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ABSTRACT: Pseudomonas aeruginosa (P. aeruginosa) is a highly infectious and antibiotic-
resistant bacterium, which causes acute and chronic nosocomial infections. P. aeruginosa
exhibits multidrug resistance due to the emergence of resistant mutants. The bacterium takes
advantage of intrinsic and acquired resistance mechanisms to resist almost every antibiotic. To
overcome the drug-resistance problem, there is a need to develop effective drugs against
antibiotic-resistant mutants. Therefore, in this study, we selected the F533L mutation in PBP3
(penicillin-binding protein 3) because of its important role in β-lactam recognition. To target
this mutation, we screened 147 antibacterial compounds from PubChem through a machine-
learning model developed based on the decision stump algorithm with 75.75% accuracy and
filtered out 55 compounds. Subsequently, out of 55 compounds, 47 compounds were filtered
based on their drug-like activity. These 47 compounds were subjected to virtual screening to
obtain binding affinity compounds. The binding affinity range of all 47 compounds was −11.3
to −4.6 kcal mol−1. The top 10 compounds were examined according to their binding with the
mutation point. A molecular dynamic simulation of the top 8 compounds was conducted to understand the stability of the
compounds containing the mutated PBP3. Out of 8 compounds, 3 compounds, namely, macozinone, antibacterial agent 71, and
antibacterial agent 123, showed good stability and were validated by RMSD, RMSF, and binding-free analysis. The findings of this
study revealed promising antibacterial compounds against the F533L mutant PBP3. Furthermore, developments in these compounds
may pave the way for novel therapeutic interventions.

1. INTRODUCTION
Pseudomonas aeruginosa (P. aeruginosa) is a gram-negative, rod-
shaped, aerobic opportunistic bacterial pathogen. This
bacterium plays an important role in nosocomial infections,
especially in individuals with weakened host defenses.1,2 P.
aeruginosa also appears to be the third most common cause of
urinary tract infection and the second most common cause of
pneumonia.3,4 Currently, P. aeruginosa infections are treated
primarily with eight classes of antibiotics: aminoglycosides
(tobramycin, gentamicin, netilmicin, and amikacin), cepha-
losporins (ceftazidime and cefepime), carbapenems (imipenem
and Meropenem), fluoroquinolones (ciprofloxacin and levo-
floxacin), monobactams (aztreonam), fosfomycin and poly-
myxins (colistin and polymyxin B), and penicillins with β-
lactamase inhibitors (BLIs) (ticarcillin and piperacillin in
combination with clavulanic acid or tazobactam).5 Despite
these treatments, multidrug-resistant (MDR) P. aeruginosa
bacteria remain a significant problem for hospitals.6 Due to its
resistance to various drugs, comprising third-generation
cephalosporins and carbapenems, the World Health Organ-
ization (WHO) lists it as one of the most important priority
pathogens.
The rise of MDR P. aeruginosa isolates has become a global

public health concern. Infection with these isolates limits

available treatments and increases morbidity and mortality.7

Carbapenems represent an important therapeutic option for
the management of gram-negative bacteria. However, the
increase in carbapenem resistance of P. aeruginosa raises
serious concerns, especially for patients who are in critical
condition. Consequently, P. aeruginosa is now considered an
emergency pathogen by the WHO, meaning that novel
treatment strategies are desperately needed.8 As per the report
from WHO, if no intervention is taken to address antimicrobial
resistance (AMR), by the year 2050, the world could face 10
million deaths annually and could experience a global
economic crisis as severe as the crisis of 2008−2009.9

According to a 2019 study, AMR infections accounted for
about 4.95 million deaths, with 1.27 million directly linked to
drug resistance. The study also highlights AMR as the greatest
threat to populations in South Asia and sub-Saharan Africa
compared to all other countries studied.10 In addition to
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developing resistance, P. aeruginosa is also able to acquire
antibiotic tolerance through the production of complex
bacterial clusters known as biofilms, which stick to surfaces
and are encased in a self-produced matrix, preventing them
from being exposed to antibacterial agents. Biofilm-forming
bacterial pathogens are more resistant to antibiotics; strains of
P. aeruginosa that can form biofilms are 20−30% resistant to
fluoroquinolones and 12−22% resistant to gentamicin.11 In
addition to biofilm formation, P. aeruginosa exhibits several
drug-resistance mechanisms for survival. These include
modifications to porins embedded in the outer membrane,
which limit the permeability of antibiotics; the degradation of
β-lactams by β-lactamases; modifications in protein targets,
especially penicillin-binding proteins (PBPs) that reduce the
efficiency of drug binding; and increased activity in pumping
out antibiotics from cells through efflux pumps.12,13

In this study, we selected PBP3 for this investigation
because, in addition to being crucial to the bacterium’s survival,
it is a prime target for the creation of antibacterial drugs. This
target is clinically validated, and the absence of a human
counterpart makes it less likely to cause drug interactions.
Since the catalytic domain of PBP3 is located in the periplasm,
potential small molecule inhibitors can reach it.14 Usually, β-
lactam antibiotics target the PBP3. However, the potency of β-
lactams has significantly changed with the emergence and
spread of MDR strains, including genetically or plasmid-
encoded β-lactamases and additional resistance mechanisms
(e.g., efflux transporters and target mutations). β-lactamases
destroy the β-lactam antibiotics’ antibacterial activity by
hydrolyzing the β-lactam ring.14

The most prevalent PBP3 variations that could impact β-
lactam activity are substitutions of amino acids, primarily
localized near the active site, specifically the catalytic Ser-XX-
Lys motif.13 Among all of the mutations on the motif, mutant
F533L (533L) has been demonstrated to play an important
role in β-lactam recognition. Due to mutation at the 533L
position of PBP3, it reduces the affinity for meropenem
antibiotics.15

Thus, under the current circumstances, there is a great need
to find effective antibacterial drugs to treat mutation effectively.
Since the synthesis of new drugs is extremely difficult, we
performed an in-silico analysis of antibacterial compounds from
PubChem against the P. aeruginosa enzyme PBP3. We hope
that the findings of this study can help in the search for new
drug compounds against P. aeruginosa.

