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BOLD-fMRI technology provides a good foundation for the research of human brain dynamic functional connectivity and brain
state analysis. However, due to the complexity of brain function connectivity and the high dimensionality expression of brain
dynamic attributions, more research studies are focusing on tracking the time-varying characteristics through the transition
between different brain states. *e transition process is considered to occur instantaneously at some special time point in the
above research studies, whereas our work found the brain state transitionmay be completed in a time section gradually rather than
instantaneously. In this paper, a brain state conversion rate model is constructed to observe the procedure of brain state transition
trend at each time point, and the state change can be observed by the values of conversion rate. According to the results, the
transition of status always lasts for a few time points, and a brain state network model with both steady state and transition state is
presented. Network topological overlap coefficient is built to analyze the features of time-varying networks. With this method,
some common regular patterns of time-varying characteristics can be observed strongly in healthy children but not in the autism
children. *is distinct can help us to distinguish children with autism from healthy children.

1. Introduction

Autism spectrum disorder (ASD) is considered as a rela-
tively serious developmental disorder in brain [1], usually
congenital and found in early childhood development [2, 3].
It is currently one of the most severe childhood psychiatric
diseases, which mainly manifested in social and commu-
nication dysfunction [4], language dysfunction [5], and
repetitive ritualized stereotypes [6]. As the prevalence of
ASD increased in recent years [7], more and more re-
searchers devoted themselves to explore the etiology of ASD
[8–10].

As a popular imaging technique, resting-state functional
magnetic resonance imaging (rs-fMRI) is applied to discover
human brain functional organization characters. It is also
used to distinguish brain diseases [11–15]. *e data-driven
methods were used to build large-scale brain functional

networks, and then the hierarchy clustering was adopted to
find the differences in network connectivity patterns be-
tween ASD patients and healthy controls (HC) [16]. By using
independent component analysis (ICA)for default mode
network (DMN) functional connectivity in children brain
based on rs-fMRI, some changes were found between
normal developed children and those with ASD [17, 18]. An
analysis of the intrinsic connectivity networks (ICNs) both
in ASD and in HC was carried out; furthermore, research on
functional connectivity and spatial overlap between these
common ICNs revealed the distinction in omics connec-
tivity characteristics between ASD patients and HC [19, 20].
Local and long-distance connections during the process of
brain activity were measured by using a common graph
theory framework, and those results were used to examine
the spontaneous characteristics of brain activity between
ASD and HC [21]. An enhanced effect size threshold (EEST)
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method was used for extracting connectivity-based features
based on rs-fMRI in order to diagnose ASD automatically
[22].

Many fMRI studies focused on blood oxygenation level
dependent (BOLD) signals indicate that brain activities
change as time lapses [23–25] and functional connectivity
networks built on BOLD-fMRI signals can also reflect time-
varying characteristics [26–28]. Sliding window technology
is used in some studies to perform dynamic information
analysis on BOLD signals which acquisited from rs-fMRI
data [29–31]. And then some correlation analysis methods
are adopted to construct dynamic brain function network
such as Pearson correlation analysis [32], nonlinear
Spearman rank correlation analysis [33], and partial cor-
relation analysis [34]. In order to study the time variability of
human brain function network and further identify brain
diseases, some studies have tried to express the character-
istics of brain state of dynamic brain function connectivity
networks. *e hidden Markov model (HMM) is used to
estimate the states of brain in different time on the basis of
BOLD-fMRI signal analysis [28]. Some modularization and
topological clustering methods are applied for dynamic
brain function connectivity to find the status distinct over
time [35]. K-means algorithm also is widely used to dis-
tinguish one brain status from another.

*e existing research studies the changes in brain
function network over time by constructing a dynamic brain
function network, identifying brain state [36–38], and ef-
fectively identifying brain diseases. However, in the research
of clustering and recognizing brain state, the dimension of
brain function network is considered too high, and it is
difficult to directly observe its main features, which brings
difficulties to further study the dynamic characteristics of
brain network. *e network characteristics of state transi-
tions are rarely considered in the subsequent state recog-
nition process.

