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1  | INTRODUC TION

An escalation has been found in foodborne outbreaks caused by 
pathogens especially in developing countries. These foodborne 
outbreaks cause most of food contamination and poisoning cases 
leading to serious diseases and may be to death (Blackburn & 
McClure, 2009; Chen, Tang, Liu, Cai, & Bai, 2012; Crim et al., 2015; 
Organization, 2012; Team, 2013). Foodborne bacteria may con-
taminate food by nonfood mechanisms and represent a potential 
public health threat (Chen et al., 2012; Scallan et al., 2011). E. coli, 
S. typhimurium, and S. aureus remain a significant food safety issue 
in raw meat, chicken meat, and their products (Chen et al., 2012). 
Despite the introduction of mandatory testing for foodborne bac-
teria and multi-level intervention strategies, sporadic outbreaks of 
foodborne diseases and products recall are associated with E. coli, S. 

typhimurium, and S. aureus contamination (Wadamori, Gooneratne, 
& Hussain, 2017).

E. coli has turned into an expanding worry to the meat industry 
and public health (Gorton & Stasiewicz, 2017). S. typhimurium infec-
tions pose significant public health globally. S. typhimurium are most 
common causes of foodborne illness in humans (Jain et al., 2009). 
S. typhimurium usually spread through inappropriately handled food 
that has come in contact with animal or human feces and they are 
responsible for the majority of foodborne illnesses (de Freitas et 
al., 2010). S. aureus strains have been demonstrated as one of the 
world's significant causes of foodborne diseases (Balaban & Rasooly, 
2000; Bianchi et al., 2014).

As a consequence, there is a need for a developed packaging 
material to be used in meat and poultry industry that have the abil-
ity to reduce the carriage of foodborne pathogens, and to be used 
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with other decontamination strategies to achieve satisfactory safety 
rates.

Developing of naturally occurring polymer with the film for-
mation capacity and antimicrobial properties to improve health, 
safety, shelf life, and biomedical application, gains a considerable 
regard nowadays (Fernandez-Saiz, Lagaron, Hernandez-Muñoz, & 
Ocio, 2008; Irkin & Esmer, 2015; Malhotra, Keshwani, & Kharkwal, 
2015). Despite the common use of cellulose and its derivatives in 
food packaging, researchers look to improve its antimicrobial prop-
erties in the future. Cellulose is one in all the foremost various and 
biodegradable compound that insoluble in water and most organic 
solvent (Coffey, Bell, & Henderson, 1995; El-Kader & Ragab, 2013). 
Substitution of hydroxyl groups within the backbone of cellulose 
by some functional groups makes it water soluble such as methyl 
groups in methyl cellulose (MC). Methyl cellulose has an excellent 
film formation capacity, water solubility, and efficient oxygen and 
lipid permeability (Chevillard & Axelos, 1997; Nasatto et al., 2015). In 
literature, there are various studies about preparation of functional 
methyl cellulose nanocomposite films and their physicochemical 
(Tunç & Duman, 2010), antibacterial (Tunç & Duman, 2011), mechan-
ical, and gas barrier (Tunc, Duman, & Polat, 2016) properties.

A great interest for biomedical applications has been emphasized 
to develop biopolymers by adding nanoparticles to its matrix. Doping 
biopolymers with nanoparticles is the concern of the research and 
industrial world, as they exhibit physical, chemical and antimicro-
bial enhancement (Carbone, Donia, Sabbatella, & Antiochia, 2016; 
Li, He, Li, & Zhang, 2015; Muthulakshmi, Rajini, Rajalu, Siengchin, 
& Kathiresan, 2017). The use of rare earth elements nanoparticles 
as a dopant for different biopolymers can be considered as a way to 
develop bilateral.

Among the rare earth elements, Eu(III) was the focus of many 
studies. It has a wide applications ranging from telecommunications 
to biomedical applications (Diallo, Mothudi, Manikandan, & Maaza, 
2016; Feng & Zhang, 2013; Mahajan & Dickerson, 2010; Quesada, 
del Campo, & Fernández, 2015). Europium(III) Oxide (Eu2O3) is the 
simplest oxide of Eu(III) element, and it was obtained from the ther-
mal annealing of Eu hydroxide under high temperatures(Kang, Jung, 
Min, & Sohn, 2014).

In our study, we will use Eu2O3 nanoparticles as a dopant in the 
MC matrix with different concentrations to form a thin films, which 
were then defined by x-ray diffraction process. The prepared MC 
films were examined to evaluate their consequences on the used 
foodborne test strains.