2. RESULTS
2.1. Mutation Stability Analysis. Both DynaMut2 and

DeepDDG predicted the mutation 533L to destabilize the
overall protein structure with −0.94 and −0.097 kcal/mol
ΔΔG values, respectively (Table 1). The destabilizing effect of
the mutation can be seen through intermolecular interactions
where there was a slight loss in the number of interactions
(hydrophobic and polar) in the mutant structure compared to
the wild-type. It was also observed that the mutant structure

had one van der Waals interaction with Thr487 while it was
absent in the wild-type structure (Table 2) (Figure 1).

2.2. Performance of Machine-Learning (ML) Classifier
and Data Set Screening. To create the best ML model for
distinguishing between antibacterial substances and non-
antibacterial substances, we constructed classification models
using ML approaches. Several statistical metrics, as indicated in
Table 3, were used to assess the models’ performance. Using
10-fold cross-validation (CV) on the training data set, a
collection of models was trained using three distinct
classification algorithms: decision stump, decision table, and
J48. All of the classifiers that were utilized are compiled in
Table 3 based on the performance index. When evaluating the
model, the kappa statistic’s value represents the degree of
consistency between the real and model classes, and a value of
1 denotes perfect agreement between the ground truth and the
classifier model’s classification in that instance. In comparison
to the other models, the decision stump model displayed the
highest kappa statistic value of 0.5, indicating a moderate level
of agreement and the final root mean square error (RMSE)
value of 0.42. The decision stump was shown to be the best
classifier overall, followed by the decision table and J48,
according to the analysis. The decision stump, decision table,
and J48 had accuracy rates of 75.75, 72.72, and 69.69%, in that
order. The classifier’s accuracy in properly recognizing
positively and negatively labeled occurrences was evaluated
using sensitivity and specificity plots, which were used to
determine the optimal models for each data set (Figure 2).
Decision stump was the most sensitive classifier for the data
set, and the decision table was the least sensitive. The
specificity of decision stump ranged from 53 to 60%, and the
sensitivity ranged from 78 to 89%. Furthermore, additional
performance metrics such as receiver operating characteristic
(ROC) curve analysis were employed to demonstrate the
flexibility of the model. The performance of the binary
classifier model when its discrimination threshold is changed is
displayed by the ROC curve. The ROC curve of the current
model initially showed a strong relationship with the true
positive rate axis, which represents maximizing the sensitivity
and minimizing false positive rates (maximizing the specificity
and sensitivity). The ROC value of the decision table was 0.77,
that of the decision stump was 0.76, and that of J48 was 0.73.
Ultimately, the top model decision stump was selected for
virtual screening based on its performance. The model
indicated that 55 of the 147 antibacterial compounds were

Table 1. Destabilizing Value of Mutation Position Using
DynaMut2 and DeepDDG Server

predictors F533L

DynaMut2 ΔΔG (kcal/mol) −0.94 kcal/mol (destabilizing)
DeepDDG ΔΔG (kcal/mol) −0.097 kcal/mol (destabilizing)

Table 2. Different Types of Interaction Observed in Wild-
Type and Mutant Structures of PBP3 Using DynaMut2
Server

type of
interaction

wild- type
(PHE533) interacting residues

mutant
(LEU533)

interacting
residues

clash 3 LEU536, GLY535,
VAL537

1 VAL537

van der Waals 0 1 THR487
hydrogen 4 LEU536, VAL537,

THR487
4 LEU536,

VAL537,
THR487

hydrophobic 3 LEU536, VAL333 2 LEU536,
THR487

polar 6 LEU536, VAL537,
THR487, GLY535

5 LEU536,
VAL537,
THR487
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active and 92 molecules were inactive. Finally, 55 active
compounds were considered for further research.
2.3. Drug Likeness Activity. The properties of drug

likeness of the 55 compounds from the library were analyzed
and are shown in Supplementary Table S1. The DruLiTo
software is used to determine the various properties of the
ligand such as molecular weight, logP, H bond donors, and H
bond acceptors of ligands. Out of 55 compounds, 47 were
followed Lipinski’s five rules. All 47 compounds have
molecular weights less than 500 Da (Da), LogP values less
than 5, the number of hydrogen bond acceptors is less than 10,
and the number of hydrogen bond donors is less than five
compounds. It was shown that these chemicals follow
Lipinski’s five rules (Table 4). After screening, these 47
compounds were employed in molecular docking.

2.4. Molecular Docking. To find the potential inhibitors
from the docked compounds with the mutation site of the
PBP3 receptor, we determined the ligands’ docked poses with
the mutation position of PBP3 at the 533L amino acid
position. After the top 10 best-docked conformers with the
highest affinity for the PBP3 receptor were selected, the
binding mechanism and molecular interactions in the PBP3
mutant region were examined. Furthermore, those compounds
that showed binding to the mutation point at the 533L
positions of PBP3 are considered preferential in docking
analysis. The findings of the interaction analysis show that all
top 10 compounds, namely, antibacterial agent 113, anti-
bacterial agent 30, antibacterial agent 71, macozinone,
antibacterial agent 123, antibacterial agent 82, antibacterial
agent 53, sparfloxacin, pretomanid, and antibacterial agent 31
showed hydrophobic interactions with 533L amino acid
(Figure 3). The antibacterial agent 113 forms one hydrogen
bond Y409 and 14 hydrophobic bonds N351, Y407, S294,
T487, S349, S485, G534, G535, K348, I347, S334, 533L,
V333, and R489 with −11.3 kcal mol−1 binding energy (Figure
3A). The antibacterial agent 30 forms three hydrogen bonds
Y407, N351, and S485 and nine hydrophobic bonds R489,
Y409, V333, S349, G486, G535, 533L, T487, and Y498 and
showed −10.4 kcal mol−1 binding energy (Figure 3B). The
antibacterial agent 71 showed −10.4 kcal mol−1 binding energy
and form two hydrogen bonds S485 and N351 and seven
hydrophobic bonds 533L, V333, Y409, R331, Y498, T487, and
S349 (Figure 3C). Macozinone showed −10.3 kcal mol−1

Figure 1. 3D interactive visualization of bonds formed between neighboring amino acid residues of wild-type and mutant-type proteins penicillin-
binding protein 3. The figure also depicted mutation point “F533L” (brown color) on PBP3 protein.

