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Developing new tools that outperform current state of the art technologies for imaging,

drug delivery or electrical sensing in neuronal tissues is one of the great challenges in

neurosciences. Investigations into the potential use of carbon nanomaterials for such

applications started about two decades ago. Since then, numerous in vitro studies have

examined interactions between these nanomaterials and neurons, either by evaluating

their compatibility, as vectors for drug delivery, or for their potential use in electric activity

sensing and manipulation. The results obtained indicate that carbon nanomaterials

may be suitable for medical therapies. However, a relatively small number of in vivo

studies have been carried out to date. In order to facilitate the transformation of carbon

nanomaterial into practical neurobiomedical applications, it is essential to identify and

highlight in the existing literature the strengths and weakness that different carbon

nanomaterials have displayed when probed in vivo. Unfortunately the current literature

is sometimes sparse and confusing. To offer a clearer picture of the in vivo studies

on carbon nanomaterials in the central nervous system, we provide a systematic and

critical review. Hereby we identify properties and behavior of carbon nanomaterials in vivo

inside the neural tissues, and we examine key achievements and potentially problematic

toxicological issues.

Keywords: carbon nanomaterials, in vivo studies, central nervous system, neuroprotection, drug delivery, imaging

INTRODUCTION

In the last two decades carbon nanomaterials (CNMs) experienced an exponential increase in the
number of application fields where they demonstrate excellent performances. As for many other
nanomaterials, the interest from the scientific community on carbon nanomaterials is devoted to
exploring their potential use in biomedicine in addition to engineering their application for goods
manufacturing. Their nano-size enables to exploit unconventional interaction pathways with living
systems (Freitas, 2005), for example allowing the delivery in the brain tissues of molecules that are
usually rejected by the blood-brain barrier (BBB).

Carbon nanomaterials exhibit big diversity in structure, morphology, physical properties and
chemical reactivity. Carbon nanotubes (CNTs), carbon nanohorns (CNHs), nanodiamonds (NDs),
fullerenes, carbon nano-onions (CNOs), graphene and derivatives have emerged as promising
classes of nanomaterials for imaging, diagnostic and therapeutic applications. Their atomic
composition, i.e., carbon, has a much lower inherent toxic potential than the atomic species
used in the manufacturing of other kinds of nanoparticles (usually transition metals or silica;
Sohaebuddin et al., 2010; Sharifi et al., 2012). In addition, their peculiar physical properties and
shapes display different interaction behaviors within cells and tissues, and their properties can
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be tailored by covalent and non-covalent functionalization that
allows tomodify their surface charge and to introduce fluorescent
tags (Bartelmess et al., 2015a), cell-specific and disease-specific
targeting molecules (Fabbro C. et al., 2012), Magnetic Resonance
Imaging (MRI) contrast agents (Hahn et al., 2011), as well as
drugs and nucleic acids (Bianco et al., 2005a; Cheung et al., 2010).
Finally, the synthesis of raw carbon nanomaterials usually relies
on very cheap sources and involves few synthetic steps, making
cost-effective their large scale production (De Volder et al., 2013).

Carbon nanotubes are the most studied carbon nanomaterials
for biomedical applications (Bianco et al., 2005b; Liu Z. et al.,
2009; Gong et al., 2013; Lamberti et al., 2015). In the last few
years, however, the scientific community has been showing a
growing interest in graphene and graphene oxide (Zhang Y. et al.,
2012; Zhang H. et al., 2013; Yang et al., 2013a), nanodiamonds
(Mochalin et al., 2011; Perevedentseva et al., 2013) and carbon
dots (Shen et al., 2012; Luo et al., 2013). On the opposite
fullerenes, which attracted a lot of attention in the past, are now
experiencing a gradual loss of interest due to concerns regarding
toxicity (Zhu et al., 2006; Kolosnjaj et al., 2007; Partha and
Conyers, 2009; Matija et al., 2013). Carbon nano-onions also
are attracting attention for their possible biomedical application
(Ghosh et al., 2011; Sonkar et al., 2012; Yang M. et al., 2013;
Bartelmess et al., 2014, 2015b,c; Giordani et al., 2014; Frasconi
et al., 2015a,b). Notably, it has been demonstrated either in
vitro and in vivo that carbon nanomaterials can be efficiently
degraded by means of enzymatic catalytic oxidation processes
that are occurring either in plants, prokaryotes and eukaryotes
(Kotchey et al., 2012, 2013; Bussy et al., 2015; Elgrabli et al., 2015;
Sureshbabu et al., 2015) thus helping to dispel doubts regarding
possible bioaccumulation hazards. A number of studies highlight
high toxicity of carbon nanomaterials for fishes and amphibians
(Zhu et al., 2006; Smith et al., 2007; Mouchet et al., 2008; Li J.
et al., 2015). However, such non-specific and important toxicity
is not observed in mammals, and studies regarding these species
are not considered in this review.

Several efforts from the scientific community are devoted to
investigate how carbon nanomaterials functionally interface with
the central nervous system (CNS). There are great expectations
on these materials since they show excellent compatibility with
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nanotubes; TLR9, toll-like receptor 9; Tf, transferrin; TNT, 2,4,6-trinitrotoluene.

neuronal cells in vitro (Mattson et al., 2000; Webster et al.,
2004; Li et al., 2011; Hopper et al., 2014), which makes them
good candidates for the development of innovative diagnostic
systems and therapeutic agents for brain pathologies such as
neuronal or glial tumors. Moreover, the peculiar physical features
of some of them, like the very high mechanical strength and the
electrical conductivity, combined with their very low dimensions
which provide an intimate contact with cells, enable a possible
application both as support materials for neuroregeneration, e.g.,
after spinal cord injuries (Roman et al., 2011), as well as interface
materials for high-efficiency recording and stimulation of the
neuronal activity. Despite carbon nanomaterials are extensively
probed for a number of biomedical applications using in vivo
models (Yang K. et al., 2010; Gong et al., 2013; Perevedentseva
et al., 2013; Hong et al., 2015), the number of studies dedicated
to the CNS is substantially lower. It should be noted that in most
cases the results are of great interest and undoubtedly depict a
great potential for these materials.

In this review we focus our attention on the in vivo studies
in the CNS in order to provide a comprehensive view of past and
ongoing research in this field, highlighting the goals achieved, the
interaction with neural tissues and the toxicity.

CARBON NANOTUBES

Carbon Nanotubes (CNTs) (Iijima, 1991) are the most-
known and widest studied carbon nanomaterials. Their
mechanical, thermal and electrical properties have been
extensively investigated (Mintmire and White, 1995; Ruoff and
Lorents, 1995; Salvetat et al., 1999; Odom et al., 2000; Dai,
2002; Cao et al., 2003; Popov, 2004), leading to their successful
application in several commercial and prototype products (De
Volder et al., 2013). From the structural point of view, CNTs
consist of continuous rolled-up graphitic foils. They can be
either single-walled (SWCNTs), if consisting of a single graphitic
tube, or multi-walled (MWCNTs), if more concentric tubes are
present. Their diameter ranges from 0.7 to 5 nm for SWCNTs
and from 2 to >30 nm for MWCNTs, and their length can vary
from a few hundreds of nm to several hundreds of microns
(Figure 1). Although different fabrication methods are possible,
chemical vapor deposition (CVD) using hydrocarbons as feed
material and metal nanoparticles as catalyst is the most used
(Cassell et al., 1999; Andrews et al., 2002). Several chemical
reactions have been developed in order to modify their surface
properties and to introduce functional molecules important for
biological research (Tasis et al., 2006; Battigelli et al., 2013a).

The use of CNTs for the development of new diagnostic and
therapeutic agents is of primary interest in biomedical research.
Carbon nanotubes are successfully applied in sensing, imaging,
drug delivery, and also nucleic acid delivery applications both in
single cells and in vivo (Kateb et al., 2007; Ladeira et al., 2010;
Wu et al., 2010; Al-Jamal et al., 2011; Liu Z. et al., 2011; Bates and
Kostarelos, 2013; Battigelli et al., 2013a,b; Hong et al., 2015).

Toxicity of carbon nanotubes is a matter of debate: a number
of studies highlight toxic effects in cells upon CNTs exposure
(Muller et al., 2005; Magrez et al., 2006; Smith et al., 2007;
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FIGURE 1 | Schematic representation of (A) SWCNTS and (C) MWCNTs.

(B) HRTEM micrograph of a single SWCNT; reprinted with permission from

Zhang Y. et al. (2010), Copyright (2010) American Chemical Society. (D)

HRTEM micrograph of MWCNTs, functionalized with N-methylpyrrolidine

groups to improve their solubility in organic solvents; adapted from Cellot et al.

(2011), copyright Society for Neurosciences (2011).

Mouchet et al., 2008; Sharifi et al., 2012; Li J. et al., 2015). It should
be noted, however, that a great contribution to these adverse
effects could be led back to Fe, Ni, Co, and Y nanoparticles
deriving from the CNTs synthesis, that are still present in variable
amounts in raw CNTs samples. The careful removal of metal
contaminants as well as chemical functionalization in fact lead to
a drastic reduction of the nanomaterial toxicity (Pulskamp et al.,
2007; Movia et al., 2011; Movia and Giordani, 2012). A further
source of concerns is their similar behavior to that of asbestos
fibers: their tendency to aggregate in bundles (especially for
unfunctionalized CNTs) can lead to the occurrence of important
inflammatory responses (Poland et al., 2008), which can be
alleviated by improving the nanomaterial dispersibility thanks to
its covalent or noncovalent functionalization with polar moieties
(Ali-Boucetta et al., 2013). In experiments involving neuronal
cells, which are commonly considered particularly sensitive
to toxicants and inflammation, high purity and functionalized
carbon nanotubes seldom show toxicity (Bardi et al., 2009;
Gaillard et al., 2009; Vittorio et al., 2009; Yang Z. et al., 2010;
Zhang Y. et al., 2010, 2011; Bussy et al., 2015). Finally, it
has been discovered that CNTs can be enzymatically degraded
by peroxidases (Kotchey et al., 2012, 2013) in macrophages
(Kagan et al., 2014), eosinophils (Andón et al., 2013), neutrophyls
(Bhattacharya et al., 2014), and microglia (Bussy et al., 2016),
as well as in the extracellular space (Farrera et al., 2014), thus
mitigating the concerns regarding possible toxic effects due to
their accumulation inside the body.

