximately 53% of the total antibiotic market

Abbreviations: GlcNAc, N-acetylglucosamine; LT, lytic transglycosylase; MurNAc,
N-acetylmuramic acid; PBP, penicillin-binding protein; PG, peptidoglycan; TCRS,
two-component regulatory system.

worldwide (42 billion US dollars; Hamad, 2010). Beta-lactam
antibiotics inhibit bacterial cell wall biosynthesis, consequently
leading to cell lysis and death. Specifically, beta-lactam antibiotics
bind and acylate active site of penicillin-binding protein (PBP),
the enzyme essential for the biosynthesis of bacteria cell wall.

To counteract bactericidal effect of beta-lactams, bacteria
have quickly evolved defense systems in which production of
beta-lactamase is a major beta-lactam resistance mechanism.
Bacterial resistance to beta-lactam antibiotics has become a
worldwide health care problem, as exemplified by the recent emer-
gence of broad-range beta-lactam resistant NDM-1 (New Delhi
metallo-beta-lactamase 1) strains (Kumarasamy et al., 2010). Beta-
lactamase is an enzyme that could hydrolyze beta-lactam ring,
consequently deactivating beta-lactam antibiotics. In Gram-
negative bacteria, the beta-lactamase was usually produced at
very high concentration constitutively or by induction via direct
interaction of beta-lactam antibiotic with regulatory system (e.g.,
MecR1/MecI in Staphylococcus aureus; Kogut et al., 1956; Rich-
mond, 1963, 1965; Pollock, 1965; Zhu et al., 1992; Fuda et al., 2005;
Safo et al., 2005). In Gram-negative bacteria, the expression level
of beta-lactamase is usually low; however, it has been observed
that production of beta-lactamase was inducible but molecular
basis for this phenomenon was not clear (Ambler, 1980; Jacobs
et al., 1997).

In the past, extensive research has focused on the structure,
function, and ecology of beta-lactamases while limited efforts
were placed on the regulatory mechanisms of beta-lactamases.
In 1990s, the induction of beta-lactamase AmpC was observed to
be correlated to the recycling process of cell wall in Gram-negative
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bacteria, which shed light on the molecular basis of beta-lactamase
induction (Jacobs et al., 1994). In the past two decades, accumu-
lating evidence have shown the relationship between muropeptide
release and beta-lactamase induction in Gram-negative bacte-
ria (Holtje et al., 1994; Jacobs et al., 1994, 1997; Korsak et al.,
2005). However, in Gram-positive bacteria, there is little evidence
showing the induction of beta-lactamases by liberated murein
fragments. Recently, Amoroso et al. (2012) observed that a cell wall
fragment could re-enter in the cytoplasm of Bacillus licheniformis
and function as a signal to induce the expression of beta-lactamase.
However, whether this cell wall fragment is the major signal for
beta-lactamase induction in this Gram-positive bacterium still
needs to be determined in the future. Given the lack of infor-
mation on the relationship between beta-lactamase induction and
cell wall metabolism in Gram-positive bacteria, in this review, we
only summarize the relevant background information and recent
research on the mechanisms of beta-lactamase induction by cell
wall fragments in Gram-negative bacteria. In addition, we also
discuss potential strategies to mitigate beta-lactam resistance by
targeting beta-lactamase induction pathways.

PEPTIDOGLYCAN BIOSYNTHESIS AND RECYCLING
In Gram-negative bacteria, peptidoglycan (PG), also called
murein, is a mesh structure with units of continuous biopolymer
residing on the intervening space between the outer and inner
(cytoplasmic) membrane. Specifically, PG is a polysaccharide
composed of repeating β-(1,4)-GlcNAc-β-(1,4)-MurNAc disac-
charide interconnected by oligopeptide stems via covalent bond
(Glauner et al., 1988; Figure 1). The PG maintains cell integrity by
sustaining internal osmotic pressure and keeps the regular bacte-
rial shape. The glycan strand in E. coli is averagely composed of 29
disaccharide-peptide units (Glauner, 1988).

