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Abstract
Here we present WIDOCK, a virtual screening protocol that supports the selection of diverse electrophiles as covalent 
inhibitors by incorporating ligand reactivity towards cysteine residues into AutoDock4. WIDOCK applies the reactive 
docking method (Backus et al. in Nature 534:570–574, 2016) and extends it into a virtual screening tool by introducing 
facile experimental or computational parametrization and a ligand focused evaluation scheme together with a retrospective 
and prospective validation against various therapeutically relevant targets. Parameters accounting for ligand reactivity are 
derived from experimental reaction kinetic data or alternatively from computed reaction barriers. The performance of this 
docking protocol was first evaluated by investigating compound series with diverse warhead chemotypes against KRASG12C, 
MurA and cathepsin B. In addition, WIDOCK was challenged on larger electrophilic libraries screened against OTUB2 and 
NUDT7. These retrospective analyses showed high sensitivity in retrieving experimental actives, by also leading to superior 
ROC curves, AUC values and better enrichments than the standard covalent docking tool available in AutoDock4 when com-
pound collections with diverse warheads were investigated. Finally, we applied WIDOCK for the prospective identification 
of covalent human MAO-A inhibitors acting via a new mechanism by binding to Cys323. The inhibitory activity of several 
predicted compounds was experimentally confirmed and the labelling of Cys323 was proved by subsequent MS/MS measure-
ments. These findings demonstrate the usefulness of WIDOCK as a warhead-sensitive, covalent virtual screening protocol.
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Introduction

Protein ligands with covalent mechanism of action became 
increasingly popular in both chemical biology and medici-
nal chemistry applications [1–3]. These compounds form 

covalent bonds with a targetable nucleophilic residue (most 
often cysteine, but also others, like lysine, serine, threonine 
or tyrosine) in an appropriate position at the ligand binding 
site [4]. Many previous studies have described the advan-
tages and disadvantages of covalent enzyme inhibitors [5–7]. 
Potential advantages include increased ligand efficiency, 
prolonged duration of action leading to less frequent dosing, 
and the opportunity to target shallow binding sites that were 
previously considered as “undruggable”. Most often cited 
drawbacks of the covalent mechanism of action are related 
to their potential of idiosyncratic toxicities that points out 
the importance of the balanced optimization of their affinity 
and reactivity.

These compounds interact with the target first by form-
ing a non-covalent protein–ligand complex, then the cova-
lent bond is formed [8]. The functional moiety responsible 
for the covalent bond formation, also known as the “war-
head”, is in most cases an electrophilic reactive group. 
Many functional groups in organic chemistry are able to 
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react with thiol groups, and they are potential warheads for 
compounds intended to modify cysteine residues of biologi-
cal systems. Since different chemotypes bind via different 
reaction mechanisms, it is clear that they are characterized 
by distinct intrinsic reactivities. Furthermore, the intrinsic 
reactivity of the warheads can be tailored by their substitu-
ents. Recently we showed [9] that the intrinsic reactivity of 
the electrophilic ligands might influence not only enzyme 
specificity, but also functional specificity (as observed with 
the endo- versus exo-peptidase activity of cathepsin B), and 
species specificity (as observed for MurA from Escherichia 
coli versus MurA from Staphylococcus aureus). These data 
confirmed that cysteine residues can be labelled by a vari-
ety of warheads, which therefore have to be tailored to the 
reactivity of the specific residue being targeted.

As alternatives to experimental approaches, virtual 
screening protocols give significant contribution to the 
identification of viable chemical starting points. However, 
their application to covalent inhibitors still faces challenges 
that derive mainly from the description of covalent bond 
formation. Conventional non-covalent docking methods are 
designed to well describe the first step, namely the forma-
tion of the non-covalent complex. Despite various covalent 
docking-scoring tools were recently developed, there is no 
general computational protocol to properly describe the 
close contact between reacting atoms, the formation of the 
covalent bond in a chemical reaction, and the conformations 
and interactions of the resulting complex.

Covalent docking tools follow different strategies to dock 
and rank covalent binders. For example, GOLD [10–12] 
uses the post-reaction conformation to rank ligands in a 
set. The best performing covalent docking protocol devel-
oped in AutoDock 4.2 [13] (from now referred to as AD4) 
is currently the flexible side chain method [14]. This uses 
post-reaction ligand structures and their conformations are 
sampled to optimize the interactions in the binding pocket. 
ICM-Pro [15, 16] generates bound complexes and then ranks 
ligands poses by excluding the interactions of atoms directly 
neighboring the newly formed covalent bond. The “Pose 
Prediction” mode of CovDock [17] combines pre- and post-
reaction states. It first performs a non-covalent docking into 
a binding site where the reactive residue is mutated to Ala in 
order to avoid close contacts. Next, the rotamer states of the 
reacting residue are sampled to form the covalent complex 
with ligand poses occupying beneficial positions according 
to the previous non-covalent docking step. The final ranking 
of the ligands is achieved by scoring both pre- and post-
reaction states. The “Virtual Screening mode” of CovDock 
[18] increases the throughput by reducing the number of 
simulated steps at the expense of somewhat lower binding 
mode prediction accuracies. A general feature of currently 
available docking protocols is that they do not explicitly take 
into account the reaction energy accompanying the covalent 

bond formation. As a consequence, these docking tools 
assume that screened ligands have similar intrinsic reactiv-
ity that could not be confirmed a priori. Although most of 
the current covalent docking applications are restricted to 
a preselected warhead chemotype, intrinsic reactivities are 
influenced by the substituents at the electrophilic center and 
should be considerably different.

These limitations of the available covalent docking tools 
prompted us to develop WIDOCK, a protocol that applies 
the reactive docking methodology described by Backus 
et al. [19] and repurposes it into a warhead-sensitive vir-
tual screening solution for diverse electrophilic libraries. 
The interaction between the ligand and protein atom pairs 
that are expected to form the covalent bond is modeled by 
incorporating a pseudo-Lennard–Jones potential into the 
non-covalent AD4 scoring function. This approach does 
not involve the formation of a chemical bond between the 
ligand and the nucleophilic residue, but it rather focuses on 
the prediction of the non-covalent interactions occurring 
in the binding pocket before the covalent bond formation 
and uses a reactivity-scaled reward for compounds able to 
place the reactive group in the cysteine vicinity. A simi-
lar protocol was also described by Forli and Botta [20] to 
overcome AutoDock’s limitations in treating flexible ring 
systems. WIDOCK applies the same form of the interatomic 
potential as in the reactive docking method (see later), with 
the important difference that we derive the parameters of 
the potential either from kinetic data measured in reactions 
of various small compounds against cysteine surrogates, or 
from calculated quantum chemical reaction barriers. This 
is a significant simplification with respect to the reactive 
docking method [19] and its adaptations [21, 22] where 
parameters were derived from large scale and expensive 
proteome analysis. Furthermore, while the cited methods 
were only used to predict cysteines that are most likely to 
be labeled across the human proteome and to interpret resi-
due ligandability by compounds with limited warhead types, 
our objective here is to validate and apply WIDOCK as a 
virtual screening tool. Therefore, we investigate the labe-
ling of reactive cysteine residues of several validated drug 
targets with compounds having various warheads reacting 
with diverse chemistries. The main advantage of WIDOCK 
compared to other available virtual screening tools is that 
a set of ligands with several warhead types and inherently 
different cysteine reactivities can be screened against the 
target of choice and prioritized for experimental testing. In 
contrast to covalent docking in AD4, this protocol does not 
require the initial modification of all structures in the set 
into their post-reaction conformation. While WIDOCK, 
as a virtual screening tool, primarily aims to discriminate 
actives from inactives, predicting the ligand conformation 
in the binding pocket is also a key aspect in the prospective 
design of covalent inhibitors. In a former study, we showed 
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that non-covalent docking can provide good accuracy in the 
binding mode prediction of covalent binders, in a reduced 
time-scale as compared to covalent docking [23]. However, 
assessing the pose prediction accuracy of WIDOCK would 
require consistent reactivity data not currently available for 
a large set of covalent complexes [1, 24].