CNTs are permissive substrates for the adhesion and growth
of primary neurons (Mattson et al., 2000; Hu et al., 2004;
Gabay et al., 2005; Gheith et al., 2005; Lovat et al., 2005;
Dubin et al., 2008; Gaillard et al., 2009; Kam et al., 2009; Tran
et al., 2009; Jin et al., 2011; Park et al., 2011a). They also

promote stem cells differentiation into neurons (Chao et al.,
2009; Park et al., 2011a), action potential appearance in immature
neurons (Fabbro et al., 2013) and they stimulate the propagation
of dendritic backcurrents in isolated neurons (Cellot et al.,
2009). Collectively, this evidence suggests their possible use for
the therapy of neurodegenerative pathologies and spinal cord
injuries. Moreover, CNTs are applied to record and stimulate
neural activity in single neurons, artificial ganglia and spinal cord
sections (Gheith et al., 2006; Mazzatenta et al., 2007; Kam et al.,
2009; Shein et al., 2009; Shoval, 2009; Cellot et al., 2011; Fabbro A.
et al., 2012; David-Pur et al., 2014). Microelectrodes coated with
CNTs show enhanced sensitivity in neuronal activity recordings
compared to state of the art devices (Keefer et al., 2008; Jan et al.,
2009; Luo et al., 2011). Finally, CNTs are also able to deliver
functional molecules inside neurons (Kateb et al., 2007; Wang
C.-H. et al., 2009; Cellot et al., 2010; Ren et al., 2012).

CNTs show in general good compatibility in vivo with
neuronal tissues. Intravenous (i.v.) administration of 13C-
enriched SWCNTs in mice (Yang et al., 2007) demonstrates
that these nanomaterials (10–30 nm × 2–3 µm bundles) are
able to cross the BBB and accumulate inside the brain tissues,
although to a little extent. Furthermore, this study indicates that
SWCNTs do not show acute toxicity despite their accumulation
in several organs (especially liver, lungs, and spleen) and their
low clearance. However, it has to be underlined that the long
persistency of SWCNTs in lungs and in the liver can provide
moderate toxicity in these organs (Yang et al., 2008).

A very recent report indicates that high doses of
PEG-SWCNTs (1–10 µm bundles) display toxicity when
stereotactically injected in rat hippocampus (Dal Bosco et al.,
2015). Apparently PEG-SWCNTs are impairing contextual
fear memory after long-term exposure at 0.5 and 1 mg/mL
concentrations because of the oxidative stress generated by the
nanomaterial. Although this study highlights how an eventual
accumulation of CNTs inside the brain tissues can potentially
lead to toxic effects, it is extremely unlikely that such high
concentrations can be reached in localized regions of the CNS,
unless local administration is used. Moreover, no explanation
can be found to the evidence that higher concentrations of
PEG-SWCNTs (2.1 mg/mL) do not cause oxidative stress and in
general toxicity in the hippocampal tissues.

MWCNTs display in general a high biocompatibility in vivo
with neural tissues: direct injection of a suspension of MWCNTs
(10–30 nm× 2µm) coated with the nonionic surfactant Pluronic
F127 (PF-127) in mice visual cortex (Bardi et al., 2009) results
in no substantial morphological differences observed in brain
tissues comparing to a control injection, also in terms of injection
lesion volume. Later timepoint analysis too revealed no sign
of damage to the surrounding tissues apart from the expected
gliosis engulfing the nanotubes (Figure 2). MWCNTs are also
able to cross the BBB: [111In]-DTPA-MWCNTs (20 nm × 0.5
µm) administered in vivo by tail vein injection (Kafa et al., 2015)
display a maximum brain accumulation of 1.1% of injected dose
per gram of tissue 5 min after the injection, followed by a gradual
slow excretion. Micropinocytosis from the perivascular epithelial
cells seems in this case to be the main internalization mechanism
and therefore transcellular uptake is hypothesized as the primary
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FIGURE 2 | Coronal brain slices showing short and long term effects of PF-127 coated MWCNTs intracortical injection. (A) Localization of the injection

site (star); cc, cerebral cortex; wm, white matter. (B,C) Magnifications of the injection site 3 days after the injection: outside the lesion area (dashed line) cerebral

tissues show normal neuronal density and tissue layering. (D,E) Control mice and (F,G) PF-127 coated MWCNTs injected mice brain slices 18 days after the injection:

both the lesion sites present normal gliosis surrounding the injection site. Reprinted from Bardi et al. (2009), Copyright (2009), with permission from Elsevier.

mechanism for the BBB crossing (Kafa et al., 2015). As SWCNTs
however, also MWCNTs tend to accumulate in the liver and the
lungs where they can possibly produce toxicity in the long term.

Their morphological characteristics and their tendency to
agglomerate are found to play a role in determining the
nanomaterial’s fate and inflammatory potential inside the brain:
long ammonium MWCNTs (MWCNTs-NH+

3 , 20–30 nm ×

0.5–1 µm) and short oxidized ammonium-MWCNTs (ox-
MWCNTs-NH+

3 , 20–30 nm × 0.2–0.3 µm) display in fact
remarkable differences after direct local injection in mice motor
cortex (Bardi et al., 2013). Short ox-MWCNTs-NH+

3 are confined
in a very narrow area forming compact agglomerates and they
can be found into the cytoplasm exclusively inside vesicles.
Moreover, they show inflammatory potential, although it should
be underlined that within 1 week the expression levels of the
inflammatory cytokines return to normality. On the contrary,
long MWCNTs-NH+

3 distribute over a very large area, they are
found into the cells both inside vesicles and free-floating in the
cytoplasm and have low inflammatory potential. Remarkably,
microglia is found to be able to degrade long MWCNTs-NH+

3
even at early time points (Nunes et al., 2012), providing partial
to complete loss of their morphology. Also, it has been recently
demonstrated that different CNTs functionalizations can vary the
short-term kinetics of CNTs biodegradation by microglia (Bussy
et al., 2016), however not providing relevant differences in the
nanomaterial’s long-term fate. These evidences indicate that the

possible accumulation of CNTs, which may eventually produce
toxic effects, can be efficiently prevented also in the brain thanks
to the natural body defense mechanisms.

Besides the compatibility studies, CNTs have been also probed
in vivo for their possible use as therapeutic agents, in particular
as neuroprotectants against ischemic damages. In this context,
CNTs covalent amino/ammonium derivatives and their further
modifications display very promising results. SWCNTs amino
derivatives (SWCNTs-NH2, 4–10 nm × 0.5–1.5 µm) are able
to drastically reduce the brain damages induced by stroke when
preventively administered in lateral ventricles (Lee H. J. et al.,
2011): after surgical transitory middle cerebral arteria occlusion
(MCAO), SWCNTs-NH2 treated rats display a much lower
cerebral infarction volume with respect to untreated rats. Also
apoptosis, inflammatory, neurogenesis and angiogenesis levels in
SWCNTs-NH2 treated rats’ brains indicate that the nanotubes are
effective in reducing cell death and inflammatory response and
in promoting neuroregeneration. Most impressively, a complete
restoring of motor function can be achieved in rats 7 days
after the ischemic insult (Figure 3). The therapeutic efficacy of
CNTs against brain ischemic damages can be improved by using
the nanomaterial in order to deliver neuroprotective siRNAs.
Ammonium-MWCNTs (MWCNTs-NH+

3 , 20–30 nm × 0.5–2
µm), are known in fact to be efficient siRNA delivery systems
(Al-Jamal et al., 2010), and can be loaded with Caspase-3 siRNA
(siCAS3), which is able to inhibit the expression of caspase-3, an
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FIGURE 3 | Morphological and functional neuroprotective effects of the SWCNTs-NH2pretreatment after ischemia-reperfusion. (A) Coronal brain

sections (stained with tetrazolium chloride) of sham, PBS and SWCNTs-NH2 (here called a-SWNT) treated mice, where white areas correspond to the infarcted

regions after MCAO. (B) Quantification of the lesion in the brain sections showed in (A). (C) Schedule of motor functionality experiments. (D) Motor coordination

results from Rotarod tests indicating complete recovery of motor coordination in SWCNTs-NH2 treated mice. Data reported as mean + s.e.m. *P < 0.001 vs.

pre-MCAO. Reprinted by permission from Mcmillan Publishers Ltd.: Nature Nanotechnology, Lee H. J. et al. (2011), Copyright (2011).

enzyme involved in apoptosis (Al-Jamal et al., 2011). Preventive
administration of the nanomaterial inside rats brain parenchyma
and its internalization by neurons within 48 h from the injection
can therefore guarantee motor ability retention in rats after the
induction of the ischemic insult. The combined neuroprotective
effect of the nanomaterial and of the siRNA is particularly evident
if considering that, after the ischemic insult, treated animals
brains show apoptosismarkers levels that are substantially similar
to those of healthy animals. Unfortunately, similar results could
not be obtained if the nanomaterial is administered after the
stroke event.

Drug delivery into the brain is also one of the most desired
biomedical applications of nanomaterials. By simply exploiting
that unfunctionalized—but shortened—SWCNTs (0.8–1.2 nm×

50–300 µm) administered through the gastrointestinal (GI) tract
are able to cross the BBB and preferentially localize in neurons’
lysosomes, it is possible to use these same SWCNTs to deliver
Acetylcholine (ACh) in Alzheimer’s disease (AD) model mice’s
brains through the GI tract. Once in the neuronal lysosomes,
the acidic pH triggers the release of the drug from the ACh-
SWCNTs to the neuron cytosol, providing the recovery of the
mice’s learning abilities (Yang Z. et al., 2010). Also the more bulky
MWCNTs can show very interesting drug delivery abilities in
the CNS, when opportunely functionalized in order to improve
their dispersibility in aqueous media; moreover, the concomitant

grafting of targeting biomolecules to the nanomaterial scaffold
increases the specificity of the therapeutic action: doxorubicin
(DOX) loaded oxidized MWCNTs (DOX-oMWCNTs, 10 nm ×

5–15 µm) possessing a PEG unit and grafted with angiopep-
2 (ANG, a peptide targeting both the BBB and the LRP
receptor expressed by glioma cells) demonstrate to be highly
effective against glioma (Ren et al., 2012). Angiopep-2-targeted
oMWCNTs are able to cross the BBB in higher quantity
with respect to unfunctionalized or PEG-DOX functionalized
MWCNTs, and to accumulate more selectively into the tumor
mass. As result, mice treated with DOX-oMWCNTs-PEG-ANG
show a 20% increase in survival compared to mice treated
with the untargeted nanomaterial and by 42% with respect
to mice treated with only DOX. DOX-oMWCNTs-PEG-ANG
also display a little higher liver and spleen accumulation
than DOX and DOX-oMWCNTs-PEG but lower kidney and
lung accumulation, and a markedly reduced cardiac toxicity
with respect to DOX, a characteristic which also represents a
remarkable improvement.

Efficient delivery of therapeutic genetic material in the
CNS can be also achieved thanks to SWCNTs. Alongside
with the previously mentioned delivery of siRNA for ischemic
damage reduction purposes, SWCNTs, and in particular PEG-
functionalized SWCNTs (1–3 nm × 0.2–0.4 µm), are able to
deliver CpG oligonucleotide (CpG-CNTs), which has antitumor
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activity via activation of TLR9-mediated immune response, to the
tumor-associated inflammatory cells in brain implanted glioma
in mice (Zhao et al., 2011). The intracranial injection of CpG-
CNTs provides the recruitment of Natural Killer (NK) and
CD8+ cells and the development of immune response against
the glioma cells, which results in tumor cells depletion and
survival of 50–60% of treated mice, while no survival is observed
when mice are treated with a single dose of non-conjugated
CpG oligonucleotide. Moreover, the adverse effects commonly
associated with the standard CpG antitumor therapy are not
observed when using CpG-CNTs. Finally, the surviving treated
mice develop immunity against glioma, therefore they undergo
spontaneous remission of the tumor when this is re-injected into
their brains.