Table 3. Comparison of Performance of Different Classifiers
for the Development of the Screening Model in the Training
Set

classifier
name

correctly
classified

instances %
(value)

kappa
statistic

mean
absolute
error

root
mean
square
error MCC

ROC
area

decision
stump

75 0.5 0.27 0.42 0.51 0.76

decision
table

72 0.37 0.32 0.42 0.37 0.77

J48 69 0.34 0.29 0.51 0.35 0.73

Figure 2. Statistical performance of various classifiers used for screening test sets of machine-learning modeling.
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binding energy and form four hydrogen bonds R489, Y409,
R331, and N351 and seven hydrophobic bonds I330, Y407,
533L, S349, S334, V333, and T487 (Figure 3D). The
antibacterial agent 123 showed −10.1 kcal mol−1 binding
energy and form three hydrogen bonds N351, S349, and S294
and five hydrophobic bonds Y409, Y407, 533L, V333, and
T487 (Figure 3E). The antibacterial agent 82 forms two
hydrogen bonds N351 and S294 and 12 hydrophobic bonds
V471, G535, G470, R473, 533L, V333, T487, Y407, Y409,
S485, S349, and F472 with −9.6 kcal mol−1 binding energy
(Figure 3F). The antibacterial agent 53 forms four hydrogen
bonds (K484, S294 and two H bonds with S485) and eight
hydrophobic bonds G486, R489, N351, Y409, 533L, T487,
V333, and S349 with −9.4 kcal mol−1 binding energy (Figure
3G). The sparfloxacin showed −9.1 kcal mol−1 binding energy
and form one hydrogen bond Thr487 and 11 hydrophobic
bonds 533L, Y532, V333, Y407, R331, T329, Y409, Y498,
S294, N351, and G486 (Figure 3H). The pretomanid forms

five hydrogen bonds (G534, S294, N351 and two H bonds
with S349) and seven hydrophobic bonds Y407, Y409, T487,
S485, G486, 533L, and V333 with −9.1 kcal mol−1 binding
energy (Figure 3I) and the antibacterial agent 31 showed −9.1
kcal mol−1 binding energy and showed four hydrogen bonds
S349, K484, S294, and N351 and eight hydrophobic bonds
V333, S485, 533L, G486, T487, Y409, R489, and Y407 (Figure
3J) (Table 5).
2.5. Absorption, Distribution, Metabolism, Excretion,

and Toxicity (ADMET) Properties. The results of ADMET
are shown in Table 6. All of the selected compounds showed a
very good possibility of being absorbed in the human intestine
with human intestinal absorption (HIA) properties. Also, all
compounds showed a very good possibility of crossing the
blood−brain barrier (BBB+) except antibacterial agent 53 and
sparfloxacin. Apart from these properties, we have checked
carcinogenic properties, and all compounds showed non-
carcinogenicity properties, an important pharmacokinetic

Table 4. Drug Likeness Properties of the Top 10 Docked Compounds with PBP3

ligands PubChem-ID MW (g/mol) logP HBA HBD

antibacterial agent 113 164517170 487.12 2.243 6 1
antibacterial agent 30 156783454 463.16 2.624 6 2
antibacterial agent 71 163196389 468.21 1.903 5 1
macozinone 57331386 456.14 4.486 4 0
antibacterial agent 123 165413023 441.05 3.32 4 2
antibacterial agent 82 163196417 342.14 4.655 4 2
antibacterial agent 53 163323821 395.09 −1.132 9 2
sparfloxacin 60464 392.17 2.353 7 3
pretomanid 456199 359.07 2.636 5 0
antibacterial agent 31 163323786 345.99 3.216 5 0

Figure 3. 2D and 3D interaction of 10 compounds, namely, (A) antibacterial agent 113, (B) antibacterial agent 30, (C) antibacterial agent 71, (D)
macozinone, (E) antibacterial agent 123, (F) antibacterial agent 82, (G) antibacterial agent 53, (H) sparfloxacin, (I) pretomanid, and (J)
antibacterial agent 31 with mutated position 533L amino acid (hydrophobic interaction) and with transpeptidase domain of PBP3.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c00929
ACS Omega 2024, 9, 28046−28060

28049

https://pubs.acs.org/doi/10.1021/acsomega.4c00929?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00929?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00929?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00929?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c00929?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


property in drug discovery. All of these properties indicate that
all of the selected compounds have good ADMET properties.
2.6. Molecular Dynamic (MD) Simulation. Further to

assess the flexibility, structural behavior, and stability of the top
eight highly active docked molecules, a 100 ns MD simulation
was calculated. MD simulations reveal insight into the
compounds’ dynamic behavior, and this dynamic behavior is
used to obtain the information that can be used in drug
discovery. The top eight protein−ligand complexes were
simulated. MD simulations were also performed on the PBP3
wild-type and mutant proteins without ligands to compare the
results. To verify the protein’s conformational stability,
additional parameters such as the interaction energy, radius
of gyration (Rg), root-mean-square deviation (RMSD), and
root-mean-square fluctuations (RMSF) of residues are also
evaluated for each system. After RMSD analysis, out of the
eight compounds, three compounds, namely, macozinone,
antibacterial agent 71, and antibacterial agent 123, showed
promising inhibitory activity against the PBP3. Therefore, only
these three compounds were further subjected to additional
analysis and description.