*is paper analyzes the dynamic characteristics of brain
network state by performing dimensionality reduction
clustering on high-dimensional dynamic brain networks, it
analyzes the state transition critical point statistically and
establishes the instantaneous conversion rate model to
observe the transition trend of dynamic brain network state.
Based on this, this paper proposes a conjecture that the brain
network state transitions in a range, but not instantaneously,
constructs a brain state network and uses the network to-
pology coefficients to calculate the network similarity in the
brain state network to express the time-varying character-
istics of the brain state network. *e method was used to
analyze the difference in the time-varying characteristics of
brain state network between healthy children and children
with autism, and the effectiveness of the proposed method
was verified.

2. Materials and Preprocessing

2.1. Participants. *e rs-fMRI dataset used in this study is
obtained from the ABIDE database [39]. A total of 40
participants were recruited at Stanford University School of
Medicine, including 20 HC and 20 ASD. Children with ASD

received a diagnosis based on scores from the Autism Di-
agnostic Interview-Revised (ADI-R) or the Autism Di-
agnostic Observation Schedule (ADOS) administered by a
research reliable clinician. Both ASD and HC exclude
participants with a history of any known genetic, psychiatric,
or neurological disease. Table 1 shows the details of the
participants, including age, gender, FIQ, ADOS total, ADOS
communication, and p value.

2.2. rs-fMRI Scan Parameters and Preprocessing.
Participants were required to close their eyes but not sleep
during data collection. All images were collected with
TR� 2 s, TE� 30ms, matrix size� 64∗ 64, flip angle of 80°,
FOV� 20 cm, 29 slices, yielding 3.125× 3.125× 4.50mm3

voxels for 180 time points, slice thickness� 3.5mm, slice
gap� 1.05mm, field of view 240mm, and resting-state scans
consisting of F� 176 volumes.

*e rs-fMRI raw data were preprocessed by using Py-
thon/FSL Resting State Pipeline platform [40]; then, the
whole brain was divided into 90 brain regions by using
Automated Anatomical Labeling (AAL) [41]. *e pre-
processing of the data mainly consists of the following seven
steps: (1) data removal of the first 4 time points; (2) time
layer correction; (3) head motion correction; (4) skull re-
moval; (5) spatial standardization; (6) band-pass filtering;
and (7) BOLD signal extraction for average time series of the
brain region. After all these treatment, the BOLD time series
of 90 brain regions at 176 sampling points were obtained.

2.3. Construction of Dynamic Functional Connectivity Brain
Network. In order to observe the continuous change of
BOLD signal with time in our work, we used sliding window
technique [42, 43] to combine several BOLD values at ad-
jacent sampling time. As a result, we got a small window
which includes all the BOLD information of 90 brain regions
in consecutive time as our state observation window for
current sample time point.*e window is moved from left to
right according to time change in step size l. Here, the size of
the sliding window n and the time step l can be determined
by the attribution of experiment data. In this work, it is set to
be n� 20 and l� 1. *en, the overall BOLD signal time series
were divided into g � 157 (g �176 − n+ l) state observation
windows. Now in each state observation windows, we got an
n∗N matrix.

To explore the temporal synchronization and correlation
of state observation windows, Pearson correlation analysis
[32, 44] method is chosen to construct dynamic functional
connectivity between brain regions in each sliding window.
In order to make it conform to the network characteristics,
threshold processing is performed in the process of con-
structing the network. Only when the correlation strength
reaches a certain threshold, it is considered that there is a
functional connection between the two brain regions. In
order to select a reasonable threshold to construct a com-
plete brain network functional connection, we use the small
world of the network and the integrity of the brain function
network as a method for determining the reasonable
threshold range. *reshold estimation of all samples and
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selection of common intersections were used to determine
reasonable thresholds. We take absolute values of all cor-
relation coefficients and use the threshold th� 0.5 for net-
work processing [45], which can be described bymatrixM as
follows:

Mg �

M11 M12 · · · Mu1

M21 M22 · · · Mu2

⋮ ⋮ ⋱ ⋮

M1u M2u · · · Muu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

If we take 90 brain regions as network nodes, here
nodes� {1, 2, 3, . . ., 90}, u� 90, and take the correlation
coefficients as the edge of the network, here edges� {M11,
M12, . . ., Mij, . . ., Muu}, u� 90. A 90× 90 state observation
matrix g is obtained in each observation window. *e state
observation matrix is a diagonally symmetric matrix. *e
correlation coefficient between the brain regions can be
regarded as the real-time feature of the brain network
without considering the autocorrelation.

*ere are a total of 4005 components. A 4005-di-
mensional brain network state observation vector can be
obtained by sequentially extracting the features in the di-
agonal correlation coefficient matrix from head to tail.

After completing all aforementioned steps, each resting
state fMRI sample will get g vectors in the whole sampling
interval; that is, we can get g × 4005 matrix G. *e row vector
of the matrix G represents the functional connection char-
acteristics of the brain regions in a certain scanning time
interval, and thematrixmay reflect the dynamic process of the
whole brain function network in entire data acquisition time.

2.4. Dimension Reduction of BrainNetwork State Observation
Matrix Based on t-SNE. In the process of studying the dy-
namic characteristics of the brain network, the whole brain
network state observation matrix is constructed. Because of
the high dimensions up to 4005, it is very difficult for
identification and analysis of the dynamic characteristics of
brain network. In our work, t-distributed Stochastic
Neighbor Embedding (t-SNE) [46] algorithm is used to
reduce the dimensionality of the whole brain region network
state observation matrix. *e t-SNE algorithm is used in
many studies and has achieved good dimensionality re-
duction and visualization [47, 48]. After using t-SNE, the
high-dimensional whole brain region network state obser-
vation matrix is embedded into a two-dimensional space; as

a result, the state distribution with time changing can be
observed by clustering effect. Because the states change with
time, the corresponding low-dimensional distribution looks
like some continuous time points with intervals, and the last
time point of each cluster indicates the state transition,
which we called critical point of state transition in our
research.

3. Methods

3.1. State Instantaneous Conversion Rate of Independent
Samples. In this study, while using t-SNE algorithm to
measure the difference between two probability distributions
in high-dimensional space and low-dimensional space, the
low-dimensional expression which embedded from high-
dimensional brain network state observation matrix is ob-
tained by the gradient descent method. Because the mapping
result in two-dimensional space only shows the similarity
degree of those states but not the position, the final cluster
visualization results are random. In view of this randomness,
we performed repetitious dimensionality reduction experi-
ments on healthy samples and counted the number of state
groups and the critical point of state transition.

We set m ∈ N+ as the number of different states and Sp as
the corresponding states, p � 1, 2, 3, . . . , m{ }, and then in
each clustering experiment an independent sample data can
obtainm − 1 state transition critical points Dq, q� {1, 2, 3, . . .,
m − 1}.*e high-dimensional brain network state observation
matrix is subjected to dimensionality reduction clustering
experiment for 1000 times.*e time point k (0< k≤g) at each
state of each subject Sp to Sp+1 is recorded as Dq, and then we
can get the Dq set Gq of all 1000 times experiments. By
counting the frequency Nk of the state transition critical point
k element in each Gq set corresponding to each Dq and
observing the time point distribution position of all Dq ele-
ments in Gq set, each brain network state transition time
interval Pm− 1 � (t1, t2) can be estimated.

Based on the aforementioned statistics for both the HC
and ASD groups, we calculated the average interval co-
incidence degree Q in each sample and compared the
arithmetic mean of the coincidence values of all the samples
in the HC group and ASD group:

Q �
1
n



n

y�1


m− 2
x�1 Rx

g
 

y

, (2)

where R is the overlap value of the adjacent state transition
interval, g is the number of observation time points, and n is
the number of samples in the group.