The PG biosynthesis involves multi-stage enzymatic activi-
ties. First, the PG monomer unit (disaccharide with oligopeptide
stem) is attached to a lipid in the cytoplasmic leaf of inner mem-
brane (van Heijenoort, 2001b; Barreteau et al., 2008; Bouhss et al.,
2008). Second, the PG monomer-lipid intermediate is flipped
into periplasm and catalyzed into the end of extending glycan
chain by glycosyltransferases (Goffin and Ghuysen, 1998; van
Heijenoort,2001a; Sauvage et al., 2008). Finally, the stem oligopep-
tides [L-Ala-γ-D-Glu-meso-A2pm-(L)-D-Ala-D-Ala pentapeptide
in E. coli, Figure 1] that is linked to MurNAc are cross-linked to the
adjacent stem oligopeptides from other glycan chains by transpep-
tidases (Goffin and Ghuysen, 2002; Sauvage et al., 2008). These
transpeptidases are the target of beta-lactam antibiotics and also
called PBPs (including PBP1a, PBP1b, PBP1c, PBP2, and PBP3;
Goffin and Ghuysen, 1998; Sauvage et al., 2008). Thus, PBPs are
involved in the final stage of PG synthesis. Each bacterial cell may
produce different PBPs, leading to various types of cross-linkage,
such as D-Ala → (D)-meso-A2pm, (L)-meso-A2pm → (D)-meso-
A2pm, and so on (van Heijenoort, 2011), for making a rigid mesh
structure of PG.

Notably, PG is not a static biological structure. The structural
units of PG changes dynamically during bacterial growth and dou-
bling, with old units degraded and new materials added. Instead
of starting over the complete de novo synthesis as described above,
large quantities of the new materials added are recycled from the

degraded PG units. It’s estimated that up to 60% of the parental
cell wall is made of the recycled PG units during active bacterial
growth (de Pedro et al., 2001; Park and Uehara, 2008).

The PG recycling also involves multi-stage enzymatic activ-
ities. First, the lytic transglycosylase (LT) cleaves the glycan
strand between the MurNAc and GlcNAc, and forms the
1,6-anhydro bond at the newly exposed MurNAc end in the
mean time. With the aid of the endopeptidases (e.g., PBP4)
that could break the cross-linkage between stem oligopep-
tides, anhydro muropeptide monomers (GlcNAc-anhydro-
MurNAc-peptides) are liberated from PG. The main muropep-
tides are GlcNAc-anhMurNAc-L-Ala-γ-D-Glu-meso-A2pm-D-Ala
(GlcNAc-anhydroMurNAc-tetrapeptide), with small amount of
tri-, pentapeptides (Glauner, 1988). Second, these muropeptides
are transported into cytoplasm through the inner membrane
transporter AmpG (Park and Uehara, 2008). Subsequently, in
cytoplasm, the GlcNAc sugar residue is removed by the glycoside
hydrolase NagZ (Cheng et al., 2000; Votsch and Templin, 2000).
The resulting population of 1,6-anhydroMurNAc-oligopeptides
are further transformed to UDP-MurNAc-pentapeptide (Park
and Uehara, 2008), a PG precursor that can be reincorporated
into the PG biosynthesis pathway (Park and Uehara, 2008). The
muropeptides also could serve as a signal to induce the produc-
tion of beta-lactamase, which will be discussed below in Section
“Mechanisms of Beta-lactamase Induction.”

BETA-LACTAM ANTIBIOTICS AND BETA-LACTAMASE
In 1928, Alexander Fleming observed the bactericidal effect of
Penicillium notatum, leading to the identification of the first
beta-lactam antibiotic, penicillin (Fleming, 1929). Since then,
a variety of beta-lactam antibiotics with different antimicrobial
profiles have been discovered or synthesized, such as penicillin
derivatives (penams), cephalosporins (cephems), monobactams,
and carbapenems. All beta-lactam antibiotics share a common
core containing a four-member beta-lactam ring (Figure 2). This
beta-lactam ring displays phenomenal structural mimicry with
the backbone of the D-alanyl-D-alanine, the substrate of PBP
(Figure 2). Therefore, penicillin has been proposed to act as a
substrate analog and binds to the active site of transpeptidases
for inhibition of synthesis of the cross-linked PG (Tipper and
Strominger, 1965). This hypothesis was later supported by the
evidence that transpeptidases could bind radioactive-labeled peni-
cillin; thus, transpeptidases were also called as PBPs (Cooper et al.,
1949; Maass and Johnson, 1949a,b; Cooper, 1955; Schepartz and
Johnson, 1956; Markov et al., 1960; Spratt and Pardee, 1975).