2.6.1. Root Mean Square Deviation. The RMSD is an
important parameter to analyze the equilibrium in the MD
trajectory, which is estimated for the backbone atoms of PBP3
and the protein−ligand complex. Both the wild-type and
mutant showed good stability in terms of only a single protein.
The RMSD value of the wild-type is 0.21 ± 0.26 nm, and the
RMSD value of the mutated type is 0.312 ± 0.03 nm. In the
case of complexes, all complexes showed fluctuations up to 10
ns, after which all showed stability with PBP3 (Figure 4A). In
the case of the PBP3 and macozinone ligand complexes, the
RMSD value was calculated as 0.62 ± 0.101 nm. The
fluctuations had dropped to about 0.2 to 0.3 ns around the

30 ns period. A clear and noticeable 0.5 nm deviation was
observed in the residuals of the RMSD values with an increase
in time from 45 to 55 ns. Most of the residues showed stable
states during the 100 ns simulation. At the same time, the
PBP3 and antibacterial agent 71 ligand complex showed
fluctuations by about 0.3 nm from 25 to 27 ns and remained
stable with an RMSD value of 1.05 ± 0.151 nm until the end of
the simulation. In contrast, in the case of PBP3 and the
antibacterial agent 123 ligand complexes, the RMSD value
showed 0.94 ± 0.065. Most of the residues of this complex
showed a steady state during the 100 ns simulation (Figure
5A).

2.6.2. Root Mean Square Fluctuation. The calculation of
the RMSF shows the variation of the complex with time
against each residue. We have demonstrated only PBP3 (wild-
type and mutant) and complex compounds during 100 ns
simulations. In this study, mainly we have focused on the
mutation point site at the 533L positions. In the case of both
wild-type and mutant proteins at the position of 533, the
fluctuation is low. In the other position, the residue fluctuation
is high in the case of mutated protein, which is 0.2 to 0.5 nm as
compared to the wild-type structure (Figure 4B). The low
fluctuation in the position of 533 shows that, due to mutation,
the protein has not lost its stability. In the case of ligand
complexes, the overall fluctuation in all complexes is very low
except for some residues, i.e., around 100 and 200 position
residues during 100 ns simulations. This means that after
making a complex with ligands, the protein does not have its
stability at the mutation point. The fluctuation shown in Figure
5B clearly shows that it is more than 0.4 to 0.6 nm in all
complexes.

2.6.3. Radius of Gyration. Rg values are calculated
throughout to understand the compactness, stability, and
folding of the protein structure. The structural density of PBP3
and its complexes was assessed by analyzing their Rg values.
The Rg values of wild-type, mutated protein, and all three
protein complexes were consistent with each other. In the case
of only the protein structure of the wild-type, it showed fewer
deviations with a value of 2.531 ± 0.124 nm compared to the
mutated structure. The mutated protein structure showed a 0.1
nm deviation with 2.429 ± 0.127 nm (Figure 4C). In the case
of all complexes, the Rg value of macozinone is 2.523 ± 0.199
nm, antibacterial agent 71 is 2.528 ± 0.244 nm, and
antibacterial agent 123 is 2.552 ± 0.236 nm (Figure 5C).
The Rg value of only protein and ligand complexes are the
same, and it shows that the compactness of protein is not
changing after binding the ligand. Finally, the Rg results
indicate that all complexes exhibit a good compact structure.

2.6.4. Interaction Energy (Van Der Waals). The average
Lennard-Jones Short Range (LJ-SR) interaction (van der
Waals) calculation was performed by using the Parrinello−
Rahman parameter of GROMACS to estimate the LJ-SR
interaction energies associated with the PBP3-ligand com-
plexes. Every complex’s average LJ-SR interaction (van der
Waals) was found to be within the permissible range. The
interaction energy of complexes macozinone was −108.243 kJ/
mol, antibacterial agent 71 was −143.548 kJ/mol, and
antibacterial agent 123 was −113.605 kJ/mol (Figure 5D).
The LJ-SR interaction energy indicated the highest binding
affinity with PBP3 and demonstrated that the investigated
compounds could bind favorably with PBP3.

2.6.5. Hydrogen Bond. Hydrogen bonding is one of the
most crucial interactions for stabilizing protein−ligand

Table 5. Binding Energy of the Top 10 Screened
Compounds against PBP3

ligands PubChem-ID binding energy

antibacterial agent 113 164517170 −11.3
antibacterial agent 30 156783454 −10.4
antibacterial agent 71 163196389 −10.4
macozinone 57331386 −10.3
antibacterial agent 123 165413023 −10.1
antibacterial agent 82 163196417 −9.6
antibacterial agent 53 163323821 −9.4
sparfloxacin 60464 −9.1
pretomanid 456199 −9.1
antibacterial agent 31 163323786 −9.1

Table 6. ADMET Properties of the Screened Compounds

ligands carcinogens

blood−
brain
barrier

human
intestinal
absorption

antibacterial agent 113 noncarcinogens BBB+ HIA+
antibacterial agent 30 noncarcinogens BBB+ HIA+
antibacterial agent 71 noncarcinogens BBB+ HIA+
macozinone noncarcinogens BBB+ HIA+
antibacterial agent 123 noncarcinogens BBB+ HIA+
antibacterial agent 82 noncarcinogens BBB+ HIA+
antibacterial agent 53 noncarcinogens BBB − HIA+
sparfloxacin noncarcinogens BBB − HIA+
pretomanid noncarcinogens BBB+ HIA+
antibacterial agent 31 noncarcinogens BBB+ HIA+
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complexes. The number of hydrogen bonds formed in the
PBP3-ligand complex during the 100 ns trajectory is depicted
in Figure 6A. Macozinone shows the maximum number of
hydrogen bonds followed by antibacterial agent 123 and
antibacterial agent 71 with 4, 3, and 2, respectively. The
analysis revealed that in all compounds, the hydrogen bonds
between the protein and ligand complexes remained intact
throughout the 100 ns simulation (Figure 6A). Therefore,
hydrogen bonds play a specific role and contribute significantly
to the binding energy of all complexes.