Based on the above equation, we establish the state
transition trend of the state instantaneous conversion rate in
the time interval as follows:

λk �


t1
k�0Nk


t2
k�t1

Nk ∗ (j − i)
, (3)

where Nk is the frequency at which the brain network state
transition critical time point k element appears in the Gq set
corresponding to each Dq.

Table 1: Demographics.

ASD (n� 20) HC (n� 20) p value
Age (years)
(range)

9.96± 1.58
(7.5–12.9)

9.95± 1.60
(7.8–12.4) 0.959

Gender (M/F) 16/4 16/4 —
FIQ 112.55± 17.79 112.10± 15.37 0.531
ADOS total
(range)

11.73± 3.62
(7–18) — —

ADOS communication
(range)

3.57± 1.53
(2–7) — —
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3.2. Neighbor Topology Overlap Coefficient between States.
*rough the above research, we have found that the state
transition of brain network shows a certain regularity in
time. In the existing research, some studies divide the state of
brain network differently, but we believe that the division of
brain network state will produce difference due to individual
differences. At the time of conversion, it is impossible to
explore the regularity of brain network state transition. We
propose that the state transition of the brain network is not
instantaneous but in an interval. From this, we divide the
entire time period into s states, including m steady state
intervals and s-m state transition intervals. *e entire ob-
servation interval g is divided into s state intervals of S1, S2,
S3, . . ., Ss. S2f− 1 is the state steady interval, and S2f is the state
transition interval (f ∈ N+). *e corresponding positions of
the matrices in each state are added and averaged as Ss

matrix:

Ss �

 M11  M12 · · ·  M1u

 M21  M22 · · ·  M2u

⋮ ⋮ ⋱ ⋮

 Mu1  Mu2 · · ·  Muu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

n� 20 samples are summed and averaged as brain
network state matrix Zs:
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�

a11 a12 · · · a1u

a21 a22 · · · a2u

⋮ ⋮ aij ⋮

au1 au2 · · · auu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)

*e neighbor network topology overlap coefficient is
mainly used to represent the similarity of two network
topologies in a time series network [49]. *is paper uses the
neighbor network topology overlap coefficient to interpret
the network topology changes with state over time. *e
topology overlap coefficient of each state is calculated by
using the neighbor network topology overlap coefficient.
Network topology matrices of s∗ s are obtained. *e to-
pology overlap coefficient is as follows:

C
Zs,Zs− 1( )

i �
j 1 − aij Zs(  − aij Zs− 1( 



 aij Zs( aij Zs− 1( 
����������������������
jaij Zs(   jaij Zs− 1(  



⎧⎪⎪⎨

⎪⎪⎩
,

(6)

C
Zs,Zs− 1( ) �

1
u



u

i�1
C

Zs,Zs− 1( )
i . (7)

Formula (6) calculates the topological similarity of node i
in state networks Zs and Zs− 1, (0< s≤ 9, s ∈ N+; 0< i≤ 90,
i ∈ N+). Formula (7) calculates the average similarity of the
topological similarity of all nodes in the entire network and
measures the similarity between the network Zs and the
network Zs− 1.*e value ofC(Zs, Zs− 1) is in the range [0, 1], and
the more the C(Zs, Zs− 1) value is, the more similar the state
networks Zs and Zs− 1 are. A 9∗ 9 neighbor network to-
pology overlap matrix is obtained and visually represented.
*e state topology overlap coefficient matrices of the HC
group and the ASD group are analyzed separately, and their
differences are compared (Figure 1).