CNTs were also probed for neuroregeneration applications in
spinal cord injury (SCI) model rats. Post-injury administration
of PEG-functionalized SWCNTs (PEG-SWCNTs) in the lesion
site is found to promote axonal survival and repair, while delayed
administration is able to achieve a dose-dependent reduction in
the lesion volume in both gray and white matter, and an increase
in the number of neuronal fibers in the lesion epicenter with a
modest sprouting of corticospinal tract axons into this region
(Roman et al., 2011). Neither alterations in reactive astrogliosis
at the lesion site nor toxicity or neuropathic pain are present.
As outcome, a dose-dependent moderate recovery of motility in
treated rats is achieved.

Taking into account the studies above mentioned, carbon
nanotubes emerge as extremely versatile materials for a number
of useful applications in the CNS. Besides their single-
wall or multi-wall nature, appropriately functionalized CNTs
demonstrate to be good therapeutic agents against ischemic
damage as well as excellent vectors for drug delivery in the CNS.
Apparently MWCNTs are preferred to SWCNTs for delivery
applications in the CNS, despite the fact that the latter display
a higher specific surface area and therefore a higher loading
capacity. Economical reasons may also play a role in the
choice. CNTs show high biocompatibility with the brain tissues,
contrary to the data reported in some cells studies and when
administered in the lungs and in the GI tract. Important in
this sense is that the CNTs used in these studies have been in
general functionalized with highly polar moieties or they display
structural characteristics that prevent their excessive aggregation
in aqueous media, which can potentially give rise to immune
response. Furthermore CNTs also demonstrate the ability to
mitigate the toxicity of some drugs. In summary, we believe that
CNTs have to be still considered cutting-edge nanomaterials for
the therapy of CNS diseases.

FULLERENES

Fullerenes are defined molecular entities with a precise atomic
composition and hollow spherical shape. Buckminsterfullerene,
better known as C60 fullerene, is the first and the smallest
stable fullerene isolated, and the most studied because of its
relative ease of synthesis. It is obtained in relatively good
yields from graphite using the arc-discharge technique, and

purified from byproducts by solvent extraction followed by
chromatography. In its structure the 60 sp2-hybridized carbon
atoms arrange to form a truncated icosahedron structure with
a diameter of 0.7 nm (Figure 4). Several derivatives with
hydrophilic (carboxyfullerenes) or lipophilic (PCBM) behavior
were synthesized in order to increase the solubility in water and
organic solvents.

Fullerenes are extensively studied in a number of applications
such as organic photovoltaics (Brabec et al., 2010; Kirner et al.,
2014), gas storage (Gadd et al., 1999), and molecular sensing
(Baena et al., 2002; Sherigara et al., 2003). In the last 30 years
fullerenes, alongside CNTs, were considered among the cutting-
edge nanomaterials for biomedical applications: they were
proposed as oxidative damage protecting agents, photosensitizers
for photodynamic therapy of cancer, antiretroviral agents and as
drugs and gene delivery vectors (Bakry et al., 2007; Tykhomyrov
et al., 2008; Partha and Conyers, 2009; Chen et al., 2012;
Matija et al., 2013). Fullerenes also were the pioneering carbon
nanomaterials investigated in vivo for their potential applications
in the therapy of brain diseases. However, the raising concerns of
their toxicity has contributed to a reduction of the interest from
the biomedical scientific community.

There are conflicting reports in literature regarding their
toxicity. C60 has been documented for ex. both to induce reactive
oxygen species (ROS) mediated toxicity and to provide efficient
protection from ROS damage (Johnston et al., 2010). While it
is generally accepted that pristine C60 displays just moderate
toxicity (Tokuyama et al., 1993; Partha and Conyers, 2009;
Aschberger et al., 2010; Johnston et al., 2010), its covalent and
non-covalent derivatives can be instead very toxic (Trpkovic
et al., 2012; Sergio et al., 2013). Furthermore, toxicity of pristine
C60 is increased by the presence of surfactants or organic co-
solvents (Johnston et al., 2010) and genotoxicity has been also
reported (Dhawan et al., 2006). The high affinity of C60 for a
number of chemical species along with its ability to permeate the
biological membranes allows it to convey toxicants in the cells
or to interfere with metabolic processes (Sergio et al., 2013). It

FIGURE 4 | Schematic representation of C60 fullerene.
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should be noted however that toxicity evidences show a certain
degree of variability that can be ascribed, in large part, to the very
different experimental conditions and toxicity assays used.

Fullerenes are able to penetrate the neuronal cell membrane
both in vitro and in vivo (Yamago et al., 1995; Dugan et al., 2001).
They can accumulate in several tissues and, notably, they cross
the BBB (Yamago et al., 1995). Despite the general indications
of cytotoxicity, on neuronal cell cultures these compounds show
neuroprotective and antioxidant effects (Dugan et al., 1996, 1997;
Bisaglia et al., 2000).

In vivo, fullerenes are the first carbon nanomaterials
found to distribute in the brain after systemic administration.
Biodistribution studies using a 14C-radiolabeled carboxylated C60

derivative (14C-C60) in rats after i.v. administration (Yamago
et al., 1995) reveal that the nanomaterial rapidly spreads in several
organs including brain, indicating that it is able to cross the
BBB despite its high molecular weight (995 Da). No toxic effects
are observed after i.v. administration, while toxicity is observed
after intraperitoneal injection. A possible explanation for this
different behavior can be that the fullerene is able to induce a
consistent inflammatory response only when it is administered in
a confined site at high concentrations, while direct dilution in the
bloodstream suppresses this accumulation-dependent toxicity.
However, as the authors of this study point out, this nanomaterial
has a high lipophilicity, which translates into slow excretion
kinetics and accumulation in specific organs. This raises concerns
about the possible occurrence of long-term toxicity or toxicity
after chronic administration since the fullerene can reach with
time toxic concentrations inside specific sites.

Alike CNTs, also fullerenes have been probed for their
potential therapeutic activity in the CNS, especially for ROS-
scavenging purposes. The first and most studied fullerene
demonstrating this property is carboxyfullerene, a C60

tris(malonic acid) water soluble derivative. Carboxyfullerene
continuous i.p. administration bymeans of a mini-osmotic pump
in transgenic mice carrying a human superoxide dismutase gene
mutation related to familial amyotrophic lateral sclerosis (FALS)
results in 15% delay in the appearance of FALS symptoms, and
6% increase of survival (Dugan et al., 1997). Carboxyfullerene
is also able to protect nigrostriatal dopaminergic neurons
against the oxidative stress generated by Iron(II) injection (Lin
et al., 2001), used as a Parkinson’s disease model: intracranial
co-administration of the nanomaterial at low doses with Iron(II)
into mice’s substantia nigra is able to inhibit the induced ROS
generation, keeping dopamine levels and dopaminergic response
similar to basal values. Although the two nanomaterials are
co-administered, it is unlikely that neuroprotection occurs
thanks to metal sequestration or direct reduction of the metal
ion operated by the fullerene, rather it is likely to act as
free radical scavenger as demonstrated by EPR spectroscopy
experiments (Dugan et al., 1997). Finally, in MCAO stroke
model, intraventricular injection of high doses (0.3 mg/rat)
of carboxyfullerene in rats brain 30 min prior to infarction is
able to fully contrast the ischemia-generated ROS production,
providing 83% reduction of the infarcted area (Lin et al., 2002).
Nevertheless, in the latter case the authors report adverse effects
such as writhing with stretching of the trunk in more than a third

of the treated animals, with death occurring in the 60% of these
cases. Administration of a lower (but still high) dose (0.1 mg/rat)
of the nanomaterial is free of adverse effects, but has limited
efficacy. Systemic administration (6 mg/kg) through the tail
vein also demonstrates to be nontoxic, however it has no effect
on the infarction. These results indicate that the nanomaterial
displays in general acute toxicity when employed locally in the
CNS at high dosage, while it can be considered reasonably safe
when it is locally administered at low doses or when systemic
administration is employed.

Carboxyfullerene is proposed also as neuroprotective cerebral
antiaging compound: daily administration of the nanomaterial
to mice (10 mg/kg/day) in drinking water is able to reduce
the superoxide content in brain tissues to levels just above
those of control young mice, implying that the nanomaterial
is able to cross the BBB (Quick et al., 2008). An improved
ability in memory behavioral tests and a 11% lifetime increase
is also observed, suggesting a considerable antiaging effect
exerted also to several other organs. A neuroprotective effect
of carboxyfullerene after single systemic i.p. administration is
evidenced also against E. Coli induced meningitis in mice (Tsao
et al., 1999): although the nanomaterial has no direct antibacterial
activity, preventive administration as well as post-infection
treatment with carboxyfullerene (6–40 mg/kg, administered 3
times every 24 h) decreases brain inflammation by modulating
the immune response and preventing the BBB leaking due
to inflammation, thus delaying or partially preventing (up to
80%) mice death in a dose-dependent way and more effectively
than corticosteroids. The high doses of nanomaterial injected
do not cause any toxic effect in mice, thus strengthening the
hypothesis that the systemic administration of this nanomaterial
is particularly well tolerated.

Carboxyfullerene has been also tested for the treatment of
Parkinson’s disease (PD) in MPTP treated non-human primates
models (Dugan et al., 2014). The nanomaterial is delivered 1 week
after MPTP injection by continuous systemic administration (3
mg/kg/day) using either intraperitoneal or subcutaneous osmotic
pumps. Significant differences between the placebo group and
animals receiving carboxyfullerene are found starting from 30
days after the beginning of the treatment, with treated animals
showing motor ability improvements approaching normal values
at the end of the experiment (Figure 5). This indicates that the
continuous administration of carboxyfullerene is able to induce
the recovery of dopaminergic neurotransmission even after
the MPTP-induced neuronal death process has already begun.
Moreover, despite the prolonged duration of the experiment
and the continuous administration of the nanomaterial, only
little evidences of toxicity are found. Results promote therefore
a potential application of this nanomaterial for the cure of
Parkinson’s disease in humans.

