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Abstract: Excess body weight is a major risk factor for type 2 diabetes (T2D) and associated metabolic
complications, and weight loss has been shown to improve glycemic control and decrease mor-
bidity and mortality in T2D patients. Weight-loss strategies using dietary interventions produce a
significant decrease in diabetes-related metabolic disturbance. We have previously reported that
the supplementation of low molecular chitosan oligosaccharide (GO2KA1) significantly inhibited
blood glucose levels in both animals and humans. However, the effect of GO2KA1 on obesity still
remains unclear. The aim of the study was to evaluate the anti-obesity effect of GO2KA1 on lipid
accumulation and adipogenic gene expression using 3T3-L1 adipocytes in vitro and plasma lipid
profiles using a Sprague-Dawley (SD) rat model. Murine 3T3-L1 preadipocytes were stimulated
to differentiate under the adipogenic stimulation in the presence and absence of varying concen-
trations of GO2KA1. Adipocyte differentiation was confirmed by Oil Red O staining of lipids and
the expression of adipogenic gene expression. Compared to control group, the cells treated with
GO2KA1 significantly decreased in intracellular lipid accumulation with concomitant decreases
in the expression of key transcription factors, peroxisome proliferator-activated receptor gamma
(PPARγ) and CCAAT/enhancer-binding protein alpha (CEBP/α). Consistently, the mRNA expres-
sion of downstream adipogenic target genes such as fatty acid binding protein 4 (FABP4), fatty acid
synthase (FAS), were significantly lower in the GO2KA1-treated group than in the control group.
In vivo, male SD rats were fed a high fat diet (HFD) for 6 weeks to induced obesity, followed by
oral administration of GO2KA1 at 0.1 g/kg/body weight or vehicle control in HFD. We assessed
body weight, food intake, plasma lipids, levels of alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) for liver function, and serum level of adiponectin, a marker for obesity-
mediated metabolic syndrome. Compared to control group GO2KA1 significantly suppressed body
weight gain (185.8 ± 8.8 g vs. 211.6 ± 20.1 g, p < 0.05) with no significant difference in food intake.
The serum total cholesterol, triglyceride, and low-density lipoprotein (LDL) levels were significantly
lower in the GO2KA1-treated group than in the control group, whereas the high-density lipoprotein
(HDL) level was higher in the GO2KA1 group. The GO2KA1-treated group also showed a significant
reduction in ALT and AST levels compared to the control. Moreover, serum adiponectin levels were
significantly 1.5-folder higher than the control group. These in vivo and in vitro findings suggest
that dietary supplementation of GO2KA1 may prevent diet-induced weight gain and the anti-obesity
effect is mediated in part by inhibiting adipogenesis and increasing adiponectin level.
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1. Introduction

Obesity, a major public health issue worldwide, is strongly associated with car-
diometabolic complications including type 2 diabetes (T2D), non-alcoholic fatty liver
disease (NAFLD), stroke, and cardiovascular disease [1–4]. Weight loss through lifestyle
changes such as diet and exercise has been the first line of therapy and recommendation
for T2D patients. In overweight and obese individuals with T2D, even modest loss of body
weight (~5%) has been shown to not only improved glycemic control, but also significantly
decrease cardiovascular events [5,6].

According to the world health organization (WHO), an estimated 38.2 million children
under the age of 5 years were overweight or obese in 2019. In Africa, the number of
overweight children under 5 has increased by nearly 24% percent since 2000. Almost half
of the children under 5 who were overweight or obese in 2019 lived in Asia [6]. Therefore,
preventing or managing obesity is becoming a public health priority. Although the exact
etiology of obesity remains unclear, primary causes of obesity involves environmental and
behavioral factors [7]. In humans and animals, obesity is characterized by increased fat
mass, which is determined primarily by increased adipocyte number (hypertrophy) and/or
adipocyte size (hypertrophy) [8]. Approximately 10% of adipocytes are renewed annually
at all adult ages, however obese adults recruited more precursor cells (preadipocytes) and
differentiated into new adipocytes than lean adults [9]. This was further supported by
observations that showed increased recruitment and differentiation of adipogenic precursor
cells in response to a long-term high fat diet in animals [10].