2.6.6. Principal Component Analysis (PCA). The initial few
eigenvectors, which are crucial for the overall mobility of the
protein during the MD simulation of the PBP3-macozinone,
PBP3-antibacterial agent 71, and PBP3-antibacterial agent 123
complexes, were calculated using PCA analysis. Forty
eigenvectors were chosen for this investigation to compute
coordinated motions. For every protein−ligand complex, the
motion of the eigenvector is shown in Figure 6B. The first ten
eigenvectors account for 81.84, 77.63, and 77.96% of the
motions in the 100 ns simulation period for PBP3-macozinone,
PBP3-antibacterial agent 71, and PBP3-antibacterial agent 123,
respectively.
The eigenvalues of PBP3-macozinone, PBP3-antibacterial

agent 71, and PBP3-antibacterial agent 123 complexes are 19,
11.4, and 12 nm2, respectively. These values were obtained by

diagonalizing the covariance matrix of atomic fluctuations in
decreasing order versus the corresponding eigenvector for all
complexes (Figure 6B).
Furthermore, a 2D projection plot was created using PCA to

investigate the dynamics of the protein−ligand complex. As a
result, for motion analysis, we first employed two PCs, PC1
and PC2. The hit compounds PBP3-macozinone, PBP3-
antibacterial agent 71, and PBP3-antibacterial agent 123 are
represented by the projection of two eigenvectors in Figure
6C. In the 2D projection plot, the complex taking up less phase
space represents the stable cluster, while the complex taking up
more space represents the nonstable cluster. The layout
revealed that each complex took up the same area (Figure 6C).
As a result, each chemical compound is stable and has the
potential for use in drug development.
The Gibbs energy landscape was examined by using the

projection of their first principal component (PC1) and second
(PC2) eigenvectors (Figure 7A−C). In all three protein−
ligand complexes, the global energy minima states were
displayed by Gibbs free energy landscapes, indicating the
energetically favored protein configurations. Energetically
unfavorable protein configurations were depicted in red in
the 2D projection, whereas the minimum energy conforma-
tions of proteins with maximum stability were shown in dark
blue. The range of Gibbs energy values is 11.5, 12, and 12.54

Figure 4. Wild-type and mutant protein stability analysis during 100 ns molecular dynamics simulation (wild-type PBP3 (blue) and mutant PBP3
(orange)). (A) Root mean square deviation, (B) root mean square fluctuation, and (C) radius of gyration
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kJ/mol, respectively (Figure 7). The Gibbs free energy
landscape analyzes the path of fluctuation in the two structures
for all Cα atoms of the free PBP3-macozinone, PBP3-
antibacterial agent 71, and PBP3-antibacterial agent 123
complex. The conformational stability states that all of the
three compounds with PBP3 were well represented by PCA
analysis.

2.6.7. Binding Energy. The gmx_MMPBSA test tool was
applied to determine the total binding-free energy of the three
hits with PBP3. The MM/GBSA energy components were
ana l yzed , and graphs were c rea ted us ing the
gmx_MMPBSA_ana visualization tools. All three complexes
had the MMPBSA run for 100 ns (Table 7). Figure 8 displays
bar charts that show the energy values for the summed
components (ΔGGAS, ΔGSOLV, and ΔGTOTAL) and
individual components (ΔEEL and ΔEVDWAALS). Addition-
ally, Figure 8 also depicts the value of ΔGGAS and ΔGSOLV
for each of the three compounds, which includes ΔEVD-
WAALS, ΔEEL, ΔEGB, and ΔESURF values. The lowest
values of ΔGTOTAL binding-free energy were reported for all
complexes: PBP3-macozinone, PBP3-antibacterial agent 71,
and PBP3-antibacterial agent 123, with values of −19.19,
−27.5, and −19.23 kcal/mol, respectively (Figure 8).

2.7. Molecular Property Functions analysis. Three
known antibacterial compounds cefepime, ciprofloxacin, and
ampicillin along with the three screened compounds
macozinone, antibacterial agent 71, and antibacterial agent
123 were subjected to analysis of their molecular properties. It
has been identified that atom counts, functional group counts,
and ring counts were similar in both known antibacterial
compounds and the screened compounds. In the finalized
screened compounds, the atoms identified were carbon,
fluorine, hydrogen, nitrogen, oxygen, and sulfur; the functional
groups were secondary amines (R2NH), tertiary amines (R3N),
and carbonyl group (RCOR). In addition to atoms and
functional groups, the rings and aromatics were also found in
all three screened compounds, similar to that of known
antibacterial compounds. This indicates that these screened
compounds can be used against P. aeruginosa (Figure 9).

3. DISCUSSION
Infections caused by MDR P. aeruginosa are one of the leading
threats to the global AMR burden and a major cause of
morbidity and mortality. The epidemiology and mechanisms of
resistance of P. aeruginosa are constantly changing, which has
an important impact on existing and newly developing β-
lactam antibiotics.16 At present, β-lactam antibiotics are and

Figure 5. Binding stability analysis of the screened compounds with PBP3 during 100 ns molecular dynamics simulation (PBP3-macozinone
(black), PBP3-antibacterial agent 71 (red), and PBP3-antibacterial agent 123 (green)). (A) Root mean square deviation, (B) root mean square
fluctuation, (C) radius of gyration, and (D) interaction energy.
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will remain an important treatment option for P. aeruginosa
infections. However, treatment becomes more challenging as
more dangerous MDR bacterial strains emerge. R504C/H and
533L are the most frequently reported mutations within the
protein domains linked to the creation and maintenance of the
inactivating complex β-lactam-PBP3.17 Clinical isolates of P.
aeruginosa that have acquired resistance to one of the last lines
of defense “the carbapenems” remain a serious problem.18