4. Experimental Result and Discussion

4.1. Brain Network State Transition Visualization Based on
t-SNE. With the method presented in Section 2.4, T-SNE
algorithm was used in dimensionality reduction and visu-
alization for the brain network state observation matrix data
of different subjects in the HC group and ASD group, re-
spectively (Figure 2). *e clustering results in both groups
showed chain distribution expression with time character-
istics, and from these results, we can find some differences
between the HC group and ASD group. *e clustering re-
sults of subjects in the HC group showed some common
features: the data points in adjacent time are distributed
closely, the critical points are almost in the same time frame,
and the elements in the same states sets are very similar.
While the clustering results of subjects in the ASD group are
not universal enough, there are many scatter time points and
the state clustering results has no obvious regularity.

According to the results of the dimension reduction
experiments of the HC group, although the clustering results
of different individual samples are in different spatial po-
sitions because of the randomness, the similarity can be
observed in the cluster number and the state transition
critical points, which reflected the brain network state
transition regularity with time. Although the ASD group and
the HC group have significant differences in dimensionality
reduction results, we also found that the ASD group has been
divided into different groups by the clustering results. We
think that there is also state transition in the ASD group, but
there is no common law.

4.2. State Instantaneous Conversion Rate. In order to study
the regularity of state transition, the critical points are an-
alyzed based on Section 4.1. With the number of state groups
m� 5, embedding and clustering experiments are performed
for 1000 times on each independent data samples of the HC
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group and ASD group, and the state changing of Sp to Sp+1 in
the experiment is observed. *e time point k (0< k< t) at
which the transition critical point Dq is located and counted
as Gq (0<m≤ 5) set. *e frequency Nk of each state tran-
sition critical time point k in the Gq set is shown in Figure 3.
In the HC group, value of Nk shows obviously difference for
different state transition critical points, especially the
maximum value is far more than the other values in the Gq
set, and there are only few states near this state transition
critical time point k corresponding to the maximum value.
At the interval between those maximum values, the Nk is
very small, so each state transition period can be observed
independently. While in the ASD group, the difference
between state transition critical point frequency values is
small, there are no clear signs for the occurring of state
transition. *e time interval is wide ranging, and there is an
overlapping portion between neighboring states.

According to the statistical results of the HC group, the
state transition critical points are concentrated at certain time

points and their surroundings.*e state transition intervals are
formed naturally. Each transition interval is independent of
other intervals, and only a few overlaps occur. From these
regular patterns, we conclude that for HC sample, each brain
network state is independent and the state transition is regular
and stable. To the contrary, although the state transition can be
exhibited in above sample experiments in the ASD group, the
statistical results display that the range of the state transition
critical point k is too wide to distinguish, and as a result too
much overlap appeared between adjacent states. *is kind of
overlap represents instability of the brain network during the
status transformation; at the meantime, the results of different
subjects in the ASD group did not show common regularities.

In order to verify that the above samples are not specific,
the length of the state transition interval was counted and the
average state transition interval coincidence degree was
calculated for all samples of both the HC group and ASD
group, as shown in Figure 4. *e interval overlap of brain
network in the ASD group was significantly higher than that
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Figure 2: Reduced-dimensional visualization of 3 samples from the (a) HC group and (b) ASD group.
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Figure 3: Continued.
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in the HC group excluding the sample specificity. At the
meantime, analysis of variance (ANOVA) was used to test
the difference in data (F� 54.836, p value ≈ 0), and the re-
sults are shown in Table 2.

*e existing research studies on brain network state
regard the state transition was finished in a specific time point,
which means the transition is instantaneous. While in the
above experiments, by counting the state transition critical
point, we noticed that the state transition critical point k from
Sp to Sp+1 state transition forms regional range Pq (t1, t2). In
this paper, we propose that the state transition appeared in a
time interval rather than in a certain time. Here, we construct
a brain network state instantaneous conversion rate to ob-
serve the state transition trend of the HC group in the interval
Pq (t1, t2) (Figure 5). *e results show that the HC group
samples are not instantaneously converted but gradually
converted in the Pq (t1, t2) interval. *erefore, we recognize
that the brain network state has a state transition interval
during the conversion process, which is also one of the brain
network features and cannot be ignored.