Alongside carboxyfullerene, other C60 fullerene derivatives
show neuroprotection capabilities: hexasulfobutylated-C60

(FC4S), when administered i.v., is able to cross the BBB and
prevent oxidative damage after MCAO stroke induction (Huang
et al., 2001), providing up to 67% reduction of the infarcted
brain volume after reperfusion. Intracellular oxidative stress is
found to be perfectly normal, while interestingly the presence
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FIGURE 5 | (A,B) Positron emission tomography (PET) brain images using from two control primates (M1, M2) and two carboxyfullerene-treated primates (M3, M4)

before MPTP injection (pre) and at the end of the treatment (post). [11C] dihydrotetrabenazine (DTBZ) and 6-[18F] fluorodopa (FD) are used as probe for evaluating the

nigrostriatal dopaminergic activity. As clearly visible placebo-treated animals are showing unsymmetrical distribution of tracers in the two hemispheres indicating partial

loss of dopaminergic activity, while carboxyfullerene-treated animals are showing dopaminergic activity in both the hemispheres. (C) Parkinsonian rating score at the

end of the treatment, indicating reduction of bradykinesia in carboxyfullerene (C3) treated animals with respect to animals receiving placebo. Data reported as mean +

s.e.m. *p = 0.007. Adapted from Dugan et al. (2014) with permission from John Wiley and Sons, Copyright (2014).

of increased levels of nitric oxide (NO) suggests that FC4S
may exert its neuroprotective action by activating specific cell
signaling pathways. Furthermore, the authors report no adverse
effect of the FC4S administration. Thanks to the possibility to
use i.v. administration and to the absence of adverse effects,
this nanomaterial therefore is able to overcome the limitations
displayed by carboxyfullerene (Lin et al., 2002) in the prevention
of stroke-deriving ischemic damage. However, the prevention
of brain infarction damages implies that the nanomaterial has
to be chronically administered and therefore, prior to envisage
possible uses of this nanomaterial in therapy, long-term toxicity
studies must be performed. Among noncovalent derivatives of
C60 fullerene, its adduct with poly(vinylpyrrolidone) (C60-PVP)
displays neuroprotective capabilities: direct injection of the
nanomaterial into rats hippocampus is able to protect memory
consolidation mechanisms in rats when these are treated with
cycloheximide, a protein synthesis inhibitor able to impair
the memory consolidation processes (Podolski et al., 2005).
Results seem to indicate that the ROS-scavenging ability of
the fullerene adduct is the main responsible of preventing the
neuronal apoptotic response to the drug. However, although no
indications of adverse effects in the CNS are provided, the choice
of local cerebral administration of this therapeutic agent raises
concerns regarding the possible occurrence of toxicity.

Also unfunctionalized fullerene (C60), in the form of water
suspension of the pure nanomaterial as hydrated (C60HyFn),
can be used for neuroprotection purposes. The administration
of the nanomaterial in rats drinking water provides protection
against neuronal damages deriving from chronic alcohol intake
(Tykhomyrov et al., 2008). Analyses reveal that the nanomaterial
is able to contrast the alcohol-induced depletion of glial fibrillary
acidic protein (GFAP) in astrocytes as well as to preserve the
expression of cytoskeletal proteins also in neurons and glia. No
adverse effects due to the nanomaterial intake are observed.
Additionally, C60HyFn demonstrates possible neuroprotective
activity against Alzheimer disease (AD) neurodegeneration. In

vitro, the nanomaterial is able in fact to interfere with the
formation of Aβ25–35 amyloid peptide fibrils structure, resulting
in the accumulation of protofibrillar structures (Podolski et al.,
2007). Rats injected with the amyloid peptide rapidly develop
dementia, but when even low doses (maximum 5 µg/rat) of
C60HyFn are injected intracerebroventricular (i.c.v.) prior to the
injection of the amyloid peptide, rats show normal cognitive
abilities. Also, no evidence of nanomaterial toxicity is found
(Podolski et al., 2007). A recent follow-up in this research
indicates that hippocampal injection of C60HyFn is able to
restore the cortical-hippocampal EEG interrelations disrupted
by the injection in the same site of an Aβ peptide to simulate
AD (Vorobyov et al., 2015). As these reports demonstrate,
unfunctionalized C60 fullerene show neuroprotective effects
when administered both GI and locally in the CNS. Differently
from carboxyfullerene however, unfunctionalized C60 does not
show toxicity when administered directly in the brain tissues.
Toxicological investigations on C60 fullerene suggest however a
potential long-term toxicity of the nanomaterial (Yamada et al.,
2008). Even though no severe acute toxicity is found, the i.c.v.
injection of C60 is in fact found to interfere with neurotransmitter
homeostasis in rats, causing behavioral changes in the animal.
Interestingly, i.p. injection of C60 does not provide alterations in
the cerebral neurotransmitters levels.

The last fullerene-derived nanomaterial that showed
direct neuroprotective capabilities in vivo is fullerenol, i.e.,
polyhydroxylated C60 (C60-OH). This derivative, which is
already known from in vitro studies to display neuroprotective
activity (Jin et al., 2000), and its glucosamine conjugate (GlcN-
F), designed in order to add anti-inflammatory activity to the
nanomaterial, demonstrate to be very good neuroprotective
agents against stroke insult (MCAO induced) after systemic
administration in both normotensive (WKY) and hypertensive
(SHR) rats (Fluri et al., 2015). The i.v. administration of 0.5
mg/kg of C60-OH subsequent to reperfusion after MCAO results
in 68% reduction and 26% reduction of the infarcted area volume
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(compared to control) in WKY and SHR rats respectively. The
increase in C60-OH dosage does not provide sensible therapeutic
improvements but results in the appearance of adverse effects
and also of death, while the use of GlcN-F (5 mg/kg, equivalent
to 0.5 mg/kg of C60-OH), in SHR rats provides a greater
reduction of the infarcted volume with respect to C60-OH
without evidences of toxicity. However, it is found that the i.c.v.
injection in rats of even small doses (0.25 mg/kg) of fullerenol
produces important—although transitory—toxic effects on the
monoamine neurotransmission and animal behavior (Yamada
et al., 2010). This raises further and more alarming concerns
about the nanomaterial safety, also regarding possible adverse
effects that can arise in case of accumulation of the nanomaterial
in the brain also after systemic administration. It should be
underlined also that the results provided by C60-OH are in
line with those of FC4S (Huang et al., 2001). However, FC4S
seems to be effective at lower doses and it is not toxic. The
effectiveness of GlcN-F in reducing the extent of infarcted brain
volume in SHR rats is instead a very appreciable result since it is
known that hypertension has a strong detrimental effect on the
prognosis after stroke. It would be interesting then to examine
the neuroprotective effect of FC4S also in hypertensive rats in
order to determine if it can be an equally effective and safer
alternative to GlcN-F.

Although extensive researches have been conducted to address
the intrinsic neuroprotective properties of fullerenes, there are
very few reports regarding in vivo drug delivery and imaging
applications within the CNS. Drug delivery has been probed
using a C60 derivative having two enzymatically cleavable
amantadine molecules, synthesized with the aim to create a
new anti-parkinson agent that combined the pharmacological
activity of amantadine with the neuroprotective activity of the
fullerene (Nakazono et al., 2004): studies on Parkinson model
rats demonstrate moderate activity of the fullerene drug when
systemically administered at 10 mg/kg dose, while at higher
doses the drug is ineffective probably because the nanodrug
itself is inhibiting the enzyme deputed to the hydrolysis of the
fullerene-amantadine bond. On the other hand brain tumors
bioimaging using fullerenes derivatives was achieved by means
of endohedral gadolinium-C82 fullerenol (Gd@C82-OH), where
the paramagnetic Gd3+ cation is enclosed in the fullerene cage:
after i.v. injection the nanomaterial can detect, by means of MRI,
a C6 glioma tumor in rats brain (Shevtsov et al., 2014). The
nanomaterial is accumulating inside the tumor and displays a
higher detection efficiency than the standard contrast agents.
Gd@C82-OH is found to be nontoxic to the animals unless high
concentrations (≥12.5mg/kg) are used, while it is able to increase
their survival time, implying also a potential antitumor activity.

In summary, fullerenes demonstrate a good potential as
neuroprotective agents, while their use as drug delivery
vectors or imaging agents, at least in the CNS, has been
just marginally explored. Most importantly fullerenes, and
in particular carboxyfullerene, display a not negligible toxic
profile for the CNS that however can be drastically reduced
when systemic administration is preferred to local acute
administration. However, neuroprotective applications require
chronic administration of the therapeutic agent, and long-term

toxicological data on these nanomaterials are still scarce. Despite
the very good results achieved, fullerenes represent the “past”
of carbon nanomaterials research. This again is due to all
the concerns related to their proven accumulation in several
organs, their long persistency in the body and their—in general—
unpredictable toxicity. With all these serious impairments, it
is not easy to say if the risk-benefit ratio will still provide
opportunities for the development of these nanomaterials for
biomedical applications.

GRAPHENE OXIDE AND DERIVED
NANOMATERIALS

Graphene is a thin layer of sp2-hybridized carbon atoms
bonded together in a hexagonal honeycomb lattice. Its peculiar
electronic properties and structure attract a lot of attention
especially in the field of semiconductor technologies. Moreover,
thanks to its high surface to volume ratio applications as
high capacity storage material or as drug delivery system are
also proposed. Graphene oxide (GO) is the most common
derivative of graphene, made from the exfoliation of graphite
by oxidation procedures. GO nanoparticles are usually 1 nm
thick while their lateral size can span from few tens of nm to
few µm (Figure 6). Albeit the synthetic procedure introduces
defective sites that destroy the peculiar electronic properties of
graphene, the presence of polarizable functionalities increases
its stability as single free-standing layers and allows the direct
further functionalization of the material. For these reasons,
graphene oxide has been considered more suitable than graphene
for biomedical applications. Moreover, depending on the size,
composition, and degree of oxidation, GO can exhibit inherent
and tunable optical absorption and emission properties, with
emission wavelengths varying from NIR to blue light (Li J. L.
et al., 2012; Zhu S. et al., 2012; Cao et al., 2013; Zhang X. et al.,
2013).

Graphene and derived nanomaterials are intensively applied
for biomedical purposes and show promising results in
toxicants and tumor marker sensing, in vitro and in vivo
imaging applications, drugs and nucleic acid delivery, tumor
photothermal ablation, as well as stem cell differentiation
substrates (Peng et al., 2010; Zhang L. et al., 2010; Huang, 2011;
Kim et al., 2011; Robinson et al., 2011; Lee W. C. et al., 2011;

FIGURE 6 | (A) Schematic representation of GO. The nanomaterial surface

and edges are characterized by the presence of carboxyls, carbonyls,

alcohols, and epoxydes. (B) TEM micrograph of GO sheets; adapted from

Zhang L. et al. (2010) with permission from John Wiley and Sons, Copyright

(2010).
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Gollavelli and Ling, 2012; Hong et al., 2012; Li M. et al., 2012;
Chung et al., 2013; Lalwani et al., 2013; Goenka et al., 2014). Their
toxicity profile is, as for many other carbon nanomaterials, highly
dependent on the functionalization, size and the aggregation
behavior (Jastrzebska et al., 2012; Hu and Zhou, 2013; Wick
et al., 2014). GO appears to be less toxic than pristine graphene,
reduced graphene oxide or hydrogenated graphene, and the
additional functionalization (with PEGs, aminogroups, etc.)
contributes to a further reduction of the toxicity; graphene
particles with few nm diameter are less toxic than larger particles;
highly dispersible particles are less toxic than the aggregating
ones. With respect to the other carbon nanomaterials, graphene
and derivatives tend to accumulate in lungs and to reside in the
organism for a longer time (Wang et al., 2010; Zhang Y. et al.,
2010; Zhang X. et al., 2011; Yang et al., 2013b; Chng et al., 2014;
Chwalibog et al., 2014; Kanakia et al., 2014; Seabra et al., 2014).

