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Abstract
Objective
We tested the hypothesis that variant repeat interruptions (RIs) within the DMPK CTG repeat
tract lead to milder symptoms compared with pure repeats (PRs) in myotonic dystrophy type 1
(DM1).

Methods
We evaluated motor, neurocognitive, and behavioral outcomes in a group of 6 participants with
DM1with RI compared with a case-matched sample of 12 participants with DM1with PR and a
case-matched sample of 12 unaffected healthy comparison participants (UA).

Results
In every measure, the RI participants were intermediate between UA and PR participants. For
muscle strength, the RI group was significantly less impaired than the PR group. For measures of
Full Scale IQ, depression, and sleepiness, all 3 groups were significantly different from each other
with UA > RI > PR in order of impairment. The RI group was different from unaffected, but not
significantly different from PR (UA > RI = PR) in apathy and working memory. Finally, in finger
tapping and processing speed, RI did not differ from UA comparisons, but PR had significantly
lower scores than the UA comparisons (UA = RI > PR).

Conclusions
Our results support the notion that patients affected by DM1 with RI demonstrate a milder
phenotype with the same pattern of deficits as those with PR indicating a similar disease process.
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Myotonic dystrophy type 1 (DM1; OMIM 160900) is an
autosomal dominant, progressive, multisystem disorder
caused by expansion of a CTG repeat in the 39-untranslated
region of DMPK.1–4 DM1 affects many organ systems, in-
cluding skeletal muscle, heart, gastrointestinal, integumentary,
endocrine, and CNS.3,5,6 Although the primary symptoms of
DM1 are myotonia and muscle weakness, some of the most
disabling symptoms of the disease are those arising from CNS
involvement.7,8 These include progressive cognitive and be-
havioral changes, as well as fatigue and excessive daytime
sleepiness, which greatly affect overall quality of life.9–11

In 3%–5% of patients with DM1, the CTG repeat tract is
interrupted by naturally occurring variant sequences, such as
CCG, CTC, or GGC motifs.12,13 Variant repeats most com-
monly occur at the 39-end of the DMPK CTG repeat tract.14,15

These are referred to as variant repeat interruptions (RIs). In-
creasing evidence from case reports suggests that patients
with DM1 who carry RI alleles exhibit a later age at symptom
onset, milder muscle symptoms, and atypical patterns of
symptoms (smaller proportion of cataracts, cardiac problems,
and muscle weakness) compared with those with pure repeats
(PRs).12–14,16,17 These effects have now been confirmed in 2
large independent DM1 cohorts.18,19 The attenuation of
symptoms is hypothesized to result, at least in part, from a
stabilizing effect of RI that reduces expansion-biased instability in
somatic cells.13,20,21 In this context, we set out to comparemotor,
neurocognitive, and behavioral outcome measures of partici-
pants with adult-onset DM1 with RIs matched to participants
with DM1 with PRs, as well as comparison of both groups to
participants unaffected by DM1.

Methods
Recruitment of participants
Participants with adult-onset DM1 were recruited to the
University of Iowa “DM1Brain Study” from across the United
States by advertisements through the Myotonic Dystrophy
Foundation or word of mouth, as described previously.22

Recruitment was targeted to adult-onset DM1 only, with
symptom onset at age 18 years or older. Unaffected partici-
pants were primarily recruited from the local community
through advertisements. Recruitment for baseline assess-
ments took place between September 2014 and July 2017.
Inclusion criteria were as follows: (1) between ages 21 and 65
years; (2) clinical diagnosis of DM1 after age 21 years; (3)
committed to completing annual evaluations for 2 years fol-
lowing intake; and (4) commitment of an informant to

accompany the participant to study visits. Exclusion criteria
included (1) unstable psychiatric illness (including current
substance abuse) and (2) history of major head trauma with
loss of consciousness for longer than a few minutes and in-
cluding clinically significant sequelae.