4.3. Neighbor Topology Overlap Coefficient between States.
In order to continue to explore the time-varying character-
istics of the brain network state, based on the above analysis,

we constructed the entire observation process with s� 9which
includes m� 5 steady state periods and s − m� 4 state tran-
sition intervals in our experiments. *ese 9 intervals can be
shown as follows: S1, S2, S3, . . ., S9. S1 � {M1, M2, . . ., M10};
S2 � {M10,M11, . . ., M15}; S3 � {M16,M17, . . ., M50}; S4 � {M51,
M52, . . ., M55}; S5 � {M56, M57, . . ., M85}; S6 � {M86, M87, . . .,
M90}; S7� {M91, M92, . . ., M125}; S8 � {M126, M127, . . ., M130};
and S9 � {M131, M132, . . ., M157}. By reconstructing the brain
state network from the group analysis of the dynamic brain
function network and exploring the structural topological
similarity between different brain functional network states,
the network topology overlap coefficient can be calculated to
express the brain network state characteristics over time in
network topology. In our research, this index was used to
study the differences between HC and ASD in dynamic brain
function network state so that to verify the effectiveness of the
proposed method (Figure 6).

*e time-varying characteristics of the brain network
state of the HC group and ASD group showed significant
differences. Overall, the degree of network topology overlap
of the HC group is much higher than that of the ASD group
in any two kinds of states, as shown in Figure 7. Analysis of
variance (ANOVA) was used to test the difference in net-
work topology overlap coefficient of the HC group and ASD
group (Table 3). *e network topology overlap coefficient

Fitting Fitting
Statistical columnar graph

Frequency

Statistical columnar graph

Frequency

Fitting
Statistical columnar graph

Frequency

Fitting
Statistical columnar graph

Frequency

20 40 60 80 100 120 140 1600
State transition critical point 4

0

200

400

600

800

1000

Fr
eq

ue
nc

y

0

200

400

600

800

1000
Fr

eq
ue

nc
y

20 40 60 80 100 120 140 1600
State transition critical point 1

0

200

400

600

800

1000

Fr
eq

ue
nc

y

20 40 60 80 100 120 140 1600
State transition critical point 2

0

200

400

600

800

1000

Fr
eq

ue
nc

y

20 40 60 80 100 120 140 1600
State transition critical point 3

(b)

Figure 3: Statistical frequency map of sample 1 brain network state critical point in the (a) HC group and (b) ASD group.
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between the s� 9 states in the HC group shows a clear
common regularity (Figure 8(a)).

*e similarity of the network topology in all stable in-
tervals is more remarkable than the similarity between the

stable interval and the transition interval, and it is also higher
than the network topology similarity between the transition
intervals.*e similarity between the network topology of the
stable interval and the transition interval is higher than the
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0.2

0.0
HC ASD

Figure 4: Comparison of coincidence coefficient of state transition interval between the HC group and ASD group. Analysis of the
significant differences between the two groups using analysis of variance (ANOVA) is shown in Table 2.

Table 2: Variance analysis result of interval overlap coefficient.

Sum of squares Degrees of freedom Mean of squares F Sig.
Between groups 1.448 1 1.448 54.836 0.000
Intragroup 1.003 38 0.026 — —
Total 2.451 39 — — —
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Figure 5: Instantaneous conversion rate of sample 1 in the HC group.
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network topology similarity in all the transition intervals
(Table 4).

*e network topology overlap coefficient of these nine
states of the ASD group indicates that the similarity of the
network topology in all stable intervals is higher than the

network topology similarity between the stable interval and
the transition interval, and it is also higher than the simi-
larity of the network topology in all the transition intervals.
However, the similarity of the network topology in the stable
intervals of the ASD group diminishes gradually over time.
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Figure 6: Schematic diagram of brain network state construction and gradual transition in state interval.
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Figure 7: Comparison of brain state network topological coefficients between the HC group and ASD group. Analysis of the significant
differences between the two groups using analysis of variance (ANOVA) is shown in Table 3.