Beta-lactam antibiotics have been a primary choice for physi-
cians to treat bacterial infections due to their high specificity and
potent killing effect. Clinical introduction of beta-lactam antibi-
otics has ever claimed to be a historical victory against bacterial
infection; the mortality rate due to bacterial infections in the USA
was drastically dropped from 797 to 36 per 100,000 individuals
between 1900 and 1980 (Armstrong et al., 1999). The emergence of
antibiotic resistant bacteria quickly becomes the ghost of modern
medicine (Cohen, 2000). In fact, even during the ground-breaking
discovery of penicillin, Alexander Fleming has already isolated
the E. coli, Salmonella enterica serovar Typhi, and Haemophilus
influenza strains that were resistant to penicillin (Fleming, 1929).
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FIGURE 1 | Schematic structure of PG and target sites of different

enzymes (pointed by color arrows). The synthetic enzyme (PBP) is
highlighted in red while the lytic enzymes (NagZ, AmpD, and LT) are
highlighted in blue. Notably, NagZ and AmpD catalyze the liberated
muropeptides instead of intact PG. Hexagons denote sugars while

rectangles denote stem amino acids. The cross-linkage ( )
between the top and bottom glycan strands is D-Ala → meso-A2pm.
LT, lytic transglycosylase; PBP, penicillin-binding protein, m-A2pm,
meso-diaminopimelic acid; AnhMurNAc, 1,6-anhydro-MurNAc; β1 → 4,
β-(1,4)-glycosidic bond.

FIGURE 2 |The mimicry of beta-lactam antibiotics to D-alanyl-D-alanine (D-Ala-D-Ala). The four-member lactam ring in penicillin was highlighted in red.

Although numerous efforts have been placed on the discovery new
generation of beta-lactam antibiotics to further improve their clin-
ical efficacy, bacteria have been evolving with an unbeatable pace to
fail those new beta-lactams (Culotta, 1994). To address this serious
public health issue, it is imperative to study the molecular basis
of beta-lactam resistance so that we can overcome beta-lactam
resistance by targeting resistance mechanisms.

The molecular mechanisms of beta-lactam resistance have been
widely studied (Ogawara, 1981; Fuda et al., 2004; Jovetic et al.,
2010; Harris and Ferguson, 2012). To evade the bactericidal
effects of beta-lactam antibiotics, Gram-negative bacteria have
evolved multiple strategies, such as production of beta-lactamases

(Korfmann and Wiedemann, 1988; Jacoby, 2009), production
of novel PBPs with reduced affinity to beta-lactam antibiotics
(Fuda et al., 2004), reducing beta-lactam antibiotics entry through
mutations in porins, and expelling beta-lactam antibiotics out
of cells using multi-drug efflux pumps (Kohler et al., 1999). Of
these mechanisms, producing beta-lactamases, the enzymes that
could hydrolyze beta-lactam ring, is still the most efficient strategy
(Abraham and Chain, 1940; Jacoby and Munoz-Price, 2005). It
has been proposed that beta-lactamases and the PBPs may share a
common ancestor due to the presence of certain sequence homol-
ogy (Massova and Mobashery, 1998). Recently, Fernandez et al.
(2012) observed that overexpression beta-lactamases changed the
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PG composition and affected bacterial fitness, likely due to the
residual transpeptidase activity of the beta-lactamases.