Standard protocol approvals, registrations,
and patient consents
All participants gave written informed consent before en-
rolling in the protocol in accordance with the Declaration of
Helsinki. The study was approved by the University of Iowa’s
Institutional Review Board.

Data availability
Anonymized data will be shared by request from any qualified
investigator.

Measurement of CTG repeat length and variant
repeat identification
For genotyping of CTG repeats in participants with DM1, we
used the same methodology as the one used in previous
studies.22,23 For variant repeat identification, small-pool PCR
products underwent AciI enzyme digestion (New England
Biolabs UK Ltd.; restriction site 59CCGC-39) and Southern
blotting to indicate the presence of CCG interruptions within
the CTG repeat array in the expanded allele as previously
described.13

Motor testing
Motor, neurocognitive, and behavioral outcome measures of
interest were selected a priori to reduce the number of com-
parisons. Severity of muscle weakness was measured using the
Muscle Impairment Rating Scale (MIRS) during examination
by a neuromuscular specialist experienced in DM1, blinded to
the participants’ genetic status.24 This scale evaluates muscular
impairment severity according to an ordinal 5-point scale as
follows: (1) no muscular impairment, (2) minimal signs, (3)
distal weakness, (4) mild to moderate proximal weakness, and
(5) severe proximal weakness.

Grip strength was measured using a Lafayette Instruments
dynamometer. The stirrup of the dynamometer was adjusted
to comfortably fit the participant’s hand size, after which they
were instructed to squeeze as hard as they possibly could.
Strong motivational encouragement was provided by the ex-
aminer during each of the 6 trials (3 for the dominant hand
and 3 for the nondominant hand) to elicit the participant’s
maximal effort. Ultimate scores were the means of 3 trials for
each hand.

Glossary
AES = Apathy Evaluation Scale; BDI-II = Beck Depression Inventory-II;CI = confidence interval;DM1 = myotonic dystrophy
type 1; EDS = excessive daytime sleepiness; MIRS = Muscle Impairment Rating Scale; PR = pure repeat; PSI = Processing
Speed Index; RI = repeat interruption; SCOPA = Scales for Outcomes in Parkinson’s Disease; SDB = sleep-disordered
breathing; WAIS-IV = Wechsler Adult Intelligence Scale–Fourth Edition; WMI = Working Memory Index.
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Neurocognitive and behavioral testing
Neurocognitive and behavioral assessments included the
Wechsler Adult Intelligence Scale–Fourth Edition (WAIS-
IV), Beck Depression Inventory-II (BDI-II), Apathy Evalua-
tion Scale (AES) self-assessment, and Scales for Outcomes in
Parkinson’s Disease (SCOPA). These measures were ad-
ministered by a trained examiner experienced in DM1 who
was blinded to the patient’s clinical condition (CTG expan-
sion length and muscular impairment).

Statistical analysis
All statistical analyses were performed using R (version 3.6.2).
Each participant who was determined to have variant repeats
was matched by age, sex, and CTG repeat length to 2 partici-
pants with pure CTG repeats and 2 unaffected participants.
Mixed-effects multivariable linear regression models were used
to examine the impact of group, age, sex, and a subject-
matching variable on the dependent variables (motor, neuro-
cognitive, and behavioral outcome measures). The coefficient
of determination (R2) for the model, semi-partial R2 for each
fixed effect (group, age, and sex), and 95% confidence intervals
(CIs) were calculated using the Nakagawa & Schielzeth ap-
proach.25 Effect sizes were considered very weak (R2 < 0.1),
weak (0.1 < R2 < 0.3), moderate (0.3 < R2 < 0.5), and strong
(0.5 < R2). Post hoc least-squares means tests were used for
pairwise comparisons between UA, RI, and PR groups. All
outcome measures of interest were selected a priori to mini-
mize multiple testing considerations.