Adipogenesis is the process of the hyperplastic transformation of preadipocytes into
adipocytes [11] with excess storage of lipids as triglycerides through increased lipogen-
esis leading to hypertrophic and dysfunctional adipocytes [12]. The cellular events and
molecular processes of adipogenesis have been extensively studied using a murine 3T3-L1
preadipocyte cell line [13]. Adipogenesis and lipogenesis are initiated by the expression
of differentiation-related transcription factors when the preadipocytes are exposed to
adipogenic inducers [14,15]. Activation of key transcription factors such as PPARγ and
C/EBPα in the early stage of adipogenesis upregulates the expression of multiple target
genes responsible for adipocyte phenotype and lipid accumulation including fatty acid
synthase (FAS), lipoprotein lipase (LPL), and fatty acid binding protein 4 (FABP), while
lipolysis genes such as hormone sensitive lipase (HSL) are downregulated [15,16]. Recent
evidence has demonstrated that dietary factors including several bioactive compounds
can change not only the number of fat cells, but also fat cell size [17,18], thus serving as
alternative agents for weight loss with potentially fewer side effects.

As a major regulator of lipid homeostasis, the liver is the organ most influenced by
ectopic lipid accumulation. Thus, high fat diet-induced hepatic dyslipidemia is a common
defect observed in obese individual [18]. The hallmark of dyslipidemia in obesity is hyper-
triglyceridemia due in part to increased free fatty acid (FFA) fluxes to the liver. This leads to
increased plasma cholesterol, ALT (GPT, glutamate pyruvate transaminase), and AST(GOT,
glutamate oxaloacetate transaminase) levels [19]. Moreover, numerous epidemiological
studies have identified low adiponectin levels as an independent risk factor for NAFLD
and liver failure [20]. Distinct from other adipokines serum levels of adiponectin are
decreased in obesity and its related metabolic complications [21]. In addition, hepatic
lipid accumulation has been shown to suppress the secretion of adiponectin from adipose
tissue, which plays a key role in hepatic lipid oxidation and decreased lipogenesis [21].
Therefore, there has been increasing interest in identifying bioactive compounds that have
potential for reducing triglyceride, non-HDL cholesterol, GPT and GOT and also enhancing
adiponectin levels to help manage obesity and its associated metabolic diseases.
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Chitosan oligosaccharides are water-soluble products obtained by the enzymatic di-
gestion of chitosan and have shown various biological properties including anti-cancer,
anti-inflammatory, and antioxidant activities [22–25]. Our previous studies have demon-
strated that low molecular weight (<1000 Da) chitosan oligosaccharide (GO2KA1) exerts
anti-diabetic effects by reducing hyperglycemia in both animal studies [25,26] and clinical
trials [27,28]. Furthermore, GO2KA1 supplementation suppressed carbohydrate digesting
enzymes and glucose absorption in an intestinal cell model [29]. We also found that supple-
mentation of low molecular chitosan oligosaccharides significantly decreased absorption of
dietary fat in the intestine and, the total plasma cholesterol level, but increased the serum
adiponectin level [27]. While the beneficial effects of chitosan oligosaccharide in humans
and animals are documented, the potential modes of action on lipid metabolism and the
blood lipid profile are currently unclear. In our previous study, we showed that a low
concentration of GO2KA1 (10 ug/mL) significantly enhanced adipocyte differentiation
consistent with a marked increase in the expression of PPARγ and C/EBPα proteins and
their downstream target genes, FABP4 and adiponectin [29]. However, GO2KA1 treatment
at higher concentrations (50 and 100 µg/mL) did not further enhance the degree of differen-
tiation and gene expression. In contrast to our findings, other reports showed that chitosan
oligosaccharide treatment inhibited the differentiation of 3T3-L1 adipocytes as determined
by Oil Red O staining of lipids and PPARγ mRNA expression [30]. The discrepancies are
mainly due to the wide range of concentrations (0.5–4 mg/mL) and molecular weights of
chitosan oligosaccharide (1–3 to 5–10 kDa) [30].