In the forthcoming sections we first show that by deriving 
the warheads’ reactivity parameters for the interaction poten-
tial from kinetic measurements against β-mercaptoethanol 
(BME), WIDOCK accurately reproduces the observed inhib-
itory activities found against KRASG12C [25]. KRAS is a 
widely studied GTPase having multiple oncogenic mutations 
found in almost 30% of human cancers. The G12C mutation 
has been shown to reduce the GTP/GDP exchange rate and 
consequently hyperactivates the enzyme causing abnormal 
cell growth [26]. KRASG12C covalent inhibitors targeting 
Cys12 can selectively bind to the oncogenic variant over the 
wild-type protein, thus leading to favorable activity modula-
tion [27, 28]. ARS-853 [29] (1, Fig. 1), a potent KRASG12C 
covalent inhibitor, binds to the GDP-bound oncoprotein thus 
locking it in its inactive state.

Second, we apply WIDOCK on a covalent fragment 
library equipped with a diverse set of warheads. This set 
of compounds was recently screened against MurA (UDP-
N-acetylglucosamine enolpyruvyl transferase) and cathepsin 
B (hereinafter also referred to as CatB) [9], and we show that 
experimental reactivities against glutathione (GSH) can also 
be used to derive parameters for the pseudo-Lennard–Jones 
potentials. MurA is a key enzyme in the first step of bacterial 
peptidoglycan biosynthesis and it is a promising antibacte-
rial target as it has no human orthologue. Despite intense 
research, relatively few compounds have been described as 
potent MurA inhibitors [30, 31]. Fosfomycin [32] (2, Fig. 1) 
is the only clinically available MurA inhibitor that binds 
covalently to the Cys115 residue in the active site. Cathep-
sin B belongs to the family of lysosomal cysteine proteases 
and has been validated as a promising therapeutic target in 
various oncological diseases [33–35]. Although a variety 

of CatB inhibitors have been developed and investigated 
for the treatment of different types of cancer, none has yet 
been approved as a drug [36]. Current covalent inhibitors of 
CatB are mostly derived from epoxy-succinyl [37], vinyl-
sulfone or nitrile warheads [38, 39]. Thus far, one of the 
most investigated CatB covalent inhibitors is E-64 [40, 41] 
(3, Fig. 1). However, other studies also revealed that differ-
ent Michael acceptors and halomethyl ketones can be able to 
form a covalent bond with the active site cysteine [42]. As in 
the case of KRASG12C, we were able to accurately reproduce 
experimental screening results for both of the targets.

Furthermore, the diverse set of warheads tested against 
MurA and CatB allowed us to show that calculated reaction 
barriers against methyl-thiolate can also be used to para-
metrize the pseudo-Lennard–Jones potentials. This approach 
provided comparable results to those obtained by potentials 
derived from experimental reactivity parameters.

The virtual screening performance of WIDOCK was also 
evaluated on a larger scale, by screening the electrophilic 
library compiled and tested by Resnick et al. [43] against 
OTUB2 and NUDT7. The authors reported thiol reactiv-
ity data for the electrophiles in the set, thus allowing us to 
parametrize WIDOCK accordingly. OTUB2 is a member 
of the large family of deubiquitinating enzymes (DUBs). 
OTUB2 is linked to several biological pathways indicating 
its therapeutic potential for conditions such as viral infec-
tions, amyotrophic lateral sclerosis and diabetes [44–46]. 
NUDT7 is a nudix hydrolase involved in the specific degra-
dation of CoA [47, 48]. Therefore, since CoA metabolism is 
key for the regulation of glucose homeostasis, also NUDT7 
has raised interest for its potential role in the treatment of 
diabetes [49]. Notably, WIDOCK was able to identify many 
of the covalent probes identified by Resnick et al. for both 
these targets, thus showing its scalability in different settings 
although with varying enrichment rates.

Finally, we have validated WIDOCK prospectively by 
screening electrophilic fragments against human mono-
amine oxidase A (MAO-A). MAO-A performs oxidative 

Fig. 1   Known covalent inhibitors of the proteins targeted in this study: ARS-853 for KRASG12C, fosfomycin for MurA, E-64 for CatB and clor-
gyline for MAO-A
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deamination of monoamine substrates, and plays a key role 
in the metabolism of neurotransmitters and in the detoxifica-
tion of amine compounds. Selective inhibitors of MAO-A 
are used in clinical applications as antidepressants [50–52] 
as they lead to increased levels of neurotransmitters in 
noradrenergic and serotoninergic systems [52]. Several 
irreversible inhibitors of MAO-A have been developed in 
previous years, such as clorgyline [53] (4, Fig. 1). To the 
best of our knowledge, all reported covalent MAO-A inhibi-
tors with validated labelling position are bound to the FAD 
cofactor. In contrast, our objective was identifying fragment-
sized compounds bound to an active site cysteine and inhib-
iting the enzyme by blocking the access to the active site. 
Docking electrophilic fragments to the active site Cys323 
of MAO-A by WIDOCK predicted several hits that were 
confirmed in both biochemical and MS/MS measurements.

Overall, WIDOCK demonstrates that the reactive docking 
method can be applied as a warhead-sensitive virtual screen-
ing tool for the prioritization of covalent binders by incor-
porating cysteine reactivity parameters into AD4. The use-
fulness of this approach was demonstrated on a number of 
retrospective and prospective applications. We believe that 
the availability of the parameter set and the easy implemen-
tation of the protocol into AD4 would facilitate a number 
of further prospective applications to identify new covalent 
inhibitors for therapeutic targets.

Methods

Compound sets and reactivity data

The electrophilic compounds tested [25] against KRASG12C 
(5–24, structures shown in Supporting Figure S1 and 
SMILES provided in Supporting Table S1) were evaluated 
with both standard covalent docking and WIDOCK in order 
to analyze the predictive power of the two methods against 
this challenging target. Compound reactivities measured 
against BME were obtained from [25]. If the reactivity of 
the particular compound was not explicitly reported, we 
considered the one of the closest analogue bearing the same 
electrophilic warhead.

Electrophilic fragments tested against MurA, CatB and 
MAO-A (25–53, structures shown in Supporting Figure S2 
and SMILES provided in Supporting Table S1) represent 
eight different warhead chemotypes reacting via two reac-
tion mechanisms: Michael-type nucleophilic addition and 
nucleophilic substitution. The intrinsic thiol reactivities (see 
Table 1) were determined by kinetic measurement of adduct 
formation with l-glutathione (GSH), a widely used cysteine 
surrogate, by an HPLC–MS methodology, as described in 
the referred study [9].

In the larger-scale retrospective virtual screening, an 
electrophilic fragment library of chloroacetamides and 
acrylamides was screened against OTUB2 and NUDT7 as 
described by Resnick and colleagues [43]. In order to have 
homogeneous reactivity data, we inspected the thiol reac-
tivity reported for the set of 993 compounds and selected 
those that best fit to the described kinetic model (630 com-
pounds with R2 > 0.8 in all three independent thiol screens). 
As detailed in the referred study, kinetic data were obtained 
from a high-throughput thiol-reactivity assay measuring the 
rate of alkylation by the reduced Ellman’s reagent (DTNB, 
5,5′-dithio-bis-2-nitrobenzoic acid). The set of 630 elec-
trophiles was then filtered for compounds whose protein 
labeling was correctly assigned and reported in the cited 

Table 1   Experimental results of the investigated electrophilic frag-
ments in kinetic measurements against l-glutathione (GSH) and in 
single point enzyme activity assays with MurA and CatB, expressed 
as residual activities (RA) % at 100 μM

For inhibitory activities each data point was acquired twice. SD of the 
data points was typically less than 10% of the mean. Data taken from 
[9]

Cmpd GSH half-life (h) lnk MurA RA (%) CatB RA (%)

25 7.4  − 2.37 50 106
26 20.8  − 3.40 41 97
27 48.2  − 4.24 92 79
28 41.2  − 4.08 101 87
29 127  − 5.21 95 75
30 70.1  − 4.62 78 88
31 422  − 6.41 80 87
32 4.2  − 1.80 51 90
33 86.8  − 4.83 59 100
34 0.16 1.45 12 87
35 94.3  − 4.91 82 77
36 4.66  − 1.91 75 70
37 16.9  − 3.19 82 84
38  < 0.1 1.94 1 91
39  < 0.1 1.94 2 87
40  < 0.1 1.94 1 89
41  < 0.1 1.94 1 82
42 161  − 5.45 92 85
43 194  − 5.63 75 99
44  < 0.1 1.94 0 0
45  < 0.1 1.94 2 27
46  < 0.1 1.94 3 55
47 326  − 6.15 83 86
48 32.8  − 3.86 110 88
49 5.8  − 2.12 29 106
50 95.2  − 4.92 35 91
51 22.9  − 3.50 61 87
52 8  − 2.45 47 90
53 16.1  − 3.15 61 87
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reference (599 and 616 compounds for OTUB2 and NUDT7, 
respectively. SMILES provided in Supporting Table S1).