Results
Sample
From a cohort of 57 adults affected by DM1, 6 participants
(11%)were identified as positive for variant RIs by AciI enzyme
digest. Each RI participant was equivalently matched to 2 PR
participants and 2 unaffected healthy comparison participants
(UA) by age, sex, and CTG repeat length for a total sample of
30 participants (6 RI, 12 PR, and 12 UA) (table 1). There was
an equal proportion of men (66%) and women (33%) within
each group (χ2 = 0.0, df = 2, p = 1.0). Mean age at evaluation
was 42.27 years (SD = 11.89) for the UA group, 42.25 years
(SD = 12.52) for the RI group, and 40.42 years (SD = 11.03)
for the PR group, with no significant group effect (χ2 = 4.32, df
= 2, p = 0.115). There were no significant differences in age
between the UA and RI groups (t(22) = 0.017, 95% CI [−2.44,
2.48]), the UA and PR groups (t(22) = 1.90, 95% CI [−0.16,
3.85]), and the RI and PR groups (t(22) = 1.53, 95% CI [−0.63,
4.28]) (table 1).Mean age at disease onset was 31.75 years (SD
= 5.76) for the RI group and 24.14 years (SD= 9.48) for the PR
group, with no significant difference between groups (t(13) =
1.93, 95% CI [−0.86, 15.89]) (table 1). The length of the
estimated progenitor CTG allele (ePAL)26 ranged from 12 to
22 in the UA group (mean = 14.43, SD = 3.41), from 157 to
625 in the RI group (mean = 386.17, SD = 149.66), and from
125 to 750 in the PR group (mean = 327.92, SD = 190.13),
with a significant group effect in themodel (χ2 = 32.91, df = 2, p

< 0.001). As expected for CTG length, there were significant
differences between the UA group and the RI (t(17.9) = −5.10,
95% CI [−545.39, −227.07]) and PR (t(18.3) = −5.01, 95% CI
[−468.87, −192.23]) groups and no significant difference be-
tween the RI and PR groups (t(17.5) = 0.82, 95% CI [−86.25,
197.62]) (table 1).

Motor performance
Detailed statistics for each outcome measure from the mixed-
effects multivariable linear regression model with post hoc
least-squares means tests are shown in table 2 and table 3. The
figure summarizes group differences for all outcome mea-
sures, which show that the RI group is always intermediate
between the UA and PR groups.

As shown in figure, A, there was a significant difference between
the RI and PR groups in MIRS scores (t(11) = −2.2, 95% CI
[−1.95, −0.003]) with an overall moderate effect size of the
model (R2 = 0.308, 95% CI [0.090, 0.668]) and a significant
group effect (χ2 = 4.87, df = 1, p = 0.027) with a higher
proportion of PR participants scoring 3 and 4 (mild to mod-
erate proximal weakness) (mean = 2.92; SD= 1.08) than the RI
group (mean 2.00; SD = 0.63). The PR group had 5 partici-
pants with a score of 4 (moderate proximal weakness) and no
participants with a score of 5 (severe proximal weakness),
whereas the RI group had no participants with a score of 4 or 5.

Finger tapping test results for the dominant hand are shown in
figure, B. The mean scores were 43.98 (SD = 8.98) for the UA
group; 36.83 (SD = 5.54) for the RI group; and 29.16 (SD =
11.78) for the PR group. There was an overall moderate effect
size (R2 = 0.459, 95% CI [0.264, 0.694]) and significant group
effect in the model (χ2 = 16.84, df = 2, p < 0.001), with no
significant difference between the UA and RI groups (t(25) =
1.61, 95% CI [−1.96, 16.25]), a significant difference between
the UA and PR groups (t(25) = 4.10, 95%CI [7.41, 22.34]), and

Table 1 Demographics of the study sample

Control (UA) Variant (RI) Pure (PR)

Sample, n 12 6 12

Sex, n

Males 8 4 8

Females 4 2 4

Age at evaluation,
mean (SD)

42.27 (11.89) 42.25 (12.52) 40.42 (11.03)

Age at disease
onset, mean (SD)

n/a 31.75 (5.76) 24.14 (9.48)

CTG

Range 12–22 157–625 125–750

Median 13 375 285

Abbreviations: PR = pure repeat; RI = repeat interruption.
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no significant difference between the RI and PR groups (t(25) =
1.74, 95% CI [−1.40, 16.86]).