In the present study, the effects of higher concentrations of GO2KA1 (200 to 800 µg/mL)
on the differentiation of 3T3-L1 adipocytes were investigated by measuring lipid accu-
mulation and evaluating the expression levels of adipogenic transcription factors genes
and their target genes. Further, we elucidated the potential in vivo effects of GO2KA1
on weight-management and the metabolic profile using a HFD-induced obesity model in
Sprague-Dawley (SD) rats with and without oral administration of GO2KA1 for 3 weeks.
We measured body weight, food intake, plasma glucose and lipids, levels of ALT (GPT)
and AST (GOT) for liver function, and serum level of adiponectin, a marker for obesity and
obesity-mediated metabolic syndrome.

2. Results
2.1. GO2KA1 Inhibits Adipocyte Differentiation

In our experiments, we investigated whether GO2KA1 at higher concentrations (200
to 800 µg/mL) inhibits adipodenesis during the differentiation of 3T3-L1 preadipocytes
into mature adipocytes. To determine the cytotoxicity of GO2KA1 the effects of GO2KA1 on
preadipocyte 3T3-L1 cell viability were determined using an established 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. As shown in Figure 1a, when cells
were treated with 200 to 800 µg/mL of GO2KA1 for 48 h at 37 ◦C, cytotoxicity was not
observed at all concentrations compared to the control (without GO2KA1) cells (Figure 1a).
Based on the result of the MTT assay, non-cytotoxic doses of GO2KA1 for anti-adipogenesis
experiments were determined.

To understand the molecular basis of inhibitory effects of GO2KA1 on adipogenesis,
we first attempted to clarify the expression levels of key transcription factors that are impor-
tant for the potential anti-adipogenic effects of GO2KA1. The formation of lipid droplets in
the adipocytes treated with 200 µg/mL of GO2KA1 were significantly blocked (p < 0.001)
as confirmed by Oil Red O staining as shown in Figure 1b. Treatment with GO2KA1 during
the differentiation process inhibited lipid accumulation in a dose-dependent manner (200,
400, and 600 µg/mL), as shown in Figure 1b.
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Figure 1. Effects of GO2KA1 on the viability (a) and lipid accumulation (b) of 3T3-L1 cells. (a): 3T3-L1 preadipocytes cells
were seeded at a density of 1 × 104 cells per well in a 96-well plates and incubated in culture medium at 37 ◦C for 24 h to
allow attachment. The attached cells were either untreated control (CON) or treated with 200, 400, 600, or 800 µg/mL of
GO2KA1 at 37 ◦C for 48 h. After 48 h of incubation. The effects of GO2KA1 on cell viability were measured by MTT assay.
The data are presented as relative cell viability values. Data are the means ± standard deviation (S.D.) values of at least 3
independent experiments. (b): 3T3-L1 preadipocytes were grown and differentiated with the differentiation cocktail in the
absence and presence of varying concentrations (0, 200, 400, and 600 µg/mL) of GO2KA1 throughout the differentiation for
8 days. After 8 days of differentiation, these cells were subjected to Oil Red O staining for Control and GO2KA1 to compare
intracellular lipid accumulation (CON, control: without GO2KA1, normal: no differentiation). The results are expressed as
the mean ± S.D (n ≥ 6). Significantly different from Control group (*** p < 0.001).