Recently, graphene and related materials are emerging as a
convenient substrate and a powerful tool for neuronal growth
and differentiation. Reports indicate that graphene is a permissive
substrate for neuronal cells growth (Li et al., 2011, 2013;
Park et al., 2011b; Movia and Giordani, 2012; Hong et al.,
2014; Serrano et al., 2014; Tu et al., 2014; Fabbro et al.,
2016) and the electrical conductivity of this material can be
exploited to direct the elongation of neuronal processes in a
controlled way (Li et al., 2011). Moreover, the electrical signals
generated from neuronal cells can also be recorded by using
graphene-based microelectrodes (Chen et al., 2011; Tang et al.,
2013; Park et al., 2014). Surprisingly, it has also been shown
that the physicochemical properties of this material favor the
differentiation of neuronal stem cells preferentially toward the
neurons fate (Park et al., 2011b; Wang et al., 2012; Akhavan and
Ghaderi, 2013; Li et al., 2013). In these studies, toxicity assays
show a good compatibility of graphene with neuronal cells (Chen
et al., 2011; Li et al., 2011; Hong et al., 2014). In particular, reports
show that graphene flakes (Zhang Y. et al., 2010) and graphene-
based substrates (Hong et al., 2014; Song et al., 2014) may be even
more compatible than other carbon-based nanostructures.

In vivo biodistribution studies reveal that GO has good
potential for applications in the CNS: intravenous administration
of radiolabeled GO (188Re-GO, 10–800 nm lateral size) in mice
(Zhang X. et al., 2011) indicates that, despite most part of
the nanomaterial is sequestrated by lungs, a small quantity
(0.04% of injected dose) is able to cross the BBB and migrate
into the brain parenchyma. Similar results are obtained by
administering i.v. GO (0.3–1 µm lateral size) as suspension in
PBS with the help of a surfactant. Remarkably, the presence of
the surfactant allows to reduce lung accumulation, erythrocyte
agglutination and macrophage activation (Qu et al., 2013). A
further improvement has been made recently by noncovalently
functionalizing GO with dextran (GO-DEX, 100–120 nm lateral
size): after i.v. administration in mice, the nanomaterial is found
to pass the BBB without exerting toxic effects in the brain and
showing just minor effects in the other organs at the highest
doses (>125 mg/Kg) (Kanakia et al., 2014). Interestingly, brain
GO-DEX concentration is found 3 times higher 1 month after
the injection with respect to 24 h after the injection, while it
is almost completely cleared from all the other organs, thus
indicating slow accumulation and long-term persistency of this

nanomaterial in the CNS. If this can be considered a strength in
view of applications as neuroprotective agents, on the other hand
it raises concerns about possibilities of long-term toxicity, which
however has not been explored yet.

Contrary to CNTs and fullerenes, GO and derivatives are
not showing remarkable ROS scavenging capabilities in vitro,
therefore no in vivo studies have been performed in order
to assess their potential neuroprotective activity. Interestingly,
GO and derivatives can be successfully applied for in vivo
imaging purposes in the brain. PEG-functionalized GO (GO-
PEG, 40 nm lateral size), intracranially administered in mice,
can be detected thanks to its fluorescence emission properties
up to 300 µm below the brain surface and its 3D distribution
map in the brain parenchyma reconstructed (Figure 7) by
using the two-photon imaging technique (Qian et al., 2012)
in order to achieve high tissue penetration of the excitation
light. Although preliminary, these results pave the way to
the possible use of this nanomaterial for the imaging of
brain cancerous lesions. This can be achieved firstly if GO
nanoparticles are endowed of appropriate tumor-targeting
functionalizations able to cause the selective accumulation of
the nanomaterial inside the tumor mass. Furthermore, there
is need to optimize the the nanomaterial characteristics (size,
degree of oxidation), in order to shift its emission wavelength
from the VIS spectral range that has poor tissue penetration, to
the NIR, thus improving the imaging depth that is possible to
achieve.

Although GO shows scarce tendency to reach high
concentrations in cerebral tissues after systemic administration,
its high specific surface area, which endows it of a high loading
capacity, makes it a promising candidate also for drug delivery
applications in the CNS. Strategies, such as low-invasive physical
BBB opening techniques or chemical functionalization with
efficient targeting moieties, can be used to overcome the low
BBB permeability of GO. GO-PEG nanoparticles (120–150
nm lateral size) loaded with epirubicin (EPI), an anticancer
drug, and decorated with magnetic Fe3O4 nanoparticles, can be
used against U87 glioma xenographted in mice striatum (Yang
H.-W. et al., 2013): after administration in the jugular vein, the
nanodrug can be accumulated in the tumor mass by combining
the use of low intensity focused ultrasound (LFUS), a physical
BBB opening technique, and magnetic targeting. This results in
a significant reduction of the tumor growth rate in the treated
mice compared to control mice (Figure 8). It seems also that
the use of GO and LFUS in combination is particularly effective
due to the obtainment of local hyperthermia in the tumor.
Magnetic GO-PEG-EPI nanoparticles are found to accumulate
preferentially in the liver, from which they are completely cleared
in 48 h. No organ damages or weight loss, neither in vitro
induction of immune response is found. The relatively rapid GO
clearance and the absence of acute toxicity phenomena make this
nanomaterial a suitable candidate for implementing the current
brain tumor therapies.

Physical BBB opening techniques combined with GO can be
also used to obtain simultaneous MRI imaging, drug delivery
and miRNA delivery in the CNS. GO nanoparticles (140–150
nm lateral size) grafted with Gd-DTPA and poly(amidoamine)
dendrimer, and loaded with EPI and Let-7, a tumor suppressor
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FIGURE 7 | Imaging of GO nanoparticles in a mouse brain using

two-photon luminescence. (A) Schematic representation of the

experimental conditions used. (B) Reconstructed 3D luminescence image of

GO-PEG nanoparticles inside the brain parenchyma. Reprinted from Qian

et al. (2012) with permission from John Wiley and Sons, Copyright (2012).

miRNA (Yang H.-W. et al., 2014) can be administered by
tail vein injection in mice and allowed to cross the BBB
thanks to the application of focused ultrasounds (FUS). The
nanomaterial is able to provide very high contrast in MRI,
which can be used in order to determine and quantify the
distribution of the nanometric drug delivery system inside the
brain tissues. Unfortunately, the study limits the demonstration
of EPI internalization by glioma cells and miRNA transfection
in their nuclei only to in vitro experiments. Although the results
provided are very positive, it will be important to demonstrate in
vivo the therapeutic efficacy of the nanodrug, and also to obtain
pharmacokinetic and toxicological data.

Also chemical derivatization with suitable targeting moieties
is able to provide the nanomaterial BBB crossing capabilities,
making possible to pursue efficient drug delivery in the CNS.
Transferrin (Tf) functionalized GO-PEG nanoparticles (Tf-PEG-
GO, 100–400 nm lateral size) are successful in delivering DOX
in a brain tumor (Liu G. et al., 2013): after i.v. administration
the nanoparticles are able to migrate from the bloodstream to
a C6 glioma that has been implanted in rats striatum, where
they are found significantly more concentrated than in the rest

FIGURE 8 | In vivo luminescence imaging of luminescence-labeled U87

tumor xenografted into nude mice brains. Animals receiving the treatment

consisting in administration of magnetic GO-PEG-EPI nanoparticles followed

by magnetic targeting and LFUS (NMGO–mPEG–EPI/MT) show an improved

tumor reduction at 7 and 13 days after the treatment with respect to control

mice. Adapted from Yang H.-W. et al. (2013) with permission from John Wiley

and Sons, Copyright (2013).

of the brain and the other tissues. Also, tumor DOX retention
is increased with respect to controls. As result, Tf-PEG-GO-
DOX nanoparticles can significantly delay the tumor growth and
increase the rats median survival time, although no complete
tumor eradication is noticed. Similarly, GO-PEG (100–300
nm lateral size) functionalized with Human Immunodeficiency
Virus (HIV) Tat protein derived peptide (Tat), which increases
the BBB permeability of the nanomaterial, can deliver drug
molecules inside the brain tissues (Yang et al., 2015). The targeted
nanovector is able to improve the perfenidone (PERF) efficacy
in the treatment of subarachnoid hemorrhage, whose success is
limited by the scarce BBB penetration of the drug. Photoacustic
imaging demonstrates that the nanodrug is able to accumulate
in the brain after i.v. administration and that there is a clear
improvement with respect to the standard PERF therapy in
the PERF-induced water content increase close to the injured
site. Finally, evaluation of BBB integrity after the nanocarrier
administration reveals that its structure and function are not
affected by the nanoparticles.

In conclusion, the studies above reported suggest that GO and
its derivatives have many properties that can make them suitable
candidates for both diagnostic and therapeutic applications in
the CNS: they display intrinsic fluorescence and they can diffuse
inside the brain tissues, they have high loading capacity that
allows them to deliver significant quantities of drugs or imaging
agents inside the brain and, to date, they have not displayed
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toxicity toward CNS tissues yet. Unfortunately, the nanomaterial
displays low BBB permeability per se, and functionalization with
high efficiency targeting molecules or the employment of novel
physical BBB opening techniques is mandatory in order to
overcome this issue. We have to remark however that researches
aiming to propose possible applications of GO in the CNS are
relatively recent and therefore the nanomaterial has not been
yet optimized (size, functionalization, dose, etc.) for the best
performances in this body region. For the same reason, toxicity
of GO toward CNS has not been deeply investigated, including
a careful examination of GO effects both on single neuronal
populations and in the whole CNS systematically evaluating
the effect of size and functionalization. It is expected that the
high attention given nowadays to graphene and derivatives
will stimulate rapid improvements both in GO engineering for
medical applications, including those involving the CNS, and in
the understanding of its eventual toxic effects there.

NANODIAMONDS

Nanodiamonds (NDs) are carbon particles formed by sp3 carbon
atoms arranged in a diamond-like cubic lattice. They can be
produced in several diameters, ranging from 4–5 to 100 nm
(Figure 9). NDs synthesis is usually performed at high pressure-
high temperature. Although several production methods were
developed, the most used is detonation of TNT and nitroamines
(RDX) (Galli, 2010; Mochalin et al., 2011). NDs are currently
the most abundantly produced carbon nanostructures due to
the number of industrial applications where they are employed,
especially for the lubricants and polishing industry and as part
of novel high-performance nanocomposite materials (Mochalin
et al., 2011).