As shown in figure, C, for grip strength (dominant hand), the
mean was 41.08 (SD = 11.12) for the UA group, 29.19 (SD =
15.7) for the RI group, and 19.25 (SD= 14.42) for the PR group.
The group effect was significant in the model (χ2 = 22.01, df = 2,
p < 0.001) with a strong overall effect size (R2 = 0.505, 95% CI
[0.312, 0.722]), no significant difference between the UA and RI
groups (t(22) = 2.03, 95% CI [−0.25, 24.02]), a significant dif-
ference between the UA and PR groups (t(22) = 4.69, 95% CI
[12.56, 32.45]), and no significant difference between the RI and
PR groups (t(22) = 1.81, 95% CI [−1.54, 22.79]).

Neurocognitive functioning
Figure, D through F shows group differences on the WAIS-IV
Full Scale IQ, Working Memory Index (WMI), and Processing
Speed Index (PSI), respectively. The mean Full Scale IQ was
120.08 (SD = 13.52) for the UA group; 107.17 (SD = 8.77) for
the RI group; and 94.67 (SD = 7.67) for the PR group. There
was a significant group effect in themodel for Full Scale IQ (χ2 =
33.39, df = 2, p < 0.001), with a strong overall effect size (R2 =
0.537, 95% CI [0.346, 0.741]), a significant difference between
the UA and RI groups (t(25) = 2.37, 95% CI [1.72, 24.11]), a
significant difference between the UA and PR groups (t(25) =
5.78, 95% CI [16.55, 34.90]), and a significant difference be-
tween the RI and PR groups (t(25) = 2.35, 95%CI [1.59, 24.02]).

Table 2 Outcome comparisons between groupsa

Variable Group 1 Group 2 Estimate Estimate 95% CI [LL, UL]

MIRS Variant Pure −0.97 [−1.95, −0.003]

Tapping Controls Variant 7.15 [−1.96, 16.25]

Controls Pure 14.88 [7.41, 22.34]

Variant Pure 7.73 [−1.40, 16.86]

Grip strength Controls Variant 11.89 [−0.25, 24.03]

Controls Pure 22.51 [12.57, 32.46]

Variant Pure 10.62 [−1.54, 22.79]

WAIS Full Scale IQ Controls Variant 12.92 [1.73, 24.11]

Controls Pure 25.73 [16.56, 34.90]

Variant Pure 12.81 [1.59, 24.03]

WAIS working memory Controls Variant 18.34 [4.84, 31.84]

Controls Pure 25.88 [14.82, 36.95]

Variant Pure 7.54 [−5.99, 21.08]

WAIS processing speed Controls Variant 8.51 [−5.19, 22.20]

Controls Pure 26.84 [15.62, 38.06]

Variant Pure 18.33 [4.61, 32.06]

Beck Depression Inventory Controls Variant −5.25 [−10.33, −0.18]

Controls Pure −10.50 [−14.66, −6.34]

Variant Pure −5.25 [−10.34, −0.16]

Apathy Evaluation Scale Controls Variant −8.51 [−16.30, −0.71]

Controls Pure −11.65 [−18.04, −5.26]

Variant Pure −3.14 [−10.96, 4.68]

SCOPA daytime Controls Variant −2.75 [−4.93, −0.57]

Controls Pure −5.56 [−7.35, −3.77]

Variant Pure −2.81 [−4.99, −0.62]