2  | MATERIAL S AND METHODS

2.1 | Preparation of MC films doped with Eu2O3 
nanoparticles

MC of 2% aqueous solution at 20°C was provided by LOBA Chemie, 
India, with viscosity of 350–550 cP and pH values of 5.5–8.0. Eu2O3 
nanoparticles was supplied by Sigma-Aldrich, its density was 7.42 g/

ml at 20°C, and the particle size was less than 150 nm. All glasswares 
were thoroughly cleaned in aqua region and rinsed copiously with 
double distilled water.

To prepare thin film of MC, incorporated with Eu2O3 nanopar-
ticles, two grams of MC were dissolved in 100 ml double distilled 
water at 50°C using a magnetic stirrer overnight. Eu2O3 nanoparti-
cles were added to the MC solution with different weight percent-
ages (0.00, 0.50, 0.75, 1.00, 1.25, and 1.50 wt%) and were stirred 
for 12 hr at 50°C. The solution was cast in stainless-steel plates with 
diameter 12 cm and then dried in open air at room temperature for 
3 days until solvent was nearly evaporated. The obtained films were 
of suitable thickness ≈ 100μm.

2.2 | X-ray diffraction

The amorphous/crystalline nature of methyl cellulose/Eu2O3 na-
nocomposite films was checked by using DIANO X-ray defractom-
eter equipped with Cu-Kα radiation (λ  =  1.54056 Ao, operation 
voltage = 30 kV).

2.3 | Antimicrobial activity

2.3.1 | Preparation of test strains

E. coli, S. typhimurium, and S. aureus were obtained from the 
Microbiology laboratory of Molecular Diagnostic and Personalised 
Therapeutics unit (MDXPTU), Hail University. Strains were originally 
isolated from chicken meat samples, then were identified biochemi-
cally, serologically, phenotypically, and genotypically. Strains were 
saved in the MDXPTU Biobank at −80°C. Each strain was cultivated 
separately in Tryptic soy broth (Difco) at 37°C for 24 hr. The cells 
were harvested by centrifugation 5,000 g/10 min and were washed 
twice then were resuspended to a final cell density of 7 log cfu/ml 
(OD600 0.2) using sterile saline (0.85% NaCl).

2.3.2 | Bacterial inoculation

MC films doped with different concentration of Eu2O3 nanoparticles 
were tested antimicrobially against MC control film. All the tested 
MC films were cut aseptically to form an area of 1 cm2, each area was 
inoculated with 10 µl of test strains (8 log cfu/ml concentrations) (E. 
coli, S. typhimurium and S. aureus). The inoculated MC films were kept 
in bio-safety cabinet to dry for 2 hr.

2.3.3 | Survival and reduction in test strains

The survival and reduction in the different test strains inoculated on 
the MC films doped with different concentration of Eu2O3 nanoparti-
cles were determined against the pure MC film. About 10 ml of sterile 
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phosphate-buffered saline was added to the Inoculated MC films (area 
of 1 cm2) in sterile tubes. Vigorous shaking was carried out to the tubes 
using vortex for 3 min. A 10-fold serial dilution was prepared. Dilutions 
were plated in duplicate onto Tryptic Soya agar and Mueller-Hinton 
agar (Difco) that was subsequently incubated at 37°C for 24 hr.

2.3.4 | Bacterial adherence assay

A laboratory-based trials were undertaken to determine the binding 
strength of the different tested serotypes to the MC films doped 
with different concentration of Eu2O3 nanoparticles against the pure 
MC film. The Initial adhesion assays to MC films doped with differ-
ent concentration of Eu2O3 nanoparticles were determined. About 
10 µl of the test strains (8 log cfu/ml concentrations) were added 
to MC films doped with different concentration of Eu2O3 nanopar-
ticles (with an area of 1 cm2). Three times of rinsing were performed 
after 30 min of adhesion by utilizing the phosphate-buffered saline. 
Numbers recovered were used to estimate the weak attachment 
strength of the bacterial cells to the film surface. The washed film 
was vigorously shaken using vortex for 5 min, and the levels recov-
ered in the homogenate used to estimate the strongly attached por-
tion of the population.

2.3.5 | Pulse field gel electrophoresis (PFGE)

PFGE was conducted to identify the clonal relatedness of the test 
strains after inoculation on MC films. Already optimized protocol 
following Standard Operating Procedure (SOP) for PulseNet PFGE 
using a CHEF-Mapper (Bio-Rad Laboratories) was used.

2.4 | Statistical analysis

The mean values with standard error of the means (SEM) were cal-
culated. One way analysis of variance (ANOVA) at 95% level of con-
fidence and least Significant difference (LSD) post hoc were done 
to determine significant differences (p  <  .05 was considered as 
significant).