Nanodiamonds surface is highly reactive and can be
easily functionalized, as well as passivated (Liu et al., 2008;
Vaijayanthimala and Chang, 2009; Chen et al., 2010; Rojas et al.,
2011). Furthermore, by irradiating nanodiamonds with high-
energy particles and subsequent annealing, it is possible to
create nitrogen-vacancy centers that render the nanodiamond
particles highly fluorescent in the VIS range (500–800 nm,
with peak emission at 680 nm) (Fu et al., 2007; Chang et al.,
2008; Vaijayanthimala et al., 2012; Hegyi and Yablonovitch,

FIGURE 9 | (A) Schematic representation of NDs. (B) HRTEM micrograph of

∼7 nm oxidized diamond nanoparticles; adapted with permission from Rojas

et al. (2011). Copiright (2011) American Chemical Society.

2013; Bartelmess et al., 2015c). Recently, they have started to
be probed for possible biomedical applications like bioimaging
(Vaijayanthimala and Chang, 2009; Hui et al., 2010; Hegyi and
Yablonovitch, 2013; Perevedentseva et al., 2013), drug delivery
and nucleic acid delivery (Xing and Dai, 2009; Chen et al., 2010;
Zhu Y. et al., 2012; Perevedentseva et al., 2013), also exploiting
the functionalization with targeting molecules for improved
selectivity (Zhang X.-Q. et al., 2011; Fu et al., 2012). In view
of their highly biocompatibility, nanodiamonds are one of the
most promising carbon nanomaterials in this field (Schrand
et al., 2007a,b, 2009; Perevedentseva et al., 2013; Monaco and
Giugliano, 2014). When administered in vivo, nanodiamonds
accumulate in the liver, in the spleen, and in lymphnodes
(Yuan et al., 2009; Vaijayanthimala et al., 2012). Neuronal cells
cultured on a surface of nanodiamonds reveal cell growth and
electrophysiological properties comparable to neurons grown
on classical supports (Thalhammer et al., 2010; Monaco and
Giugliano, 2014; Edgington et al., 2013; Hopper et al., 2014).
Nanodiamonds are internalized by various cell types, likely by
chlatrin-based endocytosis (Liu K.-K. et al., 2009; Zhang X.-Q.
et al., 2011), with limited or no cytotoxic effects being reported.
Similar results are observed in neuronal cells (Hsu et al., 2014;
Huang et al., 2014).

Despite the encouraging results both in vitro and in vivo for
biological applications, in vivo applications of NDs in the CNS
are still in their early days. To date only one report suggests the
possible use of NDs for therapeutic applications in the CNS: CED
(convection-enhanced delivery, an experimental high efficiency
intracranial delivery system) of DOX-loaded NDs (4–8 nm) is
found to provide efficient treatment of different aggressiveness
gliomas xenographted in mice striatum (Xi et al., 2014). The
treatment allows to extend mice survival (with respect to DOX
treatment) 1.4 times in the case of the most aggressive tumor and
1.8 times in the case of the less aggressive one. Notably, in the
latter case tumor is eradicated in 3 out of 5 mice, while all mice
treated with non-conjugated DOX die. Experiments performed
using healthy mice indicate that, while the intracerebral injection
of a DOX solution cause the drug to rapidly spread in the whole
brain producing tissue damage and brain edema, the use of NDs-
DOX and CED allows the therapeutic agent to be confined in the
injection site, reducing its toxic effects on the surrounding tissues
and increasing the concentration of the drug at the injection
site. Furthermore, while DOX is rapidly excreted from the brain,
NDs-DOX display a much lower clearance.

Alongside the possible applications of NDs in the CNS
are being suggested, also toxicological studies in this body
region start to be performed. Available data indicate that 100
nm fluorescent NDs injected in mice hippocampus do not
produce any relevant effect neither on mice body weight,
food or water intake, nor on mice behavior in a novel object
recognition test, which should reveal eventual hippocampal
damages (Huang et al., 2014). Interestingly, the same NDs
have shown in vitro a concentration-dependent negative role in
neuronal morphogenesis, although this effect seems due to a
physical impairment of growth cones and not to the interference
with the cytoskeletal proteins, as on the contrary it has been
often evidenced for non-carbon nanoparticles (Tay et al., 2014).
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It is possible to hypothesize that the 3D environment and the
presence of glial cells in the living tissue is drastically limiting the
nanomaterial effects on growing neurons.

Given the low amount of data available, it is difficult
to draw conclusions regarding the possibility of a successful
application of nanodiamonds in brain science. The exclusive
use of in situ delivery methods in the CNS raises the question
if diamond nanoparticles can cross the BBB and therefore if
they are suitable for applications in drug delivery or imaging
in the brain. However, the possibility to display bright and
photostable fluorescence, the encouraging results obtained in
vitro, their ability to provide efficient and prolonged delivery
of a drug while confining its site of action in a limited space
and the absence of reports indicating relevant toxicity of the
nanomaterial toward neuronal cells suggest that NDs may give
precious contributions to the diagnosis and therapy of CNS
diseases. It should be underlined again that the nanomaterial is
in its early years of development for biomedical applications,
especially in the neurosciences field. We hope that, as in the
case of GO, suitable tailoring of the nanomaterial chemical,
morphological and physical properties will help to overcome its
current limitations.

CARBON NANOHORNS AND CARBON
NANOFIBERS

Single-wall carbon nanohorns (SWCNHs) are relatively
unexplored carbon nanomaterials, especially in biological
studies. They are structurally similar to carbon nanotubes,
however the continuous graphitic surface is arranged in a conical
shape with a closed tip. They are usually 40–50 nm long and
2–3 nm wide, and they commonly assembly into 80–100 nm
spherical aggregates (Iijima et al., 1999; Zhu and Xu, 2010;
Figure 10). SWCNHs have been functionalized either covalently
and noncovalently using the synthetic strategies developed for
CNTs and graphene (Tagmatarchis et al., 2006; Cioffi et al.,
2007; Pagona et al., 2007; Voiry et al., 2015). They find possible
applications as gas storage materials (Adelene Nisha et al., 2000;
Bekyarova et al., 2003; Yang et al., 2005; Sano et al., 2014), as
supports for metal catalyst nanoparticles (Yoshitake et al., 2002;
Kosaka et al., 2009), as electrode materials and as components
of photovoltaic devices (Vizuete et al., 2010; Lodermeyer et al.,
2015). Among biomedical applications, biomolecule sensing
(Valentini et al., 2014), MRI imaging (as support) (Miyawaki
et al., 2006), photodynamic and photothermal therapy of cancer
(Zhang et al., 2008; Whitney et al., 2011; Chen et al., 2014) as
well as drug and gene delivery (Murakami et al., 2004; Ajima
et al., 2005, 2008; Guerra et al., 2014; Ma et al., 2014; Zhao Q.
et al., 2015) are successfully achieved both in vitro and in vivo by
SWCNHs.

Although SWCNHs are structurally similar to CNTs, their
synthesis is metal-free, therefore no toxic effects due to
metal contaminants are possible. However toxicity reports
are conflicting: in some studies SWCNHs are found to be
biocompatible in vitro as well as in vivo even at high doses
despite their accumulation in several tissues like lung, spleen

FIGURE 10 | Schematic representation of SWCNHs (A) and

stacked-cup CNFs (C). (B) TEM micrograph of ∼80 nm SWCNHs peapods.

(D) TEM micrograph of stacked-cup CNFs. (A,B) adapted from Voiry et al.

(2015) with permission from The Royal Society of Chemistry. (C,D) adapted

from Sato et al. (2005) with permission from The Royal Society of Chemistry.

and liver (Lynch et al., 2007; Miyawaki et al., 2008; Tahara
et al., 2011), while other reports demonstrate their toxicity
toward macrophages even at low doses (Yang M. et al., 2014).
Toxicological reports regarding carbon nanohorns in vivo and
in vitro are very limited however, and it is not possible to draw
clear conclusions basing on state of the art literature, although the
relative higher abundance of studies indicating the presence of
just low and transitory toxicity suggests their compatibility with
living tissues and organs.

Unfunctionalized SWCNHs are reported to be uptaken
by mammalian cells, even if in a negligible amount (Isobe
et al., 2006; Zhang M. et al., 2012), while when opportunely
functionalized they can efficiently penetrate target cells,
potentially allowing higher selectivity than other nanoparticles
(Zhang M. et al., 2012; Li N. et al., 2015) and showing good
carrier properties (Tahara et al., 2011).

To date only one report describes the successful delivery
of SWCNHs in the brain. SWCNHs peapods, functionalized
with CdSe/ZnSe quantum dots (QDs), encapsulating Gd3N@C80

fullerenes and delivered to U87 tumor bearing mice by CED
intratumoral infusion (Zhang et al., 2010c), enable tumor
imaging either in vivo by MRI (thanks to Gd3+) and ex vivo by
confocal microscopy (thanks to QDs). Data demonstrate also that
SWCNHs can be retained inside the tumor for at least 3 days.
Although this study indicates SWCNHs as a possible brain drug
delivery nanoplatform, further reports aiming to determine the
in vivo biodistribution of SWCNHs demonstrate that they are
not able to cross the BBB (Miyawaki et al., 2009; Tahara et al.,
2011). This precludes the SWCNHs to be delivered in the brain by
i.v. administration, leaving the more dangerous and complicated
intracranial administration as the only feasible option available at
the moment.
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Carbon nanofibers (CNFs) are tubular carbon nanostructures,
with diameters in the range of 3–100 nm and lengths that
can also exceed 1 cm (De Jong and Geus, 2000; Figure 10).
They are essentially made of assembled curved graphitic layers
arranged in different ways to form long fibers, often hollow.
They are usually synthesized using CVD methods employing
metal catalysts (De Jong and Geus, 2000), or from electrospun
polymer fibers carbonization (Inagaki et al., 2012). Their surface
can be functionalized (Klein et al., 2008; Wang and Lin, 2008)
or furthermore graphitized by thermal treatment (Ramos et al.,
2013). Since their first discovery in the early 50’s, these materials
have been tested for several applications, like catalysis and
energy storage (Rodriguez et al., 1994; Ji and Zhang, 2009;
Wang K. et al., 2009; Duan et al., 2015), as well as for the
preparation of many composite materials (Hammel et al., 2004).
Moreover, they are used as support material for biomolecules
sensing (Baker et al., 2006; Wang and Lin, 2008; Huang
et al., 2010; Rand et al., 2013; Lim and Ahmed, 2015), gene
delivery (McKnight et al., 2003) and in regenerative medicine
(Webster et al., 2004; Tran et al., 2009). As for CNTs, several
concerns regarding their toxicity have been advanced (Sato
et al., 2005; Castranova et al., 2013), pointing out also their
non-biodegradability and their asbestos-like accumulation in
lungs.

Carbon nanofibers are proposed as coating materials for
neural prosthetic devices, as they show good compatibility
with neuronal cells and demonstrate to favor neuronal vs.
glial/astrocytic proliferation (Webster et al., 2004; Tran et al.,
2009). Also, carbon fibers can be used to build free-standing
vertically aligned arrays that allow to support and organize
the neuronal cells growth providing mechanical, chemical and
electrical cues at the subcellular scale. They can be also employed
to produce microelectrode arrays with possible applications for
in vivo signal detection and manipulation (McKnight et al., 2006;
Nguyen-Vu et al., 2007; de Asis et al., 2009; Zhang H. et al., 2012;
Vitale et al., 2015).