Given the tight link between beta-lactam resistance and the
beta-lactamase activity, it is not surprising that past studies were
primarily focused on the structure, function, and ecology of
beta-lactamases. Particularly, many epidemiological, clinical, and
ecological studies are focused on the detection and characteri-
zation of specific beta-lactamase genes with little attention on
the regulatory mechanism of beta-lactamases. The first “cryptic”
beta-lactamase, AmpC (originally named AmpA), was identified
in beta-lactam sensitive E. coli K-12 by stepwise selection on
beta-lactam antibiotics containing medium (Eriksson-Grennberg
et al., 1965; Eriksson-Grennberg, 1968). The beta-lactam resistant
derivatives constitutively produced high-level of beta-lactamases,
suggesting the presence of an inducible beta-lactamase gene
in E. coli K-12 (Linstrom et al., 1970). Later, the AmpC gene
was cloned and characterized as a beta-lactamase (Jaurin and
Grundstrom, 1981). The expression of ampC normally is main-
tained at low level and dependent on growth rate (Jaurin et al.,
1981). However, a single nucleotide mutation in the promoter
region (likely an attenuator) of ampC led to overexpression of
beta-lactamase, indicating that the ampC was subjected to regu-
lation (Jaurin et al., 1981). Then the ampC was observed to be
widely distributed in different enterobacterial species, such as
Salmonella enterica serovar Typhimurium, Pseudomonas aerugi-
nosa, Serratia marcescens, and Klebsiella pneumonia; interestingly,
the ampC was inducible under treatment of beta-lactam antibi-
otics (Bergstrom et al., 1982). However, the expression of ampC
in E. coli was not induced by beta-lactam antibiotics due to the
lack of a regulator gene ampR adjacent to the ampC in the chro-
mosome (Honore et al., 1986). Complementation of E. coli with
a plasmid containing the ampR–ampC operon from Enterobac-
ter cloacae restored the phenotype of beta-lactamase induction
(Kraft et al., 1999).

The induction of beta-lactamase is of great clinical importance.
For example, prolonged administration of beta-lactam antibiotics
could lead to emergence of P. aeruginosa mutants resistance to
multiple beta-lactam antibiotics, eventually leading to treatment
failure and patient death (Livermore, 1987; Sanders, 1987; Giwerc-
man et al., 1990; Juan et al., 2005). Therefore, significant progresses
have been made on the molecular basis of the beta-lactamase
induction in Gram-negative bacteria in the past two decades.

MECHANISMS OF BETA-LACTAMASE INDUCTION
Understanding the molecular basis of beta-lactamase induction
would facilitate us to develop effective combination therapy strat-
egy by inhibiting the induction of beta-lactamase. Gram-negative
bacteria have evolved two major mechanisms for beta-lactamase
induction, the AmpG–AmpR–AmpC pathway and the two-
component regulatory system (TCRS; Figure 3). Recent progresses
in this significant research area are summarized below.

THE AmpG–AmpR–AmpC PATHWAY
As mentioned above, in many bacteria belonging to Enterobac-
teriaceae family, AmpC expression is induced by beta-lactam
antibiotics. Since beta-lactam antibiotics treatment can trigger
the release of large amount of muropeptides in periplasm, which

could be subjected to cell wall recycling process, the relationship
between cell wall recycling and beta-lactamase induction has been
examined and confirmed in recent studies. Briefly, in the AmpG–
AmpR–AmpC pathway, beta-lactam antibiotics treatment breaks
the balance of PG biosynthesis (e.g., due to the inhibited PBP
and the functional LT), consequently liberating GlcNAc-anhydro-
MurNAc-oligopeptides in periplasm (Templin et al., 1992). The
GlcNAc-anhydro-MurNAc-oligopeptides are further transported
into cytoplasm through AmpG transporter (Park and Uehara,
2008). The GlcNAc moiety is removed by enzyme NagZ, lead-
ing the accumulated PG products (mainly anhydro-MurNAc-
tetrapeptides). In cytoplasm, anhydro-MurNAc-oligopeptide are
the inducer of beta-lactamase expression through the interaction
with AmpR (Lindquist et al., 1989; Jacobs et al., 1997).