3  | RESULT AND DISCUSSION

3.1 | X-ray diffraction (XRD)

Figure 1 present X-ray diffraction patterns of pure Eu2O3 nanopar-
ticles (Figure 1a) and of MC/Eu2O3 nanocomposite films (Figure 1b).

The X-ray diffraction pattern of pure Eu2O3 nanoparticles 
(Figure 1a) revealed sharp crystalline peaks appeared at 28°, 29.5°, 
31.5°, 39°, 42°, 45.5°, 47°, 51°, 54°, 55°, 58°, and 59.5° corresponding 
to high crystallized form of the cubic Eu2O3 nanoparticles (Kang et 
al., 2014).

The XRD pattern of the MC homopolymer shows a semicrystal-
line structure revels three peaks (Figure 1b), a sharp one at 2ϴ = 8° 
corresponds to the trimethylglucose-type crystalline order (Kato, 
Yokoyama, & Takahashi, 1978). A broad peak with maximum at 
2ϴ = 21° indicates the intermolecular structure of MC (Rangelova et 
al., 2011), and a weak peak appeared at 2ϴ = 13.3° which indicates a 
more hydrated structure (Liebeck, Hidalgo, Roth, Popescu, & Böker, 
2017).

The XRD patterns of MC/Eu2O3 nanocomposites (Figure 1b) ex-
hibits the characteristic features of the pure MC homopolymer, but 
with less intensity of the reflection peak at 2ϴ = 8°. The reflection 
peak intensity at 2ϴ = 21° for MC films doped with 0.50, 0.75, and 
1.00 wt%. Eu2O3 nanoparticles was significantly increased, this can 
be due to the higher oxidation number in the Eu (III) oxide, leading to 
forming new bonds. A faint crystalline peaks appeared at 2ϴ = 28° 
and 46° in all MC films doped with Eu2O3 nanoparticles, and this can 
be attributed to the incorporation of Eu2O3 nanoparticles into the 
polymer matrix.

The degree of crystallinity of MC films doped with different 
concentration of Eu2O3 nanoparticles (0.00, 0.50, 0.75, 1.00, 1.25, 
1.50 wt%) was calculated using the Hermans-Weidinger method 
(Hermans & Weidinger, 1961), and it was determined to be 17.8, 
28.5, 31.0, 25.2, 20.4, and 21.9, respectively.

The decrease in the degree of crystallinity of MC films doped 
with 1.25, and 1.50 wt% Eu2O3 NPs was due to the saturation effect. 
From the data on the degree of crystallinity, it was noticed that the 
values of the degree of crystallinity for the composite samples are 
higher than that of the MC homopolymer.

3.2 | Antimicrobial activity

The obtained results in this study revealed that MC films doped with 
different concentration of Eu2O3 nanoparticles have been shown to 
possess potential antibacterial activity against the used foodborne 
test strains that previously isolated from chicken meat products. 
A significant lower count of E. coli, S. typhimurium, and S. aureus 
(p ≤ .05) inoculated in MC films doped with different concentration 
of Eu2O3 nanoparticles compared to pure MC film could confirm the 
effect of the prepared films against foodborne test strains (Figures 
2 and 3). MC films doped with 1.50 wt% Eu2O3 nanoparticles exhib-
ited the strongest activity against the test strains, while MC films 
doped with 0.50 wt% Eu2O3 nanoparticles were the least effective 
concentration compared with pure MC film.

The obtained reductions were ranged from 3.3 to 4.54 log cfu/
cm2 for E. coli, 3.42 to 4.42 log cfu/cm2 for S. typhimurium and 3.52 
to 4.19 log cfu/cm2 for S. aureus (Figure 3). These results were sta-
tistically significant (p <  .05). Moreover, E. coli test strains had the 
highest log reduction compared with the other test strains (Figure 4). 
(Tunç & Duman, 2011) investigated the effects of methyl cellulose/
carvacrol/montmorillonite nanocomposite films for the growth of E. 
coli and S. aureus on sausage. They recorded a small log reduction 
values of 0.90 and 0.65 log cfu/ml for E. coli, 0.90 and 0.70 log cfu/
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ml for S. aureus, at the end of 21 days of food samples storage. Their 
study depends on the release of antimicrobial agent (carvacrol) from 
films which was affected by the storage temperature of food sam-
ples. While in this study, the inoculated MC/Eu2O3 nanocomposite 
films were kept at room temperature for 2  hr with direct contact 
with the test strains.

It was assumed that gram-negative bacteria are more reactive 
to environmental modifications than gram-positive cells (Shigehisa, 
Ohmori, Saito, Taji, & Hayashi, 1991).