Ligand preparation

LigPrep [54] from the Schrödinger Suite was used to gen-
erate structural isomers, stereoisomers and different proto-
nation states for ligands to be used in both standard and 
WIDOCK docking simulations. Following the flexible 
side chain covalent docking protocol available in AD4, 
ligand structures were modified by attaching the cysteine 
side chain atoms (Cβ–SG) to the site of alkylation. Modified 
ligand structures were prepared with LigPrep to generate 
structural isomers, protonation states and stereoisomers for 
chiral centers introduced upon cysteine attachment. Auto-
DockTools was used to prepare structures as PDBQT files 
for docking calculations.

Protein preparation

Crystal structures in the Protein Data Bank [55] were used 
for calculations on KRASG12C, MurA, CatB, OTUB2, 
NUDT7 and MAO-A. McGregor and colleagues [25] 
released two structures in the PDB entries 5V6S and 5V6V, 
in which Cys12 of KRASG12C is covalently bound to an 
acrylamide-based (5) and an aziridine-based (7) inhibitor, 
respectively. The two structures exhibit significant differ-
ences in the conformations of the highly flexible switch II 
region surrounding the binding site. Therefore, they were 
both used for docking calculations. For MurA, two protein 
conformations were considered. For cysteine reactivity pre-
dictions, the protein conformation co-crystallized with the 
cofactor UNAG and the irreversible inhibitor fosfomycin 
(PDB 1UAE [56]) was evaluated. This is indeed the confor-
mation adopted by the enzyme in the presence of cofactor 
prior to addition of electrophilic compounds. For docking 
calculations, the enzyme’s open conformation in the PDB 
entry 3KQA [57] was preferred over that in 1UAE [56]. This 
is mainly due to the higher similarity between the fragment 
library members experimentally validated as MurA actives 
and terreic acid, the irreversible covalent inhibitor co-crys-
tallized in 3KQA. It suggests that covalent fragments active 
against MurA are likely to induce a conformational change 
upon bond formation causing the opening of the loop con-
taining the active site Cys115. A set of molecular descriptors 
for fosfomycin, terreic acid and MurA actives is provided in 
Supporting Table S2. For CatB, the recently deposited PDB 
entry 6AY2 [58] was selected due to its better resolution as 
compared to other covalent complexes. The residues in the 
catalytic diad Cys29-His199 were modeled in the thiolate 
and in the protonated form, respectively. For the retrospec-
tive screening against OTUB2 and NUDT7, we selected the 
high resolution co-crystal structures deposited by Resnick 

et al. [43] in the PDB entries 5QIV and 5QHA, respectively. 
For the former, Prime was used to build and optimize the 
missing side chain of the binding site residue Arg49. The 
screening was performed by targeting Cys51 in OTUB2 and 
Cys73 in NUDT7. For the prospective screening against 
MAO-A, the protein structure was derived from an irrevers-
ible complex with clorgyline. Among two available crystal 
forms, PDB entry 2BXS [59] was preferred over 2BXR [59] 
as in the latter the targeted cysteine Cys323 is involved in 
a disulfide bridge with Cys321. Structures were processed 
by removing co-crystallized inhibitors, water molecules and 
irrelevant subunits. Protein structures were prepared with 
the Protein Preparation Wizard in the Schrödinger Suite [60, 
61], which was used to add hydrogen atoms, to optimize the 
H-bond network and to perform a restrained minimization. 
All targeted cysteines were modelled in the thiolate form, 
which is acknowledged to be the one participating in the 
reaction. AutoDockTools was used to prepare structures as 
PDBQT files for docking calculations.

Docking calculations

AutoDock4 [13] was used for all docking simulations. Each 
docking job was defined by a maximum of 100 runs, a popu-
lation size of 150 individuals, 25 × 105 maximum energy 
evaluations, 27 × 103 maximum generations and default 
Lamarckian Genetic Algorithm settings. A grid box of 
60 points in each dimension was centered on the targeted 
cysteine in case of MurA, CatB and MAO-A, whereas for 
KRASG12C it was placed on the centroid of the ligand co-
crystallized in 5V6S since the same scaffold was present in 
the set of compounds under investigation. Also for OTUB2 
and NUDT7 the grid was centered on the co-crystallized 
ligands as they both belonged to the screening set. The 
side chain of the targeted cysteine was modelled as flexible 
during the non-covalent docking while keeping the rest of 
the structure rigid. The electrophilic libraries were docked 
into the target proteins by using the flexible side chain 
method developed to simulate covalent docking in AD4 [14], 
the standard non-covalent docking in AD4 and WIDOCK, 
a reactive docking protocol incorporating ligand reactivity 
information into the docking simulation. To this end, a new 
atom type was defined for the electrophilic carbon in the 
ligand and for the reactive cysteine sulfur with the same set 
of parameters as the respective standard ones and, follow-
ing Backus et al. [19] a custom 13–7 pseudo-Lennard–Jones 
potential was introduced for their interaction. The equilib-
rium distance (req) was set to the length of the covalent 
bond (1.8 Å); kinetic parameters derived from experimental 
measurements and from calculated activation energies were 
scaled in a range between 1.0 and 0.175 to model the reactiv-
ity of the different ligands and set as the potential well depth 
(εeq). For each ligand, the best scoring pose was analyzed 
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with a distance-based criterion: if the atoms involved in the 
formation of the C–S bond were found at a distance lower 
than 2.20 Å (additional distance is allowed to account for 
van der Waals repulsions), then the compound was predicted 
to be a covalent binder. In case of a compound presenting 
multiple isomers and/or potential reacting centers, all pos-
sibilities were enumerated. For each of these, the best scor-
ing pose was analyzed and the one presenting the shortest 
interatomic distance was considered. Interatomic distances 
found for all compounds are reported in Supporting Table S3 
for the set evaluated against KRASG12C, Supporting Table S4 
for the set tested against MurA, CatB and MAO-A, and Sup-
porting Table S5 for the sets screened against OTUB2 and 
NUDT7. More details on the workflow can be found in the 
supplementary methods within the Supporting Information.

For covalent docking simulations, the flexible side 
chain method of AD4 was used. The two additional atoms 
(Cβ–SG) on ligand structures were used for the alignment 
on the targeted cysteine in the protein through a SMARTS-
based definition of overlapping atoms. After alignment, 
bound ligands were treated as fully flexible residues dur-
ing the docking simulation. Compounds were ranked by the 
score calculated using the semi-empirical force field-based 
scoring function in AD4. Predicted actives were selected as 
those retrieved in the top N% of the scoring range, where 
N varied for each protein target (60% for KRAS, 30% for 
MurA and MAO-A, 10% for CatB, 7% for OTUB2, 5% for 
NUDT7) to reflect the fraction of compounds experimen-
tally validated as inhibitors. Covalent docking scores for all 
compounds in the sets are reported in Supporting Tables 
S3, S4 and S5. In the KRASG12C case study, ligands were 
screened against both protein structures deposited in 5V6S 
and 5V6V. Following an ensemble approach, WIDOCK and 
covalent docking poses predicted against the two structures 
were analyzed. The one with the shorter distance was con-
sidered for WIDOCK, and the one with the lower docking 
score was considered for covalent docking to evaluate virtual 
screening results.

ROC curves and the area under the ROC curves (AUC) 
were used as unbiased standard metrics to evaluate the vir-
tual screening performances against all targets. Screening 
sets were ranked according to C–S interatomic distances and 
docking scores obtained by WIDOCK and covalent docking, 
respectively. Furthermore, virtual screening performances 
were evaluated in terms of the sensitivity, specificity and 
accuracy displayed by the protocols at the abovementioned 
target-tailored classification thresholds.