Despite the longstanding experience on these nanomaterials
and the deep knowledge of the nanofiber-neuron interface for
the preparation of efficient microelectrodes, in vivo experiments
on their possible application for the treatment of CNS injuries
and diseases are limited to just one example (Moon et al.,
2012). In this report CNFs impregnated with subventricular
stem cells were employed to promote neuroregeneration after
MCAO-induced stroke, evaluating also the differences between
“hydrophobic” CNFs (i.e., thermally graphitized, HP-CNFs, 100
nm × <5 µm) and “hydrophilic” CNFs (i.e., untreated CNFs,
HL-CNFs, 60 nm×<5µm) after their injection in the lesion site.
The animals receiving the CNF-based treatment show reduction
of the infarcted volume as well as recovery of motor and
somatosensory activity, with HP-CNFs treated animals showing
moderately better performances. Distribution analysis of stem
cells in the brain tissues indicates that while unsupported stem
cells are migrating all over the infarcted area, CNFs-supported
cells localize near the corpus callosum (HL-CNFs) or the striatum
(HP-CNFs). Notably, HP-CNFs are able to promote the stem cells
differentiation into neurons, to induce the formation of synapsis
and to reduce the astrocytes and microglia recruitment with

superior efficiency with respect to HL-SWCNTs and unsupported
cells. These data indicate that CNFs are optimal support material
for neuronal tissue regeneration, and that a lower surface
wettability is also playing a key role in promoting the stem cell
differentiation toward the neuronal fate.

Although the two studies indicate that both SWCNHs and
CNFs can play a role as support materials for imaging or delivery
applications, they both do not display BBB crossing capabilities
and require in situ administration. Since their very big size it
is unlikely that also advanced physical BBB opening techniques
or chemical functionalization can help in this sense. Due to the
limited possibilities of use alongside the indications of possible
toxicity, few efforts have been dedicated to identify their possible
applications in the diagnosis and cure of CNS diseases. However,
when used as electrodes or as part of composite nanostructures,
CNFs are found to be excellent materials for promoting neuronal
stimulation and growth, showing also no local toxicity. While it
is likely that SWCNHs applications in the CNS will not be further
explored, it is expected that CNFs will have an important role in
the development of neuronal recording and stimulating devices
as well as in neuroregeneration applications.

CARBON DOTS

Carbon dots (CDs), are a recently discovered class of
quasispherical carbon-based nanomaterials (Xu et al., 2004)
which essentially combine the presence of an amorphous or
nanocrystalline (Csp3) core and a graphitic or turbostratic
(Csp2) shell (Figure 11). Many strategies have been developed
for the synthesis of these materials, either using top-down
and bottom-up approaches; however, the industrial scalability
of their production is still difficult to date (Baker and Baker,
2010; Li H. et al., 2012; Lim et al., 2015; Zhang and Yu, in
press). Their peculiar properties are exploited in photocatalysis
(Fernando et al., 2015), electrocatalysis (Shen et al., 2015), as
sensitizers for solar cells (Briscoe et al., 2015), as well as for
sensing applications (Zhao A. et al., 2015). Due to their high
intrinsic fluorescence which can span from the VIS to the NIR
(Li H. et al., 2012; Strauss et al., 2014), CDs are considered
particularly appealing for bioimaging applications (Cao et al.,

FIGURE 11 | (A) Schematic representation of CDs. (B) HRTEM micrograph of

4–7 nm carbon dots produced by carbonization of chitosan; adapted from

Yang et al. (2012) with permission from The Royal Society of Chemistry.
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2012; Liu Q. et al., 2013; Luo et al., 2013; Ruan et al., 2014; Zhang
and Yu, in press), although the general excitation wavelength
dependence of fluorescence emission (Sun et al., 2006; Liu et al.,
2007; Qiao et al., 2010; Qu et al., 2012) can lead to artifact when
they are used in combination with other luminescent probes.
Depending on the synthetic strategy adopted, they already
expose on their surface functional groups that allow surface
passivation with biocompatible polymers and to graft additional
relevant molecules (Li et al., 2010; Liu et al., 2012; Wu et al.,
2013). Finally, molecules like anticancer drugs and nucleic acids
can be noncovalently loaded on their surface, allowing to use
these nanomaterials for delivery purposes (Lai et al., 2012; Liu
et al., 2012). Among all the carbon nanomaterials described so
far, carbon dots seem to display the highest biocompatibility
(Zhao et al., 2008; Yang et al., 2009a,b; Li et al., 2010; Liu et al.,
2010; Chandra et al., 2011; Wang Y. et al., 2011; Tao et al., 2012;
Qian et al., 2014; Ruan et al., 2014). One important contribution
to this effect seems to be the high density of charged groups on
their surface, which provides high stability of their suspensions
in water and biological fluids.

Several authors report that carbon dots penetrate cell lines
when applied in vitro (Qiao et al., 2010; Liu C. et al., 2011;
Wang F. et al., 2011; Yang et al., 2012). No toxicity is observed in
various studies conducted on cell lines (Liu R. et al., 2009; Yang
et al., 2009b; Wang F. et al., 2011) and on animals (Qiao et al.,
2010; Tao et al., 2012). However, a recent report indicates that
these nanoparticles could interfere with exocytotic mechanisms,
and therefore hamper the normal neuronal and brain functions
(Borisova et al., 2015). Since the effect of CDs on cellular
biochemistry has not been completely unraveled, caution should
be used when investigating these nanomaterials for possible
clinically relevant applications.

Given their recent discovery, only few studies have been
probing CDs in the CNS in view of a potential use in the diagnosis
and therapy of CNS diseases. To date, in vivo evidences fostering
the CDs use in this field derive only from biodistribution studies.
Interestingly, the CDs used in these studies exhibit very good BBB
crossing capabilities and a strong preference to accumulate in the
brain over the other organs although they were not endowed of
specific functionalizations: 100 nm fluorescent CDs, prepared via
the inexpensive and efficient pyrolysis of a glucose and glutamic
acid mixture, demonstrate to be efficiently uptaken by cerebral
tissues after i.v. administration in mice (Qian et al., 2014).
Epifluorescence imaging, made possible thanks to the CDs bright
fluorescence emission, reveals that they can readily cross the BBB
after systemic injection and diffuse in the brain tissues, where
they reach the highest concentration within 1 h. Ex vivo imaging
of brain slices indicates that these carbon dots are predominantly
accumulating at the cortex surface, in the hippocampus and in
the ventricles. Authors hypothesize that the presence of still intact
glucose and glutamine molecules on the CDs surface endows the
nanoparticles of “CNS-targeting” capabilities. From the available
epifluorescence images, the nanomaterial does not show to
diffuse in other specific body regions apart from the brain and
the blood. Interestingly, the nanomaterial is also rapidly cleared
from the CNS. In vitro studies demonstrate that CDs dispersions
in plasma have high stability, they have good hemocompatibility

and they are just moderately cytotoxic for brain endothelial cells
only at very high concentrations. In summary the provided in
vivo data, although referring only to early timepoints, suggest that
the nanomaterial has an adequate safety profile for biomedical
applications in the CNS.

Also 3–4 nm glycine-derived CDs are able to cross very
efficiently the BBB and accumulate in the brain. Moreover, they
are able to target a human glioma tumor xenographted in mice
brain (Ruan et al., 2014). Epifluorescence imaging indicates that
they display a maximum brain uptake just 5 min after the
tail vein injection, they strongly localize inside the tumor mass
and they are also rapidly cleared. Systemically, they are also
distributing in liver, kidneys and hearth (Figure 12). In vitro
hemolysis, plasma stability and cytotoxicity studies indicate a
very high biocompatibility of this nanomaterial. Although these
CDs display fast and consistent accumulation inside the tumor,
their potential use as vectors for delivering antitumor drugs in
the CNS is not suggested at the moment because of their fast
excretion form the tumor lesion and their accumulation in the
heart, which is a known target of anticancer drugs toxicity.

Despite their fast elimination from brain tissues, CDs
represent an excellent starting point for the development of novel
diagnostic and therapeutic systems against CNS pathologies
thanks to their spontaneous BBB crossing capabilities, which
seem not to depend from the nanomaterial size. Moreover,
these nanomaterials are in the very early stages of development
for biomedical applications: opportune chemical modifications
with molecules able to increase their plasma circulation time
and/or with targeting moieties will be able to improve their
retention in the brain and to allow this way to exploit them for
applications like tumor therapy. A deep toxicological evaluation
of their effects in the CNS in particular but also in the whole
body however must be undertaken since current data, albeit very
promising, are not sufficient to draw clear conclusions.

CONCLUSIONS AND PERSPECTIVES

Carbon nanomaterials are often proposed as optimal candidates
for neurobiomedical applications because of their properties
which include low toxicity, high mechanical strength, high
thermal and electric conductivity, and, in some cases, intrinsic
fluorescence. The collection of studies and results presented in
this review also demonstrates that these materials can interface
with cerebral tissues, and that they can perform imaging,
neuronal growth, neuroprotection and drug delivery tasks with
high efficiency. Moreover, the wide variety of available carbon
nanomaterials offers numerous possibilities for tailor-made
actions and performances within the CNS (Table 1).

Carbon nanotubes, amongst carbon nanomaterials, are the
most studied in vivo for possible applications in the diagnosis
and cure of brain diseases. CNTs display good compatibility
with brain tissues, neuroprotective effects against stroke-induced
neurodegeneration, drug and nucleic acids delivery capabilities as
well as support capabilities for neuroregeneration applications.
Despite these promising performances, there are still some
concerns about their toxicity, which has been shown to depend
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FIGURE 12 | In vivo and ex vivo imaging of glioma bearing mice after administration of 3–4 nm glycine-derived CDs. (A) Epifluorescence imaging of CDs

distribution after i.v. injection, showing the rapid accumulation inside the glioma and the fast excretion of the nanoparticles after few hours. (B) 3-D reconstruction of

CDs distribution 2 h after the injection, confirming the localization in the brain. (C) Ex vivo fluorescence imaging of main organs 2 h after CDs injection, indicating high

accumulation in liver and kidney but also a good retention inside the glioma. Reproduced from Ruan et al. (2014) with permission from The Royal Society of Chemistry.

mostly on the CNTs administration site, on their agglomeration
state and on the presence of metal impurities in the material. The
studies reported in this review indicate that CNTs seldom show
toxicity toward brain tissues, probably thanks to the high purity
and high dispersibility of the nanomaterials used. To date, the
biggest impairment to the CNTs implementation in the therapy
of CNS diseases is represented by the elimination of the catalyst
metal nanoparticles, which requires the use of several procedures
that hamper a cost-effective, large-scale production of high purity
material.