AmpR is a LysR type transcriptional regulator and is
encoded immediately upstream of ampC with opposite direction
(Lindquist et al., 1989; Jacobs et al., 1997). AmpR was demon-
strated as an activator for ampC using in vitro transcription
assay (Jacobs et al., 1997). However, production of ampC was
still repressed even if bacterial host contains functional AmpR,
unless exogenous beta-lactam antibiotic was added (Honore et al.,
1986; Lindquist et al., 1989; Lodge et al., 1990; Jacobs et al.,
1997). Therefore, it has been hypothesized that the activator
function of AmpR was inhibited by certain cellular metabolite,
which was demonstrated as the cell wall synthesis precursor,
UDP-MurNAc-pentapeptide (Jacobs et al., 1997). This inhibi-
tion was abolished in the mutant with point mutation in AmpR
(G102E; Bartowsky and Normark, 1991), indicating the role of
the residue G for the association of UDP-MurNAc-pentapeptide.
Upon the treatment of beta-lactam antibiotics, the accumulated
intracellular anhydro-MurNAc-oligopeptides could displace the
AmpR-associated UDP-MurNAc-pentapeptide, triggering confor-
mational change of AmpR, and subsequently activating the tran-
scription of ampC (Jacobs et al., 1997). The DNase I-protection
assay showed the binding site of AmpR was in a 39-bp region
upstream of the ampC transcription start site (−40 to −88; Jacobs
et al., 1997). Interestingly, AmpR in P. aeruginosa is a global
transcriptional factor whose regulon includes beta-lactamases,
proteases, quorum sensing, and other virulence factors (Kong
et al., 2005; Balasubramanian et al., 2012).

Among the PG cycling process, there is a negative effec-
tor to fine-tune the expression of AmpC. A cytoplasmic N-
acetylmuramoyl-L-alanine amidase, named AmpD (Holtje et al.,
1994), could dissociate stem peptides from the anhydro-MurNAc
or GlcNAc-anhydro-MurNAc, therefore, reducing concentrations
of the inducing muropeptides and mitigating the overexpression
of AmpC (Jacobs et al., 1994).

Consistent with these observations on the relationship
between PG cycling and beta-lactamase induction, perturba-
tion of PG recycling also affected AmpC induction, suggest-
ing potential pharmaceutical targets. For example, overpro-
duction of the LT MltB stimulated beta-lactamase induction
whereas specific inhibition of LT Slt70 by bulgecin repressed
AmpC expression (Kraft et al., 1999). In addition, muta-
tion of all six LT enzymes (Slt70, MltA, MltB, MltC, MltD,
and EmtA) in E. coli decreased the beta-lactamase activities
(Korsak et al., 2005).
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FIGURE 3 |The model of beta-lactamase induction in Gram-negative

bacteria. The beta-lactamase induction by muropeptides via two major
molecular mechanisms, the AmpG–AmpR–AmpC pathway and the BlrAB-like
two-component regulatory system, are presented. The signaling pathway via
two-component regulatory system is only supported by limited studies to

date and is shown in dashed arrows. The “Regulator” denotes AmpR-like
regulator or two-component response regulator. The “beta-lactamase”
denotes the beta-lactamase that is subjected to induction. E, extracellular
environment; OM, outer membrane; PS, periplasmic space; IM, inner
membrane; C, cytoplasm.

Different versions of AmpG–AmpR–AmpC regulatory path-
ways exist in bacteria. For example, E. coli and Shigella spp. lacks
an ampR gene (Bergstrom et al., 1982; Honore et al., 1986), lead-
ing to the low level, non-inducible expression of AmpC. The
AmpC gene in E. coli was primarily regulated by an attenuator
sequence in promoter region (Jaurin et al., 1981). The overex-
pression of AmpC can be achieved either by mutating attenuator
(Jaurin et al., 1981) or by introducing an AmpR regulator (Kraft
et al., 1999); the similar pathway was also observed in Acinetobacter
baumannii (Bou and Martinez-Beltran, 2000). In Salmonella, the
chromosomal AmpC–AmpR is usually absent, which may be due
to unbearable production cost of AmpC (Morosini et al., 2000).
However, clinical Salmonella strains can acquire AmpC–AmpR
through horizontally transferred mobile elements (Barnaud et al.,
1998). In Serratia marcescens, besides AmpR regulation, the post-
transcriptional regulation also influences the expression of AmpC.
Specifically, the half-life of ampC transcript could be affected by
a 126-bp, non-encoding region that forms a stem-loop structure
(Mahlen et al., 2003). In P. aeruginosa PAO1, interestingly, there
are three copies of ampD genes, which contributed to the stepwise
up-regulation of AmpC with the discrete mutation of each copy
of ampD (Juan et al., 2006).