Cysteine characterization

For electrostatic potential calculations, the quantum mechan-
ical (QM) region was defined by including residues within 
4 Å from the targeted cysteine. Single point DFT B3LYP 

calculations with 6-31G* basis were performed in continuum 
solvation models and the electrostatic potential on the van der 
Waals surface of atoms included in the QM region was calcu-
lated by using QSite [62–64]. The web-based platform Cpipe 
[65] was used to predict pKa and cysteine reactivity informa-
tion. Solvent accessible surface area (SASA) calculations were 
performed on prepared protein structures by using the POPS 
algorithm [66].

QM calculations

DFT methods were used to calculate reaction energies (ΔGr) 
and activation energy barriers (ΔG‡) against the methyl-
thiolate anion (MeS−) as a cysteine surrogate. They both 
have been already validated in predicting reactivities 
[67–69], however, these studies focused on limited warhead 
chemotypes. We used the Gaussian 09 software package [70] 
with the SMD implicit solvation model (water) and the 
M062X functional [71], as it has been shown as one of the 
most accurate functional to calculate these parameters [72, 
73]. We performed geometry optimizations and estimated 
the entropic contributions with the 6-311G+(d,p) basis set 
to obtain both energies (E) and Gibbs free energies (G). 
Then we calculated single point energies (E′) with the larger 
basis set 6-311++G(3df,3pd). From these data we calculated 
the Gibbs free energies (G′) of the investigated structures 
(Eq. 1). We optimized the transition state and product geom-
etries (in the case of Michael acceptors we always consid-
ered the s-cis transitional geometry [68]) with the 
6-311G+(d,p) basis set. QST3 transition state optimization 
was applied and IRC calculations were performed in order 
to prove that the transition states connect two corresponding 
minima. Frequencies were calculated to assure that transition 
states are on saddle points having one imaginary frequency, 
and reactants and products are in local minima having no 
imaginary frequency. Entropic and thermal corrections were 
evaluated for isolated molecules using standard rigid rotor 
harmonic oscillator approximations (i.e. Gibbs free energies 
were taken as the sum of electronic and thermal free energies 
of vibrational frequency calculations). The H, G and S val-
ues were obtained at standard conditions. In addition, single 
point energies were calculated with the 6-311++G(3df,3pd) 
basis set. The activation energy barriers (ΔG‡) (Eq. 2) were 
determined as Gibbs free energy differences of the optimized 
transition states ( G

′

TS
 ) and the initial compounds. Analo-

gously, the reaction energies (ΔGr) (Eq. 3) were obtained as 
the free energy differences of the optimized products 
( G

′

product
 ) and the initial compounds (data are shown in Sup-

porting Table S6).

(1)�
� = �

� + (� − �)
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Inhibitory activity data

Inhibitory activities for compounds 5–24 expressed as % 
of KRASG12C labeling at 100 μM compound concentra-
tion were obtained from [25]. Compounds showing > 50% 
labeling were considered as actives. Inhibitory activities for 
compounds 25–53 expressed as residual activity of MurA 
and CatB at 100 μM compound concentration were taken 
from [9]. Compounds showing < 60% residual activity were 
considered as actives. Inhibitory activities expressed as % 
labeling for the virtual screening at 200 μM compound con-
centration against OTUB2 and NUDT7 were taken from 
[43]. Compounds showing > 50% labeling were considered 
as actives.

MAO‑A activity assay

The effects of the test compounds on MAO-A were inves-
tigated using a fluorimetric assay, following a previously 
described methodology [74]. The inhibitory activity of the 
compounds was evaluated by their effects on the production 
of hydrogen peroxide (H2O2) from p-tyramine. The produc-
tion of H2O2 was detected using Amplex Red reagent in the 
presence of horseradish peroxidase, where a highly sensi-
tive fluorescent product, resorufin, is produced at stoichio-
metric amounts. Recombinant human microsomal MAO-A 
enzyme expressed in baculovirus infected insect cells (BTI-
TN-5B1-4), horse-radish peroxidase (type II, lyophilized 
powder), and p-tyramine hydrochloride were obtained 
from Sigma Aldrich. 10-Acetyl-3,7-dihydroxyphenoxazine 
(Amplex Red reagent) was synthesized as described in the 
literature [75].

Briefly, 100 µL 50 mM sodium phosphate buffer (pH 7.4, 
0.05% Triton X-114) containing the compounds and MAO-A 
were incubated for 30 min at 37 °C in a flat-bottomed black 
96-well microplate, and placed in a dark microplate reader 
chamber. After the pre-incubation, the reaction was started 
by adding the final concentrations of 200 µM Amplex Red 
reagent, 2  U/mL horseradish peroxidase, and 1  mM 
p-tyramine (final volume, 200  µL). The production of 
resorufin was quantified based on the fluorescence generated 
(λex = 530 nm, λem = 590 nm) at 37 °C over a period of 
30 min, during which time the fluorescence increased line-
arly. For control experiments, DMSO was used instead of 
the appropriate dilutions of the compounds in DMSO. To 
determine the blank value (b), phosphate-buffered solution 
replaced the enzyme solution. The initial velocities were 

(2)Δ�‡ = �
�
��

−
(

�
�
0 +�

�
��

)

(3)Δ�
r
= �

�
product −

(

�
�
0 +�

�
��

)

calculated from the trends obtained, with each measurement 
carried out in duplicate. The specific fluorescence emission 
to obtain the final result was calculated after subtraction of 
the blank activity (b). The inhibitory potencies are expressed 
as the residual activities (RA): RA =

vi−b

v0−b
, where vi is the 

velocity in the presence of the test compounds, and v0 the 
control velocity in the presence of 1.5% DMSO.

Labelling of human MAO‑A

MAO-A (150 μL, 52 µM) stored in 50 mM Hepes, pH = 7.5 
with 0.25% Triton X-100 was thawed at 37 °C, and then 
desalted using a G-25 (fine) Sephadex column to 50 mM 
K3PO4, pH = 7.5 containing 0.25% Triton X-100. The 
resulted 40 µM sample was divided, 35 µL was taken, and 
the electrophilic fragment (0.5 µL, 100 mM in DMSO) was 
added. The mixture was incubated at 4 °C for 24 h.

Digestion and LC–MS/MS analysis of labelled human 
MAO‑A

The tryptic digestion method was adapted from our former 
publication [9]. Briefly, 35 μL of MAO-A (40 μM), 10 μL 
0.2% (w/v) RapiGest SF (Waters, Milford, USA) solution 
buffered with 50 mM ammonium bicarbonate (NH4HCO3) 
were mixed (pH = 7.8). 3.3 μL of 45 mM DTT (~150 nmol) 
in 100 mM NH4HCO3 were added and kept at 37.5 °C for 
30 min. After cooling the sample to room temperature, 
4.16 μL of 100 mM iodoacetamide (416 nmol) in 100 mM 
NH4HCO3 were added and placed in the dark at room tem-
perature for 30 min. The reduced and alkylated protein was 
then digested by 10 μL (1 mg/mL) trypsin (the enzyme-to-
protein ratio was 1:10) (Sigma, St. Louis, MO, USA). The 
sample was incubated at 37 °C for overnight. To degrade the 
surfactant, 7 μL of formic acid (500 mM) solution was added 
to the digested MAO-A sample to obtain the final 40 mM 
(pH ≈ 2) and was incubated at 37 °C for 45 min. For LC–MS 
analysis, the acid treated sample was centrifuged for 5 min 
at 13 000 rpm.

QTRAP 6500 triple quadruple—linear ion trap mass 
spectrometer, equipped with a Turbo V source in electro-
spray mode (AB Sciex, CA, USA) and an Agilent 1100 
Binary Pump HPLC system (Agilent Technologies, Wald-
bronn, Germany) consisting of an autosampler was used for 
LC–MS/MS analysis. Data acquisition and processing were 
performed using Analyst software version 1.6.2 (AB Sciex 
Instruments, CA, USA). Chromatographic separation was 
achieved by using the Discovery® BIO Wide Pore C-18-5 
(250 mm × 2.1 mm, 5 μm). The sample was eluted with a 
gradient of solvent A (0.1% formic acid in water) and sol-
vent B (0.1% formic acid in ACN). The flow rate was set to 
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0.2 mL/min. The initial conditions for separation were 5% B 
for 7 min, followed by a linear gradient to 90% B by 53 min, 
from 60 to 63 min 90% B is retained; from 64 to 65 min back 
to the initial conditions with 5% eluent B retained to 75 min. 
The injection volume was 10 μL (300 pmol on the column).