These particular mutations have been shown to emerge in vivo
during chronic respiratory infections in patients with cystic
fibrosis (CF)19,20 as well as in vitro upon exposure to
meropenem,15 aztreonam,21 and ceftazidime.22 In one study,
it was found that 533L and R504C mutations were found in
the PBP3 that exposure to meropenem during in vitro
evolution studies and among CF patients treated with this
drug.23 A different investigation found that the sequence
variation 533L showed a lower affinity against meropenem but
not against ceftazidime.15

Therefore, this study addresses an important issue of
antibiotic resistance in P. aeruginosa by focusing on the 533L
mutation in PBP3, which is a key enzyme in bacterial survival,
and we explored the potential therapeutics against the
emerging mutation 533L in the PBP3 by using combined

advanced computational techniques. Various studies have
found where researchers have targeted the PBP3. According
to data from the Clark et al. 2019 study, PBP3 is a common
adaptive target that may aid in the evolution of β-lactam
resistance of P. aeruginosa.23 In another study by Sahare and
Moon, they targeted the transpeptidase (TP) domain of PBP3
of E. coli.24 The TP domain is a site that is responsible for the
penicillin-binding. 533L mutation is also present in the TP
domain of PBP3 and key position for antibiotic recognition. In
the study of Glen and Lamont 2021, they have clearly shown
that a position of “F533” is present in the TP domain of the
PBP3, and mutation at this point reduces the efficiency of
meropenem binding.13,25 β-lactam derivatives have effectively
targeted the TP domain site; however, due to their extensive
usage, resistant bacterial strains have emerged, which utilize
several strategies to evade the antibiotics’ deadly effects.26

In this study, we used antibacterial agents from PubChem.
We checked these compounds for their binding and affinity
toward PBP3 of P. aeruginosa. Fifty-five antibacterial
compounds were screened using virtual screening through
machine learning followed by screening for drug-like proper-
ties. Among them, 47 compounds were found to follow
Lipinski’s rule. The rule is used to evaluate the medicinal or

Figure 6. (A) Hydrogen bond, (B) eigenvalues plot vs first 40 eigenvectors, and (C) protein motion phase space of all the protein−ligand
complexes. The color code for all panels is PBP3-macozinone (black), PBP3-antibacterial agent 71 (red), and PBP3-antibacterial agent 123
(green).
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biological activities of chemical compounds that can potentially
make the compound an orally active drug for humans. The five
rule of Lipinski states that the molecular weight of any
compound should be under 500 Da, the LogP value should be
under 5, the number of hydrogen bond acceptors should be
under 10, and the hydrogen bond donors should be under 5
compounds.27 Pharmacophore studies revealed that all of the
compounds examined also have essential characteristics.
Furthermore, the top 10 compounds selected through

molecular docking showed that all compounds showed
hydrophobic interaction with mutated amino acid 533L. In
Han et al. 2010 study, the complex also formed hydrophobic
interactions at the wild-type amino acid F533 positions.17 Due
to the hydrophobic nature of Leucine and Phenylalanine,28,29

wild-type and mutated amino acids showed hydrophobic
interaction with compounds. Hydrophobic interactions
enhance the binding affinity and stability of the drug−protein
complex, making the interactions more specific and effective.
Out of the 10 compounds, 8 compounds were subjected to
MD simulations to gain deeper insight into the structural
changes. Molecular dynamics simulations provide a dynamic
perspective on the behavior of protein−ligand complexes over
time. RMSD, RMSF, and Rg analyses confirm the stability of

the complex. Out of 8 compounds, 3 compounds, namely,
macozinone, antibacterial agent 71, and antibacterial agent 123
showed good stability against PBP3 in RMSD analysis, which
helped in understanding their dynamic behavior by providing
insight into the dynamic motion of the protein−ligand
complex.
The LJ-SR interaction (van der Waals) of protein−ligand

complexes showed a good binding affinity. All three
compounds showed a good average interaction energy with
PBP3. These compounds have high interaction energies and
support stable interactions with proteins. In this study, PCA
analysis was used to interpret the impact of ligands and
mutations on structural fluctuations. 2D projection plot
analysis revealed that all three complexes occupy stable
clusters. Finally, MM/GBSA analysis was used to estimate
the ligand-binding affinities between the ligand and mutant
PBP3. Negative binding energies for the three compounds
showed a good binding affinity against the mutant PBP3.
In addition to the above study, we also analyzed the

ADMET properties of hit ligands; ADMET properties are an
essential feature of pharmaceutical drug design. It is frequently
stated that one of the main reasons for the high attrition rates
of drug candidates is the failure to achieve projected ADMET

Figure 7. 2D and 3D Gibbs free energy landscapes of compounds. (A) PBP3-macozinone, (B) PBP3-antibacterial agent 71, and (C) PBP3-
antibacterial agent 123.

Table 7. Binding-Free Energy Calculations of Protein and Ligand Complex Using the gmx_MMPBSA Methoda

ligands VDWAALS EEL EGB ESURF GGAS GSOLV TOTAL

macozinone −29.03 ± 5.29 −2.48 ± 4.1 16.53 ± 3.95 −4.21 ± 0.71 −31.51 ± 7.04 12.32 ± 3.63 −19.19 ± 4.98
antibacterial agent 71 −37.53 ± 3.17 −4.79 ± 3.48 19.48 ± 3.0 −4.66 ± 0.33 −42.31 ± 4.71 14.81 ± 2.99 −27.5 ± 4.79
antibacterial agent 123 −29.99 ± 2.9 −1.19 ± 2.92 16.61 ± 3.27 −4.66 ± 0.35 −31.18 ± 4.49 11.95 ± 3.1 −19.23 ± 2.66
aΔVDWAALS: van der Waals molecular mechanics energy; ΔEEL: electrostatic molecular mechanics energy; ΔEGB: polar contribution to the
solvation energy; ΔGGAS: total gas phase molecular mechanics energy; ΔESURF: solvent accessible surface area; ΔGSOLV: total solvation
energy; ΔGTOTAL: total relative binding energy.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c00929
ACS Omega 2024, 9, 28046−28060