Abbreviations: CI = confidence interval; MIRS =Muscle Impairment Rating Scale; SCOPA = Scales for Outcomes in Parkinson’s Disease; WAIS =Wechsler Adult
Intelligence Scale.
a All regression coefficients (estimate) and 95% CIs were calculated in the linear mixed-effects regression model with least-squares means post hoc tests,
using group, age, sex, and a matching variable as predictors. LL and UL represent the lower limit and upper limit of the regression coefficient, respectively.
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For WMI, the mean score was 120.17 (SD = 11.57) for the
control group, 101.83 (SD = 11.55) for the RI group, and
94.75 (SD = 14.59) for the PR group, with a significant group
effect in the model (χ2 = 24.06, df = 2, p < 0.001) and
moderate overall effect size (R2 = 0.458, 95% CI [0.262,
0.694]). There was a significant difference between the UA
and RI groups (t(25) = 2.79, 95% CI [4.84, 31.84]), a signif-
icant difference between the UA and PR groups (t(25) = 4.82,

95% CI [14.82, 36.95]), and no significant difference between
the RI and PR groups (t(25) = 1.14, 95% CI [−5.99, 21.08]).

PSI exhibited a similar pattern as WMI, with the UA group
having a mean score of 114.5 (SD = 16.71), the RI group having
amean score of 106.00 (SD = 12.88), and the PR group having a
mean score of 88.08 (SD = 8.15). There was a significant group
effect in the model (χ2 = 24.90, df = 2, p < 0.001) and moderate

Table 3 Mixed-effects multivariate model resultsa

Variable Predictor χ2 df p Value Model R2 95% CI [LL, UL] Semi-partial R2 Semi-partial R2 95% CI [LL, UL]

MIRS Group 4.87 1 0.027 0.308 [0.090, 0.668] 0.206b [0.004, 0.559]b

Age 1.75 1 0.185 0.108 [0.000, 0.460]

Sex 0.14 1 0.703 0.010 [0.000, 0.293]

Tapping Group 16.84 2 0.000 0.459 [0.264, 0.694] 0.367/0.083c [0.131, 0.611]/[0.000, 0.336]c

Age 0.02 1 0.863 0.001 [0.000, 0.166]

Sex 5.44 1 0.019 0.158 [0.006, 0.428]

Grip strength Group 22.01 2 0.000 0.505 [0.312, 0.722] 0.422/0.085c [0.184, 0.651]/[0.002, 0.385]c

Age 2.34 1 0.126 0.085 [0.001, 0.340]

Sex 1.85 1 0.173 0.069 [0.000, 0.316]

WAIS Full Scale IQ Group 33.39 2 0.000 0.537 [0.346, 0.741] 0.535/0.163c [0.313, 0.727]/[0.007, 0.433]c

Age 0.67 1 0.411 0.023 [0.000, 0.231]

Sex 0.02 1 0.881 0.001 [0.000, 0.165]

WAIS working memory Group 24.06 2 0.000 0.458 [0.262, 0.694] 0.667/0.482c [0.208, 0.667]/[0.024, 0.482]c

Age 1.02 1 0.310 0.034 [0.000, 0.256]

Sex 0.09 1 0.753 0.003 [0.000, 0.174]

WAIS processing speed Group 24.90 2 0.000 0.468 [0.272, 0.700] 0.456/0.053c [0.220, 0.674]/[0.000, 0.292]c

Age 0.819 1 0.365 0.033 [0.000, 0.254]

Sex 0.994 1 0.319 0.027 [0.000, 0.242]

Beck Depression Inventory Group 27.04 2 0.000 0.523 [0.331, 0.733] 0.483/0.135c [0.250, 0.693]/[0.003, 0.403]c

Age 5.93 1 0.014 0.170 [0.009, 0.440]

Sex 3.83 1 0.051 0.117 [0.002, 0.381]

Apathy Evaluation Scale Group 14.71 2 0.000 0.400 [0.208, 0.658] 0.327/0.148c [0.096, 0.580]/[0.004, 0.417]c