Information Dependent Acquisition (IDA) LC–MS/
MS experiment was used to identify the modified tryptic 
MAO-A peptide fragments. Enhanced MS scan (EMS) was 
applied as survey scan and enhanced product ion (EPI) was 
the dependent scan. The collision energy in EPI experi-
ments was set to rolling collision energy mode, where the 
actual value was set on the basis of the mass and charge 
state of the selected ion. Further IDA criteria: ions greater 
than 400,000 m/z, which exceeds 106 counts, exclude former 
target ions for 30 s after two occurrences. In EMS and in EPI 
mode the scan rate was 1000 Da/s as well. Nitrogen was used 
as the nebulizer gas (GS1), heater gas (GS2), and curtain 
gas with the optimum values set at 50, 40 and 40 (arbitrary 
units). The source temperature was 350 °C and the ion spray 
voltage set at 5000 V. Declustering potential value was set to 
150 V. GPMAW 4.2 software was used to analyze the large 
number of MS–MS spectra and identify the modified tryptic 
MAO-A peptides.

Results and discussion

Retrospective docking on KRASG12C

First, WIDOCK was challenged by a set of compounds cova-
lently labeling Cys12 in KRASG12C with a range of elec-
trophilic warheads. McGregor et al. elaborated a reported 
KRASG12C switch II inhibitor scaffold by introducing dif-
ferent warhead types probing Cys12 reactivity. The tested 
electrophiles included acrylamides, epoxides, aziridines, 
α-chloroacetamides, β-chloroethylureas, acyl-imidazoles, 
diazoacetamides and other warheads reacting through 
nucleophilic substitution. The compounds differ only in the 
warhead, therefore differences in the inhibitory potency can 
be assigned to differences in the intrinsic reactivities and in 
the optimal orientations of the reacting groups. Therefore, 
this set is perfectly suited to test the docking performance 
of WIDOCK on a range of warheads. Indeed, the main 
advantage provided by our method lies in the opportunity 
to screen and compare covalent ligands bearing multiple 
warhead types characterized by different intrinsic reactivi-
ties. Moreover, the authors assessed the thiol reactivity of 
the compounds by measuring the extent of covalent adduct 
formation with β-mercaptoethanol (BME) as a thiol surro-
gate. Thus, we could use the reported reactivity informa-
tion to parametrize the customized pseudo-Lennard–Jones 
potentials for all the compounds. By docking this set of 
compounds to KRASG12C we could inspect the ability of 

WIDOCK to induce a conformational change in the war-
head with respect to docking poses generated by the standard 
non-covalent docking in AD4. As an illustrative example, 
Fig. 2 shows the binding modes generated for compound 
5, a co-crystallized KRASG12C covalent inhibitor. Both 
standard docking and WIDOCK could provide an overall 
good consensus with the experimentally determined binding 
mode (Fig. 2a). However, by focusing on the warhead con-
formation (Fig. 2b), the best scoring standard docking pose 
predicted an incorrect geometry of the acrylamide moiety 
(Fig. 2b-I vs. Fig. 2b-II). On the other hand, the reactivity-
scaled interaction potential introduced between reacting 
atoms in WIDOCK induced a flip in the warhead structure, 
by placing the reactive β-carbon in close proximity to the 
targeted cysteine sulfur (2.06 Å) (Fig. 2b-III). This result 
highlights the capability of WIDOCK to predict the correct 
geometry of the ligand warhead while keeping the correct 
binding mode in the pocket.

Overall, by using WIDOCK on KRASG12C we could 
retrieve 10 out of the 12 experimental actives (except for 
the acyl-imidazole 14 and the α-chloro-acetamide 17) within 
the defined distance cutoff, that represents 83% sensitivity 
(or True Positive Rate, TPR) (Fig. 3). In comparison, we 
screened the library using the dedicated covalent docking 
module of AD4 (flexible side chain method). By analyzing 
the results based on a target-tailored classification threshold 
(see “Docking calculations” in “Methods” section), covalent 
docking provided a TPR of 75% (Fig. 3b), thus somewhat 
lower than the one achieved by WIDOCK (more details in 
Supporting Table S3). In addition, covalent docking showed 
significantly lower specificity and accuracy (13 and 50%) 
as compared to WIDOCK (100 and 90%), which emphasize 
the ability of WIDOCK to discriminate active from inactive 
compounds in the screening set. Additionally, ROC curves 
were produced as unbiased performance metrics to evaluate 
virtual screening results (Fig. 3c). The superior performance 
of WIDOCK relative to covalent AD4 is shown by both the 
higher early enrichment of actives (Supporting Figure S4) 
and the larger AUC values, thus supporting the utility of 
WIDOCK in handling screening sets composed of diverse 
warhead chemotypes.

Retrospective docking on MurA and CatB

WIDOCK was next evaluated on electrophilic fragments 
equipped with diverse warheads against MurA and CatB. In 
Table 1, we report reactivity and inhibitory activity data for 
the library members. Their reactivities against l-glutathione 
(GSH) are characterized by the half-life of adduct forma-
tion and by the pseudo first order reaction rate constant (k) 
derived from the former. These fragments were measured in 
single point enzyme activity assays at 100 μM concentration 
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against MurA and CatB. Reactivity and inhibition data were 
taken from a recent publication [9].

Biochemical results shown in Table 1 suggest that a large 
fraction of highly reactive compounds led to a better inhibi-
tory profile (lower remaining activity) when tested against 
MurA. This is in line with the idea that a more pronounced 
reactivity improves the chance of covalent binding, and con-
sequently enhances the inhibitory activity. This trend, how-
ever, is not seen by the results obtained against CatB. This 
highlights that reactivity is not the only factor driving the 
binding of covalent ligands, and significant degree of target 
selectivity can be achieved [43]. The role of the binding 
site residues involved in the initial ligand recognition, and 
by the cysteine surroundings affecting its intrinsic nucleo-
philicity can be interpreted by characterizing the active site 
cysteines of MurA (Cys115) and CatB (Cys29). We used 
three tools to obtain reactivity and accessibility descrip-
tors (Table 2). QSite [62–64] by Schrödinger was used to 
perform mixed QM/MM calculations to inspect the reac-
tive center in the protein. It provided information about the 
electrostatic potential minima (ESPmin) on the sulfur atom 
of the cysteines, thus indicating the relative nucleophilicity 
of the targeted residues. By using the POPS algorithm, we 
could retrieve information on the cysteine accessibilities, 
in terms of solvent accessible surface areas (SASA) of both 
the whole residue and its side chain sulfur (SG). Finally, the 

web-based platform Cpipe was used for reactivity and pKa 
predictions for the analyzed cysteines.

By investigating the calculated properties, the lower 
ESPmin and pKa values of CatB’s Cys29 compared to 
MurA’s Cys115 suggest a more pronounced nucleophilic-
ity of the former, which is accompanied, however, by a 
lower accessibility. Overall, the lower accessibility of the 
catalytic cysteine in CatB could provide an explanation of 
the lower number of experimental actives found against 
this target.

The experimental reactivity data measured against 
GSH (lnk in Table 1) were used to derive parameters for 
WIDOCK. Then, ligands of Table 1 were docked against 
MurA and CatB by targeting the reactive cysteine being 
able to modulate the functional activity of each protein 
when covalently modified. Activity prediction was com-
pared to experimental screening results available for the 
two enzymes. WIDOCK was able to retrieve most of the 
validated actives, with few false positives having the react-
ing atom pair within the defined distance cutoff (Fig. 4a, for 
detailed dataset see Supporting Table S4). Overall, screening 
by WIDOCK resulted in 60% and 100% sensitivity against 
MurA and CatB, respectively (Fig. 4b). The varying perfor-
mance in terms of true positive rates reflects the different 
structural framework defined by the binding site residues 
involved in the non-covalent recognition of covalent ligands. 