28054

https://pubs.acs.org/doi/10.1021/acsomega.4c00929?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00929?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00929?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00929?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c00929?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


criteria.30 The identified hit compounds exhibit dual benefits in
their noncarcinogenic nature and BBB + properties, indicating
their ability to effectively penetrate the blood−brain barrier.
This feature holds significant potential for therapeutic
applications, particularly in the treatment of conditions that
require drug delivery into the central nervous system.
Additionally, analysis of HIA indicators underlines the oral
administration potential of these compounds. In contemporary
medicine, oral drug administration is preferred for ease of
treatment and patient compliance. Determining oral bioavail-
ability, a key factor in drug development, is inherently

challenging due to its dependence on various biological and
physicochemical factors.31 Notably, all identified hit com-
pounds display positive characteristics related to HIA
indicators, highlighting their potential as orally administered
drugs with favorable bioavailability profiles.
In addition, the molecular properties of the screened

compounds were analyzed and compared with known
antibacterial agents, namely, cefepime, ciprofloxacin, and
ampicillin. Cefepime, a broad-spectrum cephalosporin, exhibits
potent activity against a diverse range of Gram-negative
bacteria, including P. aeruginosa. Ciprofloxacin and ampicillin
are also a broad-spectrum antibiotic that penetrate through the
biofilm and ultimately reach distal cells.32 Ciprofloxacin has
also displayed similar penetration and proliferation activity
within P. aeruginosa biofilms.33 Comparison of the molecular
properties of the three screened compounds, macozinone,
antibacterial agent 71, and antibacterial agent 123 with known
antibacterial compounds revealed similar atom counts, func-
tional group counts, and ring counts. The presence of these
molecular properties reveals their medicine-like properties.34

Additionally, two compounds, antibacterial agent 71 and
antibacterial agent 123, are already used for research purposes.
Antibacterial agent 123 is a powerful membrane-disrupting
agent. Antibacterial agent 71 is also used in the research field
against Acinetobacter baumannii, E. coli, and Burkholderia
cenocepacia. Macozinone is an antituberculosis first-in-class
clinical-stage benzothiazinone-based drug candidate; its
efficacy and safety have been strongly proven in clinical

Figure 8.MMGBSA binding-free energy contribution of various interactions between the screened compounds and target proteins, i.e., (A) PBP3-
macozinone, (B) PBP3-antibacterial agent 71, and (C) PBP3-antibacterial agent 123.

Figure 9. Molecular property functions analysis (atom counts,
functional group counts, and ring counts) of known antibacterial
and screened compounds.
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studies against tuberculosis.35 All these findings against the
mutated protein suggest that these compounds, mainly
macozinone, antibacterial agent 71, and antibacterial agent
123, may be promising candidates for further exploration in
drug development efforts.

4. CONCLUSIONS
This study focuses on identifying new compounds targeting
the mutated protein of P. aeruginosa, specifically PBP3. PBP3 is
important for bacterial growth and serves as a target for many
antibiotics. Excessive use of antibiotics has led to mutations in
the PBP3, including the critical 533L mutation responsible for
β-lactam antibiotic recognition. Screening new compounds
through in-silico methods, we analyzed protein−ligand
complexes to understand the interaction with mutational
point 533L. Molecular dynamics results revealed that
macozinone, antibacterial agent 71, and antibacterial agent
123 displayed remarkable stability against mutant PBP3. These
findings suggest their potential as novel therapeutics for
addressing the challenge of antibiotic resistance in P.
aeruginosa. Further investigation in in vitro studies could
validate the efficacy of these compounds, providing a
promising opportunity to combat antibiotic-resistant strains
of P. aeruginosa.

5. MATERIAL AND METHODS
5.1. Mutation Analysis. PBP3 plays a vital role in the cell

division of P. aeruginosa and serves as a well-known target for
β-lactam antibiotics. Modifications in its structure due to
mutations can greatly impact the drug efficiency, emphasizing
the association of AMR. Therefore, PBP3 mutations
responsible for resistance to various β-lactam drugs reported
in the literature were collected from various scientific literature
databases reported between the years 2018 and 2023.15,23,36−45

List of all mutations of PBP3 is summarized in Supplementary
Table S2.
A total of 54 mutations were reported in the functional

domains of PBP3, of which 43 fell in the TP domain and
remained in the dimerization domain. Among all of the
mutations, 533L potentially has the greatest significance in
contributing to drug resistance against β-lactam antibiotics
because it occurred at the active site of the TP domain. Isolates
carrying this mutation showed resistance to ceftolozane-
tazobactam (MIC: 8/4 mg/L) along with cefepime, amox-
icillin-clavulanic acid, cefotaxime, piperacillin-tazobactam,
ceftazidime, aztreonam, Meropenem, and imipenem.46 There-
fore, further mutational analysis was considered only for the
533L mutation.
5.2. Protein Preparation. For the preparation of protein,

with PDB ID-4KQQ,47 the three-dimensional (3D) structure
of P. aeruginosa’s PBP3 was obtained from the RCSB-Protein
Data Bank. Furthermore, PyMOL software was used to extract
all ligands, ions, and water molecules from the protein
molecule. Then, utilizing the MG tools in the AutoDock
Vina software, hydrogen atoms were added to the receptor
molecule.48 After preparation, the 533L mutation was
structurally incorporated into the PBP3 coordinates using the
mutation wizard embedded in the PyMOL 2.3.0 software.
5.3. Mutation Stability Analysis. The stability of the

mutant was evaluated using two structure-based prediction
servers namely DynaMut2 and DeepDDG. DynaMut2 uses
normal mode analysis (NMA) and graph-based signatures to

evaluate the impact of mutation on the protein’s stability and
dynamics.49 DeepDDG, a neural network-based method,
predicts the changes in protein’s stability and functional
consequence of the mutation.50 The stability of the protein is
characterized as stabilizing and destabilizing based on the
ΔΔG value, which is the difference in the folding free energy
change between the mutant and the native protein. The ΔΔG
value below zero is defined as destabilizing, and the values
above zero are defined as stabilizing mutation.
5.4. Ligand Preparation. 5.4.1. Data Collection. Bioassay

compounds with their activity against P. aeruginosa were
obtained from PubChem (PubChem AID 566310). A total of
38 compounds (out of 38 compounds, 11 were active and 27
were inactive) were used for model construction and
validation. For the test data set, a total of 274 antibacterial
compounds were downloaded from PubChem. Furthermore,
all compounds were screened based on 3D structure, and 127
2D compounds were omitted. Around 147 3D compounds
were processed for further study.