Age 5.93 1 0.014 0.170 [0.009, 0.440]

Sex 1.28 1 0.257 0.042 [0.000, 0.272]

SCOPA daytime Group 41.13 2 0.000 0.598 [0.419, 0.777] 0.587/0.189c [0.379, 0.760]/[0.014, 0.460]c

Age 3.76 1 0.052 0.115 [0.001, 0.379]

Sex 0.92 1 0.336 0.031 [0.000, 0.249]

Abbreviations: CI = confidence interval; DM1 = myotonic dystrophy type 1; MIRS = Muscle Impairment Rating Scale; SCOPA = Scales for Outcomes in
Parkinson’s Disease; WAIS = Wechsler Adult Intelligence Scale.
a Chi-square, degrees of freedom (df), and p valueswere calculated in themixed-effectsmultivariate regressionmodel with type III (Wald) χ2 tests, using group,
age, sex, and amatching variable as predictors. Coefficient of determination (R2) for the model, semi-partial coefficient of determination (semi-partial R2) for
fixed effects (group, age, and sex), and 95% CIs were calculated using the Nakagawa & Schielzeth approach on the linear mixed-effects model. LL and UL
represent the lower limit and upper limit, respectively.
b Variant vs DM1 only.
c Control vs variant/control vs DM1.
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overall effect size (R2 = 0.468, 95% CI [0.272, 0.700]), with no
significant difference between the UA and RI groups (t(25) =
1.27, 95% CI [−5.19, 22.20]), a significant difference between
the UA and PR groups (t(25) = 4.93, 95%CI [15.62, 38.06]), and
a significant difference between the RI and PR groups (t(25) =
2.75, 95% CI [4.61, 32.06]).

Behavioral outcomes
Figure, G shows scores for the BDI across groups. The mean
score was 1.92 (SD = 1.83) for the UA group, 7.17 (SD = 7.05)
for the RI group, and 12.00 (SD= 6.63) for the PR group, with a
significant group effect (χ2 = 27.04, df = 2, p < 0.001) and strong
overall effect size (R2 = 0.523, 95% CI [0.331, 0.733]). Age had
a significant effect on the model (χ2 = 5.93, df = 1, p = 0.014)
with weak effect size (R2 = 0.170, 95% CI [0.009, 0.440]), and

sex had a significant effect on the model (χ2 = 3.83, df = 1, p =
0.051) with weak effect size (R2 = 0.117, 95% CI [0.002,
0.381]). There were significant differences between the UA and
RI groups (t(25) = −2.13, 95% CI [−10.33, −0.18]), the UA and
PR groups (t(25) = −5.20, 95% CI [−14.66, −6.34]), and the RI
and PR groups (t(25) = −2.12, 95% CI [−10.34, −0.16]).

Results for the AES are shown in figure, H. The mean score for
the UA group was 22.33 (SD = 3.73), 31.83 (SD = 6.31) for the
RI group, and 34.33 (SD = 11.37) for the PR group, with a
significant group effect (χ2 = 14.71, df = 2, p < 0.001) and
moderate overall effect size (R2 = 0.400, 95%CI [0.208, 0.658]).
Age also had a significant effect (χ2 = 5.93, df = 1, p = 0.014)
with weak effect size (R2 = 0.170, 95%CI [0.009, 0.440]). There
was a significant difference between the UA and RI groups (t(25)

Figure Patients with DM1 with variant repeats have milder symptoms in motor, neurocognitive, and behavioral domains