Fig. 2   Self-docking of the 
acrylamide-based KRASG12C 
inhibitor 5 co-crystallized in 
5V6S. Crystal structure in cyan; 
AD4 non-covalent docking 
pose in pink; pose generated 
by WIDOCK in orange. a 
Overall consensus found in the 
predicted binding modes with 
respect to the co-crystallized 
conformation. b Structural dif-
ferences in the warhead region: 
I warhead conformation in the 
crystal structure; II warhead 
conformation in the stand-
ard non-covalent AD4 pose; 
III warhead conformation in 
WIDOCK pose
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Indeed, the non-covalent interactions formed in the pocket 
are important to place the warhead in the right position and 
orientation with respect to the protein nucleophile in order 
to allow for the chemical reaction [2].

Next, we compared the performance of WIDOCK to 
that of the dedicated covalent docking algorithm of AD4. 
Contrarily to our protocol, we could not retrieve a signifi-
cant amount of experimentally validated covalent inhibi-
tors by the covalent docking available in AD4 within the 
custom classification threshold (Fig. 4a). Considering 
MurA, covalent docking showed a sensitivity of 20%, 
thus substantially lower than that achieved by WIDOCK 
(60%) (Fig. 4b). As for CatB, no actives were correctly 
predicted (sensitivity is equal to 0%). It is to be noted 
that the high sensitivity obtained by WIDOCK for CatB 
is accompanied with lower specificity owing to the gen-
erated false positives. This is in sharp contrast with the 
results obtained by covalent AD4 that generated a single 
false positive without identifying any true active within 
the custom threshold. Although the number of investi-
gated compounds and experimental actives are clearly 
lower than it is typical in virtual screening campaigns, 
it is worth noting that the high sensitivity at the expense 
of modest specificity as found with WIDOCK allows the 
identification of actives although with increased experi-
mental effort. The ROC curves (Fig. 4c) and the enrich-
ment curves (Supporting Figure S4) clearly demonstrate 
the advantage that WIDOCK provides in terms of better 
TPR to FPR relation and high early enrichment of MurA 
and CatB actives as compared to covalent AD4, with the 
latter resulting in AUC values only slightly better than a 
random classification. It can also be seen how the lower 
specificity emphasized for WIDOCK against CatB is due 
to the incorrect positive classification of an additional 38% 
of the set following the identification of all true inhibitors 
(100% TPR already obtained in the top ranked 17% of the 
set).

We also investigated the ability of calculated reactiv-
ity descriptors (ΔGr, ΔG‡) for the parametrization of the 
pseudo-Lennard–Jones potentials. Reaction energy (ΔGr) 
did not turn out to be useful for this compound set with 
diverse warhead chemotypes (R2 = 0.066 between ΔGr 
and the logarithm of the kinetic rate constant). Although 
the quantum chemical prediction of reactivity for diverse 
warheads is highly challenging, reasonable correlation was 

Fig. 3   Evaluation of WIDOCK and covalent docking in AD4 
(CovAD4) against KRASG12C. a Docking results: colored cells rep-
resent experimental and predicted actives (in green and blue, respec-
tively). Experimental actives were considered as those showing > 50% 
KRASG12C labeling at pH 7.5 at 100 μM concentration. Pseudo-Len-
nard–Jones potentials for WIDOCK were derived using experimental 
reactivities against BME. b Performance metrics at custom cutoffs. c 
ROC curves

▸
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found (R2 = 0.505; RMSD = 1.99; N = 29) between ΔG‡ 
and the logarithm of the kinetic rate constant by consid-
ering all investigated warhead chemotypes (Fig. 5). The 
correlation was found to be statistically significant at the 
p = 1.08 × 10–5 level using a correlation t-test.

Therefore, we applied this model to predict kinetic rate 
constants for all compounds in the set, which were then 
used to derive the parameters of the pseudo-Lennard–Jones 
potentials for WIDOCK. The performance was shown to 
be highly similar to that obtained by the experimental reac-
tivity parameters. In particular, considering the fraction of 
compounds within the distance cutoff, it resulted in 53% 
and 100% sensitivity against MurA and CatB, respectively 
(Fig. 6). Interestingly, equal (CatB) or similar (MurA) TPR 
values at distance cutoffs correspond to a higher specific-
ity (1-FPR) for the protocol based on calculated parameters 
against both targets (100 and 58% for MurA and CatB, 
respectively).

We find it instructive to analyze docking poses obtained 
with WIDOCK and to compare them with the poses calcu-
lated by both non-covalent AD4 and covalent AD4. Fig-
ure 7 shows the conformations generated by all the evaluated 
methods when docking selected experimental MurA actives 
including maleimide (41), α-halo-acetophenone (46) and 
acrylamide (32) warheads. These three fragments were all 
predicted as actives by WIDOCK, while the covalent dock-
ing in AD4 only predicted the maleimide 41 among the best 
scored. While the methods provided different poses for 32, 
the predicted binding modes of 41 and 46 by the covalent 
docking and WIDOCK overlapped significantly. In contrast, 
the standard non-covalent AD4 predicted fragments 32 and 
41 into a different subpocket. Interestingly, an overlap is 
displayed by the phenyl ring in 46, although in a flipped 
conformation that places the reactive carbon far from the 
reactive cysteine.

By docking our compound set to CatB, α-bromo-
acetophenone was found as the only warhead type in experi-
mentally validated inhibitors. WIDOCK was able to predict 
all the true actives in the set, although together with a higher 
number of false positives as compared to the other two tar-
gets. In Fig. 8, docking poses predicted for two experimental 
actives (44 and 46) are shown. As in the case of MurA, sig-
nificant overlap was found between conformations generated 
by the covalent docking and WIDOCK, with only a slight 
deviation of the biphenyl system in 44 toward a different 

subpocket. In addition, both 44 and 46 clearly show the 
distinct binding mode that is produced by the non-covalent 
docking method neglecting the reactivity information.

Interestingly, comparing the distances between the reac-
tive atom pairs in the WIDOCK and non-covalent AD4 
poses shows that their difference was increased parallel with 
the inhibitory activities (Fig. 9). The most striking differ-
ences involve those compounds that were predicted as cova-
lent binders by WIDOCK, a significant fraction of whom 
were found as experimental actives. Altogether, these data 
clearly show that the improved sensitivity of WIDOCK can 
be traced back to the ligand reactivity considered within the 
docking process.

Retrospective screening against OTUB2 and NUDT7

To analyze the performance in a larger-scale virtual screen-
ing scenario, WIDOCK was applied on the set experimen-
tally screened by Resnick et al. [43] against OTUB2 and 
NUDT7. The screening library consisted of mildly reactive 
chloroacetamides and acrylamides for which thiol reactiv-
ity data were reported, thus enabling the parametrization of 
WIDOCK. In detail, the logarithm of the average second-
order kinetic rate constant (values in Supporting Table S5) 
was used to derive parameters for the pseudo-Lennard–Jones 
potentials, similarly to previously described applications. 
Overall, considering the performance at the usual distance 
cutoff, WIDOCK predicted 23 of the 41 experimental actives 
reported in the screening against OTUB2 (TPR = 56%) and 
10 of the 29 actives found against NUDT7 (TPR = 34%). 
Structures of true positive hits for OTUB2 and NUDT7 are 
shown in Supporting Figure S3. Interestingly, all the true 
actives predicted by WIDOCK against NUDT7 (10/10) and 
most of those found against OTUB2 (20/23) were non-pro-
miscuous hits in the screening carried out by Resnick et al. 
against ten different targets. The library was also screened 
by the covalent docking module in AD4 to have a direct 
comparison with a dedicated program. It is worth noting that 
such a large scale virtual screening application of covalent 
docking by AD4 is unprecedented and required automating 
the generation of post-reaction conformations. The evalua-
tion of WIDOCK and covalent AD4 using the custom cutoffs 
and an extended cutoff of 10% for covalent AD4 is shown in 
Fig. 10b (for detailed results see Supporting Table S5). Eval-
uating the protocols using ROC curves (Fig. 10c), covalent 

Table 2   Parameters indicating 
reactivity and accessibility of 
cysteines in MurA and CatB