5.4.2. Descriptor Calculation and Data Set Preprocessing.
The training and testing sets of all of the compounds were
uploaded in 3D-standard data (3D-SDF) format so that the
PaDel program could calculate the descriptors for the
compounds. A total of 1444 descriptors, including fingerprint
and 2D, 3D, and 1D characteristics, were retrieved. The
complete data set was examined using WEKA software before
model development.51 For the feature selection process, several
WEKA functions were considered, including correlation,
attribution, evaluation, and replacing missing values.52

5.4.3. Machine-Learning Model Prediction and Evalua-
tion. A machine-learning model was built, using a 10-fold CV
approach by implementing three different classifiers into
training set compounds. To make the model accurate, three
different machine-learning classifiers decision stump, decision
table, and J48 were used for the training data. For a 10-fold
CV, the entire set of training data is split into ten mutually
exclusive subsets or folds. The predictive model’s performance,
which is created from the combined data of the remaining nine
folds, is tested once for each fold, yielding ten different
performance estimates.53

Each classifier’s model performance was evaluated using a
confusion matrix and evaluation statistics, which included
further checks for specificity, sensitivity, Kappa statistic, and
prediction accuracy. The following formulas were used to
assess the model’s accuracy

= +
+ + +

binary classification accuracy
TN TP

(TN TP FN FP)

=
+

sensitivity
TP

(FN TP)

=
+

specificity
TN

(FN TN)

= × × ×
+ + + + +

kappa statistic
2 (TP TN FN FP)

(FP TP)(FP TN) (FN TP)(FN TN)

TP = true positives; FP = false positives; TN = true negatives;
FN = false negative.
5.5. Drug Likeness and ADMET Analysis. DruLiTo, an

open-source program, was used to analyze drug likeness and
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determine any potential cytotoxicity to humans. A ligand’s
pharmacological characteristic is determined by its bioavail-
ability of drug likeness, which is determined by several
structural and physicochemical characteristics. As a result,
DruLiTo software assessed each ligand for a drug-like nature
using Lipinski’s five rules.54

ADMET are essential properties of any compound that
mainly address the drug’s absorption distribution, metabolism,
excretion, and toxicity. ADMET properties play a vital role in
the drug development time. To analyze these properties, and
the biochemical and carcinogenic properties of the screened
compounds, the AdmetSAR server was used.
5.6. Molecular Docking. The molecular docking analysis

was carried out using PyRx, an open-source program (GUI
version 0.8 of Autodock Vina), to generate a population of
potential ligand orientations and conformations at the binding
site.48 The surrounding mutation site F533L in the TP domain
was considered a binding site. The grid parameter of the
mutated site was calculated using PyMOL 2.3.0. For the
docking analysis, the center of the grid was set to X = −5.86, Y
= 11.89, and Z = 17.68, and the grid box dimensions were set
as 25 Å × 23.99 Å × 23.31 Å, and there was a difference of
0.375 Å between grid’s points. The screening of all selected
compounds was analyzed by rigid molecular docking into the
mutation site of the PBP3. Compounds that had lower binding
energies were verified and were selected for additional
examination. Using the Ligplot v.1.4.5 program, the
interactions of molecules between the complexes, such as the
length and number of hydrogen bonds and hydrophobic bond
interaction, were examined and depicted.
5.7. Molecular Dynamics (MD) Simulations. MD

simulations were performed on the docked complexes by
utilizing the GROMACS 2021.355 package. The topologies
were produced using the utilization of the CHARMM 36 force
field for both proteins and protein−ligand complexes.56 Next,
12 CL ions were added to the water model to solvate all of the
docked complexes and individual proteins to neutralize them.
Next, energy minimization at 10 kJ/mol was carried out
utilizing the Verlet cutoff strategy and the steepest descent
algorithm to relax the structure. The cycle for minimizing the
energy of protein and protein−ligand complex consisted of
50,000 stapes. Both NVT (constant volume) and NPT
(constant pressure) were subjected to an equilibration stage
over a 100 ps period. Furthermore, MD simulation was carried
out at a constant temperature of 300 K and a constant pressure
of 1 atm using a time step of 2 fs for a 100 ns time scale. The
behavior of each complex was examined by using the generated
trajectories to see whether the system was stable in the explicit
water environment. RMSD, RMSF, Rg, hydrogen bonds, the
LJ-SR interaction (van der Waals) energy, and PCA were used
to examine the deviations of the protein and protein−ligand
complex system.
Subsequently, the protein−ligand complex MD simulation

findings were validated using the generalized Born and surface
area solvation (MM/GBSA) technique, which is integrated
into the g_mmpbsa program.57,58 For three protein−ligand
complexes, the ΔGTOTAL binding-free energy was found
using the MD simulation trajectory. The system’s temperature
was set to 298.15 and the solvation parameter (igb) to 5. For
other parameters, such as the internal and exterior dielectric
constants, which are 1.0 and 78.5, respectively, the default
values were applied.

5.8. Molecular Property Functions Analysis of
Compounds. The molecular properties such as atom counts,
functional group counts, and ring counts of known
antibacterial compounds and screened compounds were
analyzed by R software (version 3.4.3) under the library of
“ChemmineR”.59
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