THE BlrAB-LIKE TWO-COMPONENT REGULATORY SYSTEM
The TCRS, which involves sensing specific environmental stimuli
(Capra and Laub, 2012), was also observed to be involved in the
induction of beta-lactamase. In Aeromonas spp., the AmpC and
two other chromosomally encoded beta-lactamases were regulated
by the response regulator BlrA of a TCRS instead of an AmpR-
type regulator (Alksne and Rasmussen, 1997). Complementation
study demonstrated that overexpression of BlrA in E. coli enhanced
the expression of the Aeromonas-derived beta-lactamase in E. coli
MC1061 while the beta-lactamase was expressed at low level in the
absence of BlrA (Alksne and Rasmussen, 1997).

The closest TCRS homolog of BlrAB in E. coli is CreBC
(Amemura et al., 1986; Wanner and Wilmes-Riesenberg, 1992).
Interestingly, the beta-lactamases from Aeromonas hydrophila
could be regulated by the CreBC TCRS system in the Cre+ E. coli
strain such as DH5α (Avison et al., 2000, 2001). The “cre/blr-tag”
signature, which is the “TTCACnnnnnnTTCAC” motif located
in the promoter of Cre-regulon, was identified in E. coli (Avi-
son et al., 2001). These “cre/blr-tag” also reside in promoters of
Aeromonas-derivative beta-lactamases (Niumsup et al., 2003), and
the induction of those beta-lactamases by overexpressed BlrA was
dependent on the presence of “cre/blr-tag” (Avison et al., 2004).
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In P. aeruginosa, inactivation of a non-essential PBP was shown
to trigger overproduction of a chromosomal AmpC gene and this
overproduction is dependent on CreBC TCRS (Moya et al., 2009).
Interestingly, among the 32 tested E. coli TCRS response regulators,
overexpression of FimZ conferred increased level of beta-lactam
resistance through the action of AmpC in E. coli (Hirakawa et al.,
2003).

Despite above evidence showing that TCRS is also involved in
the induction of beta-lactamase, the identity of the corresponding
cues to which the TCRS respond for beta-lactamase induction is
still unknown. We speculate that specific degraded PG compo-
nents may serve as a signal for the response regulator to induce
the production of beta-lactamase. This hypothesis needs to be
examined in the future.

OTHER MECHANISMS
Another novel beta-lactamase induction pathway was discovered
in Ralstonia pickettii (Girlich et al., 2006). The chromosomally
encoded beta-lactamases (OXA-22 and OXA-60) were regulated
by ORF-RP3 (short for RP3), a gene located at 192-bp upstream
of the ATG codon of oxa-60. Inactivation of RP3 resulted in the
abolishment of induction of the both beta-lactamases; comple-
mentation of the RP3 restored the inducible expression of OXA-22
and OXA-60 (Girlich et al., 2006). DNase I footprinting showed
that RP3 specifically bound to tandem repeats upstream at the
transcriptional start sites of OXA-22 and OXA-60 genes, suggest-
ing RP3 is a novel positive-regulator for beta-lactamase induction
(Girlich et al., 2009).

PHARMACEUTICAL IMPLICATIONS OF BETA-LACTAMASE
INDUCTION MECHANISM
Discovery of beta-lactamase inhibitors is a promising strategy to
combat the prevalent beta-lactam resistance (Bush and Macielag,
2010; Harris and Ferguson, 2012). However, this approach is
challenged by the variable affinity of the inhibitors to different
beta-lactamases and by the overwhelming quantity of the beta-
lactamases produced in resistant cells. Based on the information
reviewed here, we propose that the signaling pathways of beta-
lactamase induction offer a broad array of promising targets for the
discovery of new antibacterial drugs used for combination ther-
apies. The inhibitors targeting beta-lactamase induction pathway
may prevent the emergence of beta-lactam resistance and enhance
the efficacy of clinical beta-lactam antibiotics, as what we have
observed for the efflux pump inhibitors (Lomovskaya and Bostian,

2006). In supporting this hypothesis, the frequency of emergence
of ceftazidime resistance in blrAB mutant in P. aeruginosa was
below the detection limit (<1 × 10−11), which is far below that
for the wild-type parent strain (3 × 10−8; Moya et al., 2009).