Target Residue QSite POPS Cpipe

ESPmin (kcal/mol) Cys (whole) 
SASA (A2)

Cys (SG) 
SASA (A2)

pKa Prediction

MurA C115  − 370.85 34.78 15.1 4.26 Reactive
CatB C29  − 383.32 19.97 10.7 2.45 Reactive
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Fig. 4   Evaluation of WIDOCK 
and covalent docking in AD4 
against MurA and CatB. a 
Docking results: colored cells 
represent experimental and 
predicted actives (in green and 
blue, respectively). Pseudo-
Lennard–Jones potentials were 
parametrized using experimen-
tal reactivities against GSH. b 
Performance metrics at custom 
cutoffs. c ROC curves
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AD4 showed a better performance compared to WIDOCK 
when applied against OTUB2. The dedicated covalent dock-
ing protocol could systematically enrich for more actives at 
all fractions of the screening set, while also predicting less 
false positives. This resulted in AUC values of 0.74 and 0.54 
for covalent AD4 and WIDOCK, respectively. A different 
trend could instead be observed for the virtual screening 
against NUDT7, where the two docking protocols displayed 
highly comparable performances as shown by the respective 
ROC curves and enrichment plots (reported in Supporting 
Figure S4).

Docking poses predicted by WIDOCK and covalent 
docking for the compounds co-crystallized in 5QIV 
(OTUB2) and 5QHA (NUDT7) are shown in Fig. 10a. 
The targeted cysteines (Cys51 in OTUB2 and Cys73 in 

NUDT7) are located in pockets that are close to the sur-
face, thus challenging the prediction of accurate confor-
mations. The protocols could reproduce the overall shape 
and conformation of the experimental structures, although 
apparent deviations were found mainly in the solvent-
exposed terminal of the ligands.

Overall, based on the results gathered on all retrospec-
tive studies, WIDOCK outperformed covalent AD4 when 
applied to libraries that included more diverse warhead 
chemotypes (KRASG12C, MurA and CatB), while a com-
parable (NUDT7) or worse (OTUB2) performance was 
observed with compound sets spanning less variability in 
the reactive groups and thus in the intrinsic reactivities. 
Since WIDOCK was mainly devised to broaden the scope of 
electrophiles to be investigated in a virtual screening, these 

Fig. 5   Correlation between calculated activation energy barriers (ΔG‡) and experimental reactivities (lnk)

Fig. 6   Comparison of ROC curves obtained using WIDOCK based on experimental (WIDOCK-exp, in orange) and calculated (WIDOCK-pred, 
in green) reactivity data against MurA and CatB
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results confidently paved the way for its application in pro-
spective studies to confirm its usefulness in the prediction 
of diverse covalent binders.

Additionally, WIDOCK was tested against these two tar-
gets using the QM-based reactivity parameters described 
for the retrospective docking on MurA and CatB, in order 
to examine the applicability of the computational para-
metrization on larger screening sets. To ensure comparable 

reactivities, computationally derived parameters were 
assigned to compounds presenting a related warhead in the 
reference library screened versus MurA and CatB (for more 
details, see supplementary methods within the Supporting 
Information). By screening parametrized compounds against 
OTUB2, WIDOCK showed a sensitivity of 60%, a speci-
ficity of 76% and an overall accuracy of 76% considering 
compounds predicted within the defined distance cutoff. The 
screening results obtained for the same set of compounds 
but with experimentally derived parameters showed a higher 
sensitivity of 100% at the expense of reduced specificity 
(59%) and accuracy (60%). However, inspecting the per-
formance via the respective enrichment and ROC curves, 
it is worth noting how the computational parametrization 
provided a better enrichment of actives in the initial third 
of the screening set and an overall higher AUC value com-
pared to the protocol based on experimental parameters 
(Fig. 11 and Supporting Figure S4). When applied against 
NUDT7, the protocol with computational parametrization 
resulted in a sensitivity of 29%, with specificity and accu-
racy of 86 and 83%, respectively. Screening the same set of 
compounds with experimentally derived parameters exhib-
ited 64% sensitivity and lower specificity (74%) and accu-
racy (73%) compared to the screening by computationally 
derived parameters. In general, WIDOCK with computa-
tionally derived parameters resulted in poorer performance 
for NUDT7, as the experimental parametrization could pro-
vide a consistently better enrichment of actives (Fig. 11 and 
Supporting Figure S4). It must also be emphasized that the 
experimental-based protocol predicted a larger fraction of 
compounds (~15%) within the distance cutoff against both 
OTUB2 and NUDT7, thus resulting in the identification of 
a higher number of actives compared to the computational 
protocol. However, these results confirmed that promising 
virtual screening hits can be predicted even by relying solely 
on a computational parametrization.

Prospective screening against MAO‑A by targeting 
an active site cysteine

Encouraging results obtained during the retrospective vali-
dation of WIDOCK prompted us to apply the protocol to 
identify new covalent MAO-A inhibitors. Although sev-
eral known MAO-A inhibitors bind covalently to the FAD 
cofactor, to the best of our knowledge, no validated cysteine-
binding covalent inhibitor has been reported yet for MAO-
A. Inspecting the residues at the active site, we identified 
Cys323 in a position that its labelling is likely to block the 
access to the active site. Moreover, since two additional resi-
dues, Cys201 and Cys321, are found near the active site, 
the reactivity and accessibility of these three cysteines were 
characterized as explained in the previous section.

Fig. 7   Surface representation showing the best scoring poses 
obtained by docking compounds 32, 41 and 46 to MurA via differ-
ent protocols. Standard non-covalent docking pose in pink; covalent 
docking pose in cyan; docking pose provided by WIDOCK para-
metrized with experimental reactivities in orange; docking pose pro-
vided by WIDOCK parametrized with predicted reactivities in green
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By comparing the values obtained for these three residues 
in MAO-A, we observed that Cys323 not only has the most 
negative ESPmin, but also the largest SASA considering both 
the whole residue and the side chain sulfur (Table 3). These 
data suggest that Cys323 is the cysteine residue having the 
highest nucleophilic character and accessibility among the 
ones analyzed in MAO-A. Furthermore, Cpipe predicted it 
to be reactive, together with Cys321, despite their high pKa 
values. It is worth noting that several cysteine residues for 
which labeling was proved by X-ray crystallography and/
or MS experiments were found to have high predicted pKa 
values [76]. Altogether, these data suggest that Cys323 is 
potentially targetable and support that Cys323 labeling may 
lead to MAO-A inhibition with a novel covalent mechanism 
of action. This hypothesis is supported by a recent report of 
several cysteine reactive covalent MAO-A inhibitors, how-
ever, their mechanism of action was not confirmed [77]. 
Figure 12 highlights the location of Cys323 and the sur-
rounding residues (including Cys321) in the binding pocket 
of MAO-A.

Compounds in Table  1 were docked with WIDOCK 
into MAO-A by using both experimental and computation-
derived pseudo-Lennard–Jones potentials (see above). Vir-
tual screening with standard covalent AD4 was also per-
formed to analyze differences in the predictive power. All 
of the compounds were experimentally tested in MAO-A 
inhibitory assay. As summarized in Fig.  13a, applying 
WIDOCK with experimental reactivity parameters resulted 
in eight compounds predicted within the distance cutoff, 
which were all experimentally confirmed. Additional four 
compounds were found to inhibit MAO-A experimentally. 
These data represent 67% sensitivity, 100% specificity and 
overall 86% accuracy (Fig. 13b). The performance is slightly 
lower when the parameters of the potentials were derived 
from computed reactivities. In this case, one active is left 
unrecognized (compound 39) and four false positives (30, 
31, 33, 51) appeared. Altogether, the sensitivity is 58%, the 
specificity is 76% and the accuracy is 69%. Thus, the hit rate 
with experimentally derived parameters is 100%, while it is 
64% with the computationally derived parameters. Although 
the assessment of these results is affected by factors like 

Fig. 8   Surface representation showing the best scoring poses gener-
ated by docking compounds 44 and 46 against CatB via different pro-
tocols. Standard non-covalent docking pose in pink; covalent dock-

ing pose in cyan; docking pose provided by WIDOCK parametrized 
with experimental reactivities in orange; docking pose provided by 
WIDOCK parametrized with predicted reactivities in green