Table 3: Variance analysis result of two groups of network topology overlap coefficients.

Sum of squares Degrees of freedom Mean of squares F Sig.
Between groups 0.145 1 0.145 158.154 0.000
Intragroup 0.064 70 0.001 — —
Total 0.209 71 — — —
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*e network topology between all the transition interval is
the weakest, and the similarity decreases with time (Table 5).

In the comparative analysis of the experimental results,
the network similarity between the stable and transition
intervals of the HC group showed some difference, but the
similarity between all stable intervals and all transition in-
tervals did not show any obvious discriminate. On the other
hand, the ASD group has time-variation in network to-
pology similarity, and the overall network similarity is
weaker than that of the HC group (Figure 8(b)).

5. Conclusions

In this work, the time-varying characteristics of dynamic
brain function networks are studied, and a dynamic brain
network state observation matrix is constructed. *e di-
mensionality reduction and visualization of this high-di-
mensional matrix is processed; then the different states can
be grouped automatically based on the clustering result, and
the state transition critical points can be counted. According
to the statistical results, the instantaneous conversion rate is

Table 4: Topological overlap coefficient between brain network states of the HC group.

States
Steady states Transition states

S1 S3 S5 S7 S9 S2 S4 S6 S8
S1 0.000 0.933 0.930 0.929 0.929 0.941 0.918 0.915 0.918
S2 0.941 0.938 0.925 0.924 0.925 0.000 0.915 0.911 0.913
S3 0.933 0.000 0.938 0.937 0.937 0.938 0.935 0.920 0.925
S4 0.918 0.935 0.936 0.925 0.924 0.915 0.000 0.910 0.913
S5 0.930 0.938 0.000 0.940 0.938 0.925 0.936 0.938 0.926
S6 0.915 0.920 0.938 0.942 0.922 0.911 0.910 0.000 0.911
S7 0.929 0.937 0.940 0.000 0.937 0.924 0.925 0.942 0.931
S8 0.918 0.925 0.926 0.931 0.937 0.913 0.913 0.911 0.000
S9 0.929 0.937 0.938 0.937 0.000 0.925 0.924 0.922 0.937
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Figure 8: Visualization of topological overlap coefficient of brain network state network in the (a) HC group and (b) ASD group.

Table 5: Topological overlap coefficient between brain network states of the ASD group.

States
Steady states Transition states

S1 S3 S5 S7 S9 S2 S4 S6 S8
S1 0.000 0.852 0.836 0.821 0.827 0.897 0.801 0.775 0.781
S2 0.897 0.863 0.828 0.802 0.797 0.000 0.793 0.760 0.753
S3 0.852 0.000 0.896 0.880 0.855 0.863 0.884 0.835 0.817
S4 0.801 0.884 0.896 0.854 0.841 0.793 0.000 0.800 0.815
S5 0.836 0.896 0.000 0.884 0.867 0.828 0.896 0.886 0.830
S6 0.775 0.835 0.886 0.883 0.832 0.760 0.800 0.000 0.781
S7 0.821 0.880 0.884 0.000 0.872 0.802 0.854 0.883 0.865
S8 0.781 0.817 0.830 0.865 0.893 0.753 0.815 0.781 0.000
S9 0.827 0.855 0.867 0.872 0.000 0.797 0.841 0.832 0.893
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established to observe the transition trend of the state within
intervals.

Here, we propose a hypothesis that the state transition is
completed in a range but not instantaneous. To testify this
viewpoint, we construct the instantaneous hopping rate to
observe the state transition trend between intervals. We
think that the processes of state transition are also regarded
as states existing in the activities of the brain network and
cannot be ignored. By constructing a state network including
both steady states and transition states, the network topology
overlap coefficient is used to represent the network topology
similarity between states. *e network topology similarities
between different states are computed to study the time-
varying characteristics of brain networks. *e difference
between HC and ASD in brain network dynamic features
was analyzed by the method in this paper, and the effec-
tiveness of the method was verified.
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