The potential targets in the beta-lactamase induction path-
way as well as the known inhibitors are summarized in Table 1.
Several inhibitors have been identified for LTs that play a critical
role in the initializing the PG cycling. The LT inhibitor bulgecin
could induce cell lysis and morphology changes in the presence
of beta-lactam antibiotics although bulgecin alone did not show
any antibacterial activity against E. coli (Imada et al., 1982; Nakao
et al., 1986; Bonis et al., 2012). The major molecular target of bul-
gecin was the soluble LT Slt70 (Templin et al., 1992). In a 2.8-Å
resolution crystallographic structure of Slt70-bulgecin complex,
one single bulgecin molecule was found to be located in the active
site of Slt70, indicating that bulgecin may act as an analog of
an oxocarbenium ion intermediate in the reaction catalyzed by
Slt70 (Thunnissen et al., 1995). The beta-hexosaminidase inhibitor
N-acetylglucosamine thiazoline (NAG-thiazoline) was also found
to inhibit the LT sMltB from P. aeruginosa (Reid et al., 2004a,b).
Another inhibitor, hexa-N-acetylchitohexaose, can inhibit the LT
from bacteriophage lambda (Leung et al., 2001). Interestingly, a
proteinaceous inhibitor of vertebrate lysozymes (Ivy), which has
conserved CKPHDC motif, was also found to control the autolytic
activity of bacterial LTs (Clarke et al., 2010).

Regarding other targets in beta-lactamase induction pathway,
PUGNAc and modified EtBuPUG can inhibit the function of
NagZ by the mimicry of the oxocarbenium ion-like transition
state (Stubbs et al., 2007). Unlike PUGNAc that is also a potent
inhibitor against human O-GlcNAcase and beta-hexosaminidase,
EtBuPUG displayed 100-fold selectivity toward to NagZ. The
function of inner membrane permease AmpG in laboratory
strains of P. aeruginosa can be inhibited by carbonyl cyanide m-
chlorophenylhydrazone (CCCP), a general inhibitor of proton
motive force, consequently leading to an increased susceptibil-
ity to beta-lactam antibiotics (Cheng and Park, 2002; Zhang et al.,
2010). However, it is important to mention that CCCP also targets
other energy-dependent systems, such as drug efflux pump; thus,
the linkage between reduced beta-lactam resistance and AmpG
inhibition was not clearly demonstrated in these studies.

Although a panel of inhibitors that target the PG recycling path-
way have been identified (Table 1), it is still largely unknown
if these inhibitors repress the inducible beta-lactam resistance
effectively in Gram-negative bacteria, consequently enhancing the

Table 1 |The inhibitors targeting the beta-lactamase induction pathway.

Target Function Inhibitor

LT Non-hydrolytic cleave PG with the concomitant formation of 1,6-anhydro-

MurNAc

Bulgecin A (Templin et al., 1992); NAG-thiazoline (Reid et al., 2004a,b);

hexa-N -acetylchitohexaose (Leung et al., 2001); Ivy (Clarke et al., 2010)a

NagZ Cleave disaccharide oligopeptides to release 1,6-anhydro-MurNAc-peptide PUGNAc, EtBuPUG (Stubbs et al., 2007)

AmpG Inner membrane permease of the 1,6-GlcNAc-anhydro-MurNAc-peptides CCCP (Zhang et al., 2010)

AmpR Binary regulator of AmpC UDP-N -acetylmuramic acid peptides (Jacobs et al., 1997)

aProteinaceous inhibitor, also the inhibitor of vertebrate lysozymes.
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efficacy of clinical beta-lactam antibiotics. This knowledge gap
needs to be filled in the future. In addition, similar to all infectious
disease drug developments, discovery of a promising inhibitor
targeting the beta-lactamase induction pathway and conversion
such inhibitor into a clinically useful therapeutic agent are likely a
lengthy and challenging process. Some key issues, such as toxicity,
stability, bioavailability, and production cost, must be addressed.
Despite these challenges, it is imperative to develop clinically use-
ful inhibitors to suppress beta-lactamase induction and enhance
“shelf-life” of a broad spectrum of beta-lactam antibiotics against

bacterial pathogens. To achieve this goal, in-depth structural and
functional studies are needed for the potential targets (Table 1),
which is critical for identifying corresponding inhibitors using var-
ious modern approaches, such as high-throughput screening of
chemical compound library, homology modeling and molecular
docking.
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