Fig. 9   Differences of the 
distances between the react-
ing ligand atom and the 
cysteine sulfur as obtained with 
WIDOCK and with the non-
covalent AD4 docking. Average 
differences plotted against 
binned remaining activities are 
shown
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the size and composition of the investigated library and the 
promiscuity of the identified inhibitors, the high hit rates are 
remarkable. Considering the performance of standard cova-
lent AD4, the most notable difference is the lower sensitivity 
of 33%, as only four out of the 12 experimental actives were 
correctly predicted using the custom classification thresh-
old, with a hit rate of 57%, accompanied by 82% specific-
ity and 62% accuracy. By investigating the overall perfor-
mance using ROC curves (Fig. 13c), the remarkably accurate 

classification ensured by WIDOCK based on experimental 
reactivity parameters is clearly shown by its ability to predict 
only active compounds within the specified distance cutoff, 
finally resulting in an AUC value of 0.70. On the other hand, 
the computational parametrization of WIDOCK provided a 
highly comparable performance relative to covalent AD4 
within the first half of the library. Considering the fraction 
of compounds predicted within the distance cutoff by the 
purely computational protocol (top 38% of the set), covalent 

Fig. 10   Evaluation of WIDOCK 
and covalent docking in AD4 
against OTUB2 and NUDT7. a 
Docking poses for the com-
pounds co-crystallized in the 
structures used for the virtual 
screening against OTUB2 
(5QIV) and NUDT7 (5QHA). 
Crystal structure in cyan; 
covalent docking pose in purple; 
WIDOCK pose in orange. b 
Performance metrics at custom 
cutoffs. c ROC curves
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AD4 resulted in 50% sensitivity, 71% specificity and 62% 
accuracy, hence in a slightly poorer performance. Despite 
covalent AD4 had an overall larger AUC (0.63) compared 
to WIDOCK based on computational parameters (0.51), this 
is the result of a detrimental enrichment in the second half 
of the set past the distance cutoff (see also enrichment plots 

reported in Supporting Figure S4) and past also the region 
relevant in most virtual screening applications. Overall, 
the results collected in this prospective study confirmed 
a) the efficacy of WIDOCK in enriching for actives within 
the defined distance threshold, and b) its superior virtual 

Fig. 11   ROC curves for the virtual screening against OTUB2 and NUDT7 for a subset of compounds evaluated by WIDOCK with experimen-
tally (WIDOCK-exp, in orange) and computationally derived (WIDOCK-pred, in green) reactivity parameters

Table 3   Parameters indicating 
reactivity and accessibility of 
cysteines in MAO-A

Target Residue QSite POPS Cpipe

ESPmin (kcal/mol) Cys (whole) 
SASA (A2)

Cys (SG) 
SASA (A2)

pKa Prediction

MAO-A C201  − 170.41 8.17 2.25 11.23 Not reactive
C321  − 285.77 10.18 3.99 10.12 Reactive
C323  − 298.69 24.53 13.57 13.20 Reactive

Fig. 12   Active site of MAO-A 
with the FAD cofactor in 
purple, covalently bound to 
Cys406. Residues surround-
ing the active site Cys323 are 
shown
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screening performance compared to covalent AD4 when 
dealing with highly diverse warhead libraries.

The labelling of MAO-A by compound 32 was confirmed 
by MS/MS studies. Proteomics studies revealed that 32 
forms a covalent bond with Cys323 located at the active 
site of MAO-A (Supporting Figure S5).

Docking poses predicted for two compounds found to 
inhibit MAO-A activity (32 and 45) are shown in Fig. 14. 
They illustrate how WIDOCK was able to predict active 
ligands bearing different warheads that react through differ-
ent reaction mechanisms (32 via Michael addition and 45 via 
nucleophilic substitution). Docking poses generated by the 
non-covalent docking in AD4 are used again as reference. 
For the acrylamide-based compound 32, the reactive atom 
in the WIDOCK pose was found to be within bonding dis-
tance from the cysteine sulfur. By contrast, the best scoring 
pose provided by non-covalent docking placed the warhead 
farther away from the cysteine, showing a hydrogen bond 
interaction between the acrylamide-NH and the backbone 
carbonyl of Val210. The reactive carbon of the α-bromo-
acetophenone 45 in the best scoring pose was placed at short 
distance from the cysteine sulfur by WIDOCK. On the other 
hand, non-covalent docking led to a flipped binding mode 
due to an H-bond interaction between the carbonyl oxygen 
and the hydroxyl group of Ser209. Covalent AD4 docking 
poses are also included to show differences in the predicted 
binding modes, although neither of the two was predicted 
among the best scoring ones by this protocol. Furthermore, 
poses generated by WIDOCK using experimental and com-
puted reactivity parameters were found to be highly overlap-
ping in the majority of cases, thus further supporting com-
putational parametrization.

We compared the distances between the reactive atom 
pairs in the poses provided by WIDOCK and by the standard 
non-covalent AD4. Similarly to what we observed for MurA 
and CatB (see Fig. 9), the difference increased parallel with 
the inhibitory activities (Fig. 15). These data confirm the 
tendency that the larger the inhibitory activity, the more pro-
nounced the effect of the pseudo Lennard–Jones potential to 
produce short interatomic separation for the reacting atoms. 
This finding underlines the importance of including reactiv-
ity information in a docking protocol for covalent binders.

Fig. 13   Evaluation of WIDOCK and covalent docking in AD4 
against MAO-A. For WIDOCK, results obtained by using both exper-
imental and predicted reactivity parameters are shown. a Docking 
results: colored cells represent experimental and predicted actives (in 
green and blue, respectively). b Performance metrics at custom cut-
offs. c ROC curves

▸
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Conclusion

Virtual screening of covalent inhibitors needs a robust 
docking-scoring scheme applicable to compounds with a 
wide range of covalent warheads. We presented WIDOCK 
as a reactive docking protocol that uses a ligand reactivity-
based pseudo-Lennard–Jones potential in AutoDock4 to 
enable virtual screening of diverse warhead libraries. Ligand 
reactivities were derived from kinetic data obtained either 
from experiments or from quantum chemical calculations. 
WIDOCK was evaluated retrospectively against experimen-
tal data obtained for focused sets of diverse electrophiles 
against three targets, KRASG12C, MurA and cathepsin B. 
Additionally, larger electrophilic fragment libraries with lim-
ited warhead diversity were screened against OTUB2 and 
NUDT7. Results were also contrasted to those obtained by 
covalent docking in AutoDock4. WIDOCK retrieved experi-
mental actives with high sensitivity (true positive rate) and 
outperformed the dedicated covalent docking module of 

AutoDock4 in terms of early enrichments and ROC curves 
when screening libraries that spanned more diverse war-
head chemotypes, while comparable or worse performances 
were obtained with sets characterized by lower variability 
in the reacting groups and in the corresponding intrinsic 
reactivities. When tested prospectively for discovering new 
MAO-A inhibitors with a new mechanism of action targeting 
Cys323, eight and seven actives (TPR: 67 and 58%) were 
identified with experimentally and computationally para-
metrized potentials. One of these compounds was proven to 
label Cys323 by subsequent MS proteomics measurements. 
To the best of our knowledge, this is the first experimen-
tally validated case that MAO-A inhibition was achieved 
via direct Cys323 labelling. These results demonstrate that 
this warhead-sensitive docking protocol can be considered 
as a useful tool for the discovery of cysteine targeting cova-
lent inhibitors. Furthermore, it was shown for compounds 
acting via Michael addition and nucleophilic substitution 
that the linear relationship between experimental and com-
puted reactivities makes it possible to use computational 
parametrization of reactivity-based docking without a sig-
nificant loss of accuracy. Therefore, we believe that the pre-
sent parameter set of WIDOCK could be easily extended to 
new ligands acting with the same reaction mechanism. The 
warhead-sensitive nature of WIDOCK supports the parallel 
optimization of non-covalent and covalent interactions for 
the first time that might contribute to identify more specific 
and safer covalent inhibitors.
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Fig. 15   Differences of the distances between the reacting ligand atom 
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covalent AD4 docking. Average differences plotted against binned 
remaining activities are shown
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