The initial adherence of the test strains to MC films was studied. 
The adherence ability of the test strains to MC films was reduced 

significantly (p < .05) in MC films doped with different concentration 
of Eu2O3 nanoparticles compared with pure MC film. Moreover, MC 
film doped with 1.5 wt% Eu2O3 nanoparticles was the most effec-
tive concentration that could reduce the adherence of test strains 
and these findings confirmed what has been achieved in this study 
(Figure 5). Another confirmatory method to emphasize our obtained 
data in this study was done through testing the week attachment of 
the test strains against the prepared MC films. The number of recov-
ered bacterial cells after 30 min of attachment to MC films followed 
by three times rinsing in phosphate-buffered saline were recorded 
(Figure 6). S. aureus strains exhibited weak attachment to MC films 

F I G U R E  1   X-ray diffraction patterns 
of (a) pure Eu2O3 nanoparticles, (b) MC 
film doped with different concentration of 
Eu2O3 nanoparticles
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compared with other test strains and this was confirmed by the large 
number of S. aureus strains compared to other strains recovered 
from the homogenate (Figure 6).

The obtained results showed that S. aureus strains were less ad-
here to MC films surface compared with other test strains and these 
findings could be attributed to the nonmotile feature of S. aureus (non-
flagellate cocci) compare with the other flagellate test strains. Flagella 

are clearly implicated in the attachment of bacteria (Notermans & 
Kampelmacher, 1974). Bacterial flagella endow the organism with 
motility and the ability to respond to a chemotactic stimulus (Lillard, 
1985). S. aureus cells showed more hydrophobic features compared 
with E. coli that were found to be moderately hydrophilic (Burks et al., 
2003; Mitik-Dineva et al., 2009). S. aureus cells have a hydrophobic 
nature which due to the extreme negative charge and the existence of 
hydrophobic teichoic and lipoteichoic acid in their cell wall (Canepari, 
Boaretti, Lleo, & Satta, 1990; Gross, Cramton, Götz, & Peschel, 2001).

Our findings reported the potential antimicrobial activity of MC 
films doped with Eu2O3 nanoparticles. The concentration of the Eu2O3 
nanoparticles required to perform activity against foodborne microorgan-
isms is important to use it effectively in food package. A reduction with 5 
log in viability is important to attain for better foodborne pathogen reduc-
tion (Food & Administration, 2004; Olaimat & Holley, 2012). However, 
MC films doped with 1.5 wt% Eu2O3 nanoparticles showed a greater ef-
fect to reduce foodborne pathogen from food product's surface.

In literature, the antimicrobial activity of both MC homoplymer 
(de Dicastillo, Bustos, Guarda, & Galotto, 2016; Tunç & Duman, 
2011) and Eu2O3 nanoparticles (Iconaru, Motelica-Heino, & Predoi, 
2013) was studied of each.

The clonal relatedness of the test strains was studied after inocu-
lation on MC/Eu2O3 nanocomposite films using PFGE. The achieved 
findings showed that the clonal relatedness of test strains have not 
been influenced after inoculation on MC/Eu2O3 nanocomposite 
films (Figures 7 and 8).

F I G U R E  2   Effect of MC films doped 
with different concentration of Eu2O3 
nanoparticles on viable count of test 
strains

F I G U R E  3   Log reduction in test 
strains in MC films doped with different 
concentration of Eu2O3 nanoparticles

F I G U R E  4   Logarithmic viability reduction (log N0/N) test 
strains in MC films doped with different concentration of Eu2O3 
nanoparticles. (N0 = initial microbial load and N = microbial load 
after treatment)
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4  | CONCLUSION

Antimicrobial packaging is a better idea for food packaging with a 
great interest by researchers. Various MC nanocomposite films were 
developed to be used for safe food free from foodborne pathogens 
contamination. The results obtained from XRD analysis reveals the 
semicrystalline structure of the MC films and confirm the nanocom-
posite structures of the films obtained. Addition of Eu2O3 nanopar-
ticles to the MC matrix led to a decrease in the count of inoculated 
E. coli, S. typhimurium and S. aureus strains (p ≤ .05), with reduction 
of 3.3 to 4.54 log cfu/cm2 for E. coli, 3.42 to 4.42 log cfu/cm2 for S. 
typhimurium and 3.52 to 4.19 log cfu/cm2 for S. aureus. The adher-
ence ability of the test strains to MC/Eu2O3 nanocomposite films 
was reduced significantly (p < .05). MC films doped with 1.50 wt% 
Eu2O3 nanoparticles exhibited the strongest activity against the test 
strains. Moreover, MC film doped with 1.5 wt% Eu2O3 nanoparticles 
was the most effective concentration. The prepared MC/Eu2O3 na-
nocomposite films could be used as active food packaging materials 
in the food industry.
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