Motor (A–C), cognitive (D–F), and behavioral (G–I) scores (y-axes) are shown across groups (x-axes), including controls, patients with DM1 with variant
repeats, and patients with DM1 with pure repeats. There were significant differences in MIRS, FSIQ, processing speed, Beck Depression Inventory, and
SCOPA-Sleep between the variant and pure repeat groups. Circles represent the mean value of each group (red = control group, green = variant repeat
group, and blue = pure repeat group). The vertical, solid lines represent 95% confidence interval. The horizontal bars with asterisks (*) represent
significant differences between groups. DM1 =myotonic dystrophy type 1; FSIQ = Full Scale IQ;MIRS =Muscle Impairment Rating Scale; SCOPA = Scales for
Outcomes in Parkinson’s Disease.
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= −2.24, 95% CI [−16.30, −0.71]), a significant difference be-
tween the UA and PR groups (t(25) = −3.75, 95% CI [−18.04,
−5.26]), and no significant difference between the RI and PR
groups (t(25) = −0.83, 95% CI [−10.96, 4.68]).

The group scores for the SCOPA-Sleep scale for daytime
sleepiness are shown in figure, I. The mean score was 1.08 (SD
= 1.38) for the UA group, 3.83 (SD = 2.48) for the RI group,
and 6.00 (SD = 2.7) for the PR group, with a significant group
effect (χ2 = 41.13, df = 2, p < 0.001) and strong overall effect
size (R2 = 0.598, 95% CI [0.419, 0.777]). There were signifi-
cant differences between the UA and RI groups (t(25) = −2.60,
95%CI [−4.93, −0.57]), UA and PR groups (t(25) = −6.41, 95%
CI [−7.35, −3.77]), and RI and PR groups (t(25) = −2.64, 95%
CI [−4.99, −0.62]).

Discussion
We investigated the differences in motor, neurocognitive, and
behavioral outcomes of patients with PRDM1 compared with
patients with DM1 with variant RIs in theDMPKCTG repeat
tract. We demonstrated that there are significant differences in
all domains for patients with RI, as shown by significantly
better scores on the MIRS, Full Scale IQ, processing speed,
BDI-II, and SCOPA-Sleep. This is the largest cross-sectional,
case-matched control study to examine patients with RIs
in DM1.

It should be noted that although the RI group performed
significantly better than the PR group on multiple different
outcome measures, they still had deficits compared with the
unaffected comparison group, consistent with the typical
pattern of DM1 pathology.

The putative cellular process by which CTG expansion leads to
DM1 pathology is incompletely understood. Furthermore, the
truemechanism yielding amilder phenotype in patients with RI
is not yet known. It has been hypothesized that the presence of
variant repeats within the CTG repeat tract may disrupt the
secondary structures formed by mutant DMPK alleles, thus
decreasing their affinity for splicing regulators and interfering
with the proposed pathologic mechanism. In addition, ex-
panded PRs are characterized by high levels of somatic and
germline instability, mediated by a cell division–independent,
DNA mismatch repair protein-dependent process.27–29 It has
been previously observed in other trinucleotide repeat disor-
ders that the presence of variant repeats results in relative sta-
bilization of simple repeats in both germline and somatic
cells.30–33 Variant repeat–mediated suppression of somatic in-
stability inDM1 has also been observed and strongly associated
with milder symptoms and later age at onset.13,18–21,34

Patients with DM1 experience a slow progression of muscle
weakness and atrophy, initially involving the distal muscles of the
extremities and later affecting the proximal musculature. Patients
can develop dysphagia and respiratory muscle weakness, with an

increased risk for weight loss and aspiration. Consistent with
recent findings from the OPTIMISTIC and Saguenay co-
horts,18,19 our data confirm a significant difference in muscle
power between PR and RI participants, detectable clinically by
MIRS assessment,24 under study conditions in which the eval-
uating clinician is blinded to the participants’ genetic status.