Fullerenes have also shown good potential to find applications
in the CNS, given their BBB crossing capabilities. The focus on
their applications in the CNS however has been predominantly
directed to exploit their intrinsic neuroprotective behavior, while
other applications like drug delivery and imaging have been
rarely investigated. Despite fullerenes can be synthesized in large
quantities and at relatively low costs, their toxicity, which is more
evident in water-soluble derivatives (i.e., the most appealing for
the integration into a drug product) than in unfunctionalized
fullerenes, represents a serious obstacle and currently limits their
practical use in therapy.

Graphene oxide and derivatives can be successfully applied in
the CNS for imaging applications by exploiting their intrinsic
NIR fluorescence or the functionalization with MRI contrast
agents. Moreover they can deliver therapeutic drugs and genetic
material inside cerebral tumors. On the other hand, they are
unable to cross the BBB unless appropriately functionalized or

with the help of physical BBB opening methodologies. Although
they tend to accumulate in lungs and they persist in the body for
a longer time than other carbon nanomaterials, their low-toxicity
profile, especially in the presence of extensive functionalization,
makes them possible candidates for future implementations in
therapy.

Nanodiamonds have been proposed very recently as
suitable nanomaterials for biomedical applications. Indeed,
studies of their application in vivo are still very limited
compared to those available for other carbon nanomaterials.
Nevertheless, NDs have already shown promising drug
delivery capabilities inside the CNS, which allowed to obtain
several improvements in the therapy of a cerebral tumor
with doxorubicin. Moreover, NDs have not displayed any
alarming toxicity. Although the research on possible diagnostic
and therapeutic applications of NDs in the brain is in its
infancy, the current results suggest that these nanomaterials
may have an important role to play in the future brain
medicine.

Carbon nanohorns and nanofibers demonstrate to have strong
limitations for their direct application in the CNS: both of them
do not show BBB crossing capabilities, and there are strong
concerns regarding their toxicity and their strong accumulation
in several organs. For these reasons the number of studies in the
CNS conducted over the years is limited. We do not envisage
therefore a future for the direct use of these nanomaterials in the
therapy of CNS diseases.
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TABLE 1 | Comparison of the experimental settings and main features of the different carbon nanomaterials.

Carbon

nanomaterial

Chemical

modifications

Application Animal model Administration

route and dose

In vivo toxicity References

SWCNTs 13C enriched +

Tween 80 (1%)

Biodistribution analysis Mouse i.v. 200µg Moderate (lungs, liver) Yang et al., 2007

−NH2 Neuroprotection MCAO stroke model

rat

i.c.v. 40 ng No Lee H. J. et al.,

2011

PEG Neuroregeneration Spinal cord injury

model rat

Lesion site 0.025 to

2.5µg

No Roman et al., 2011

PEG Toxicity analysis Rat i.cr. 0.5–1.0µg Yes Dal Bosco et al.,

2015

i.cr. 2.1 µg No

Acetylcholine Drug delivery Mouse g.i. 25 mg/kg N.a Yang Z. et al., 2010

PEG

oligonucleotide

(CpG)

Drug delivery Glioma-bearing

mouse

i.cr. 7.5µg No Zhao et al., 2011

MWCNTs PF-127 coating Toxicity assessment Mouse i.cr. 30–150 ng No Bardi et al., 2009

[111 In]DTPA BBB crossing analysis Mouse i.v. 50µg N.a. Kafa et al., 2015

−NH+

3 + siRNA Neuroprotection Endothelyn-1 stroke

model rat

i.cr. 0.5µg No Al-Jamal et al.,

2011

Oxidation PEG

doxorubicin

angiopep-2

Targeted drug delivery Glioma-bearing

mouse

i.v. 1.9 and 6.3

mg/kg

Cardiac, lower than

DOX

Ren et al., 2012

−NH+

3 Evaluation of

internalization and

inflammatory potential

Mouse i.cr. 500 ng Weak transient infl. Bardi et al., 2013

Shortenting+

oxidation+ −NH+

3

Moderate transient infl.

C60 fullerene – Neuroprotection Rat g.i. 3 µg/kg/die No Tykhomyrov et al.,

2008

– Recovery of neuronal

functions

Aβ amyloid AD

model rat

i.cr. 5µg No Podolski et al.,

2007

– Toxicity analysis Rat i.c.v. 0.25 mg/kg Yes (moderate) Yamada et al., 2008

i.p. 0.25 mg/kg No

Carboxylic acid

(14C-labeling)

Toxicity analysis Rat i.p. 500 mg/kg Yes Yamago et al., 1995

Biodistribution

analysis

i.v. 0.47 mg/rat (est) No

Tris (malonic acid)

(carboxyfullerene)

Neuroprotection ALS model mouse i.p. (cont.) 15

mg/kg/day

No Dugan et al., 1997

Tris (malonic acid)

(carboxyfullerene)

Neuroprotection Fe2+- induced PD

model mouse

i.cr. 3.7µg No Lin et al., 2001

Tris (malonic acid)

(carboxyfullerene)

Neuroprotection MCAO stroke model

rat

i.c.v. 0.1mg No Lin et al., 2002

i.c.v. 0.3mg Yes (severe)

i.v. 6 mg/kg No

Tris (malonic acid)

(carboxyfullerene)

Neuroprotection Mouse g.i. 10 mg/kg/day No Quick et al., 2008

Tris (malonic acid)

(carboxyfullerene)

Neuroprotection Mouse i.p. 6–40 mg/kg/day,

3 day adm.

No Tsao et al., 1999

Tris (malonic acid)

(carboxyfullerene)

Recovery of neuronal

functions

MPTP-induced PD

model monkey

i.p, s.c. (cont.) 3

mg/kg/day

Low Dugan et al., 2014

Hexa (sodium

butylsulfonate)

Neuroprotection MCAO stroke model

rat

i.v. 0.1–100 µg/kg No Huang et al., 2001

PVP coating Recovery of neuronal

functions

Cycloheximide

memory impaired rat

i.cr. 1.7µg No Podolski et al.,

2005

(Continued)
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TABLE 1 | Continued

Carbon

nanomaterial

Chemical

modifications

Application Animal model Administration

route and dose

In vivo toxicity References

−(OH)24 (fullerenol) Neuroprotection MCAO stroke model

normotensive and

hypertensive rats

i.v. 0.5 mg/kg No Fluri et al., 2015

i.v. 1.0–2.0 mg/kg Yes (severe)

−(OH)24 (fullerenol)

+ glucosamine

Neuroprotection MCAO stroke model

normotensive and

hypertensive rats

5 mg/kg (eq to 0.5

mg/kg fullerenol)

No

−(OH)24 (fullerenol) Toxicity analysis Rat i.c.v. 0.25 mg/kg Yes (severe) Yamada et al., 2010

Amantadine Recovery of neuronal

functions

Haloperidol-induced

PD model rat

i.p. 10 mg/kg No Nakazono et al.,

2004

Gd@C82

fullrene

Gd3+ endohedral

−(OH)n

Tumor imaging Glioma-bearing rat i.v. ≤9.7 mg/kg No Shevtsov et al.,

2014

i.v ≥12.5 mg/kg Yes

GO 188Re-labeled Biodistribution analysis Mouse i.v. 1–10 mg/kg No Zhang X. et al.,

2011

– Biocompatibility analysis Mouse i.v. 100µg No Qu et al., 2013

Tween 80 coating i.v. 200µg No

Dextran coating Biocompatibility analysis Mouse i.v. <125 mg/kg No Kanakia et al., 2014

i.v. ≥125 mg/kg Yes (low)

PEG Imaging Mouse i.cr. 40 ng No Qian et al., 2012

PEG + Fe3O4 NPs

+epirubicin

Targeted drug delivery Mouse i.v. + LFUS 0.5µg No Yang H.-W. et al.,

2013

Gd-DTPA +

PAMAM +

epirubicyn +

miRNA (Let-7)

Imaging drug delivery

gene delivery

Mouse i.v. dose n.a. No Yang H.-W. et al.,

2014

PEG + transferrin

+ doxorubicin

Targeted drug delivery Glioma-bearing rat i.v. 5.6 mg/kg No Liu G. et al., 2013

PEG + Tat-peptide

+ perfenidone

Drug delivery Subarachnoid

hemorrhage model

mouse

i.c.v. 20 µg. No Yang et al., 2015

NDs Doxorubicin Drug delivery Glioma-bearing

mouse

i.cr. 30µg No Xi et al., 2014

– Toxicity analysis Mouse i.cr. 1µg No Huang et al., 2014

SWCNHs QDs + Gd3N@C80 Imaging Glioma-bearing

mouse

i.cr. dose n.a. No Zhang et al., 2010c

CNFs Impregnated with

stem cells

Neuroregeneration MCAO stroke model

rat

i.cr. dose n.a. No Moon et al., 2012

Graphitized +

impregnated with

stem cells

i.cr dose n.a. No

CDs – Imaging Mice i.v. 100 mg/kg No Qian et al., 2014

– Imaging Glioma-bearing

mouse

i.v. 100 mg/kg No Ruan et al., 2014

g.i., gastrointestinal; i.cr., intracranial; i.p., intraperitoneal; i.v., intravenous; i.c.v., intraventricular; s.c., subcutaneous.

Carbon dots are the latter discovered materials that have been
examined for their possible implementation in the diagnosis
and therapy of CNS diseases. For this reason, drug delivery or
neuroprotection applications have not been evaluated in vivo
yet. Nevertheless, biodistribution data indicate that carbon dots

can cross the BBB very efficiently, and have a low retention in
the body. Furthermore, there are only little evidences indicating
their possible toxicity, which in any case seems to be very mild.
Along with NDs, CDs therefore represent a very promising
family of nanomaterials for future applications in brain diseases
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therapy and diagnosis. One current drawback is related to the fact
that large-scale industrial production is still not technologically
possible, even though the synthesis is relatively easy and cheap
on a laboratory scale.

As highlighted in this review, research on carbon
nanomaterials for brain-related applications is very active,
and is taking full advantage of a combination of a broad
spectrum of nanomaterials differing in their shape and
properties and of a wealth of functional molecules that can
provide them with additional tailored features. In vivo studies
in the CNS represent a springboard for the implementation of
carbon nanomaterials in the diagnosis and treatment of brain
diseases. With this in mind, the studies herein presented offer
an intriguing glimpse of what the continuous advancements
in carbon nanomaterials technology will be able to provide in
the near future. The number of different carbon nanostructures
employed in brain research has increased dramatically in the
last few years, yet there are some carbon nanomaterials that
have not been investigated in this context already. Also, the
success of NDs and CDs for biomedical applications indicates
a higher potential for spherical carbon nanoparticles, both in

terms of biocompatibility and efficiency in cell penetration.
In this sense carbon nano-onions, which have been recently
tested for possible biomedical use, have the potential to
contribute positively to neurobiomedical applications. We
are confident that in the near future the knowledge acquired
on the different carbon nanomaterials features and on their
toxicology, alongside with the progress made in maximizing
their performances in vivo, will allow these nanomaterials to
assume an important role in the diagnosis and treatment of brain
diseases.
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