Deficits in cognitive functioning are a well-recognized and
defined feature of DM1 that contribute significantly to de-
creased quality of life.9 The mechanisms underlying CNS pa-
thology in DM1 are poorly understood, although evidence
favors a significant role of dysregulation of alternative splicing
involving key CNS genes including Tau.35 Furthermore, so-
matic instability is seen to be particularly marked in the cerebral
cortex.36 Our findings of a significantly reduced impairment of
Full Scale IQ and processing speed in RI vs PR participants is
therefore consistent with a protective effect of RI by limiting
somatic instability and so the abundance of expanded CUGn in
the brain. This observation highlights somatic instability as a
potential therapeutic target for CNS involvement in DM1 as
well as for peripheral muscle symptoms. Furthermore, with the
advent of large clinical trials in DM1,37 this finding also further
emphasizes the need to screen and control for the presence of
RI in DM1 clinical study cohorts.

Excessive daytime sleepiness (EDS) is common in DM1 and
significantly affects quality of life. The etiology of EDS in DM1
is complex. Evidence broadly favors a central cause of som-
nolence symptoms, although poor sleep hygiene and medica-
tion side effects may also be relevant.3 Sleep-disordered
breathing (SDB) is a frequent finding in DM1,38 contributing
to sleep fragmentation and hence somnolence symptoms, al-
though symptomatic response to nocturnal ventilation is fre-
quently disappointing.39 Evaluation of EDS may be further
complicated by impaired symptom awareness, as part of the
CNS phenotype.40We found that participants with RI reported
less EDS than those with PR. Although this could represent
further evidence of a protective effect in the CNS, further ex-
ploration of this observation would benefit from poly-
somnography, to rule out an effect of SDB associated with
peripheral muscle weakness, and objective measures of som-
nolence such as the multiple sleep latency test.

A limitation of this present study is small sample size, with
only 6 participants with variant repeats, 12 participants with
PRs, and 12 unaffected participants. This decreased the sta-
tistical power with which we could possibly detect significant
differences in additional motor, neurocognitive, and behav-
ioral domains. Another limitation is the overall mild nature of
symptoms of the study cohort. A lower age at disease onset
could have possibly revealed more evident changes between
groups. In addition, although themean age at disease onset for
the variant repeat group was greater than 7 years than the PR
group (31.75 years vs 24.1 years), it was not statistically sig-
nificant. However, in larger cohorts, AciI sites are statistically
significantly associated with later onset.18,19 A follow-up
neuroimaging study in a larger sample could possibly help
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elucidate the specific brain changes behind this pattern of
deficits. Nonetheless, motor, cognitive, and behavioral mea-
sures were significantly better in the presence of variant re-
peats. Our group has demonstrated that cognitive deficits in
DM1 are associated with altered brain structure.41 We would
expect that the RI group will exhibit a milder neuroanatomic
phenotype than their PR counterparts.

Our study supports the hypothesis that variant RIs within the
CTG repeat tract of the DMPK gene have a protective effect
in multiple systems in DM1, including the CNS. Further ex-
ploration of the mechanisms underlying this effect is required
to improve prognostic information available to affected pa-
tients and may reveal potential targets for novel therapy.
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month withdrawal of ventilatory support in hypercapnic myotonic dystrophy type 1:
NIV in myotonic dystrophy type 1. Respirology 2017;22:1416–1422.

40. Baldanzi S, Bevilacqua F, Lorio R, et al. Disease awareness in myotonic dystrophy type
1: an observational cross-sectional study. Orphanet J Rare Dis 2016;11:34.

41. Langbehn KE, van der Plas E, Moser DJ, Long JD, Gutmann L, Nopoulos PC.
Cognitive function and its relationship with brain structure in myotonic dystrophy
type 1. J Neurosci Res Epub 2020 Feb 13. doi:10.1002/jnr.24595.

Neurology.org/NG Neurology: Genetics | Volume 6, Number 5 | October 2020 9

http://dx.doi.org/10.1155/2013/857564
http://dx.doi.org/10.3233/JND-190397
http://dx.doi.org/10.1093/hmg/dds185
http://dx.doi.org/10.1093/hmg/dds185
http://dx.doi.org/10.1002/jnr.24595
http://neurology.org/ng