2.2. GO2KA1 Decreases the Expression of Adipocyte Differentiation Related Genes

Adipocyte differentiation is accompanied by the increased expression of several
transcription regulators essential for terminal adipocyte differentiation such as PPARγ and
C/EBPα [13]. PPARγ mRNA expression was significantly decreased following treatment
with GO2KA1 at 200, 400, and 600 µg/mL, whereas C/EBPα mRNA level was significantly
decreased only at 600 µg/mL GO2KA1 (Figure 2a,b). We further investigated whether the
GO2KA1-induced PPARγ and C/EBPα regulation correlates with the expression of their
target lipogenic genes, including fatty acid binding protein 4 (FABP4), fatty acid synthase
(FAS), and lipoprotein lipase (LPL). Treatment with 200 or 600 µg/mL GO2KA1 markedly
decreased the expression levels of FABP4, FAS, and LPL (Figure 2c–e).
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Figure 2. RT-real time PCR quantitative analysis of adipocyte differentiation related genes expression
in the 3T3-L1. For real time PCR, we used SYBR green mix with gene-specific primers ((a): CEBP/α,
(b): PPARγ, (c): FABP4, (d): fatty acid synthase (FAS), (e): lipoprotein lipase (LPL)). Each value is
expressed as mean ± S.D. and is representative of at least three separate experiments. Different
letters indicate statistically significant differences between groups with one-way ANOVA followed by
Duncan’s test of p < 0.05. The results are expressed as the mean ± S.D (n ≥ 6). Statistical significances
from control group were determined by Student’s t-test (** p < 0.01, *** p < 0.001).

2.3. GO2KA1 Alleviates HFD Induced Obesity in In Vivo Model

The effects of GO2KA1 administration (0.1 g/kg body weight) were evaluated in
high fat diet (HFD)-induced obesity SD rat model for 42 days with dietary composition
described in Table 1. After GO2KA1 administration with a HFD, we observed significant
changes in food intake and weight gaining levels at day 24, 30, 36, and 42 day compared to
control group (Figure 3). At the end day of the experiment, food consumption levels in
control and GO2KA1 treatment group had no significant difference (Figure 3a). As seen in
Figure 3b, GO2KA1 administration suppressed weight gain significantly compared to the
control, even though there was no difference in food intake between treatment and control
group (Figure 3b).
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Table 1. Effects of GO2KA1 treatment on various parameters in SD rats.

Control GO2KA1

Initial body weight (g) 187.8 ± 8.13 187.2 ± 7.84
Body weight (g) 398.7 ± 23.4 372.0 ± 10.1 *

Body weight gaining (g) 211.67 ± 20.18 185.89 ± 8.89 *
Triglyceride (mg/dL) 66.0 ± 18.2 40.0 ± 4.6 **

Total Cholesterol (mg/dL) 98.2 ± 19.4 79.2 ± 12.5 *
HDL (mg/dL) 17.6 ± 5.7 56.3 ± 10.9 ***

LDL (mg/dL) 53.1 ± 11.7 22.3 ± 13.1 ***
AST (GOT, IU/L) 46.4 ± 21.7 28.7 ± 2.1 *
ALT (GPT, IU/L) 55.9 ± 7.6 43.8 ± 5.2 **

Adiponectin (µg/mL) 14.3 ± 2.3 21.4 ± 3.5 **
Each experiment was compared between control (Group I) and GO2KA1 administration group (Group II) at each
time point by unpaired Student’s t-test (* p < 0.05; ** p < 0.01; and *** p < 0.001).
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Figure 3. Changes in food intake (a) and body weight gains (b) before/after administration of
GO2KA1. Male SD rats were free access to a high fat diet (HFD) (30% fat) to induce the weight
gain for 42 days. During a HFD administration for 42 days, GO2KA1 was orally administrated
(0.1 g/kg-body weight/day, peroral zonde injection) to Group II SD rats, 2 times per day (9–10 a.m.
and 4–5 p.m.) with 0.05 g/kg-body weight each. Each point represents mean ± S.D. (n = 10).
Food intake and body weight levels were compared between control (Group I) and treatment group
(Group II) at each time point by unpaired Student’s t-test (* p < 0.05).

Initial weight of SD rats was 187 ± 8.13 g (control) and 187 ± 7.84 g (GO2KA1), and fi-
nal weight of control and GO2KA1 treatment group was 398.7 ± 23.4 g and 372.0 ± 10.1 g,
respectively (p < 0.05). Considering the changes from initial weight to final weight, GO2KA1
administration suppressed weight gain effectively around 35% compared to control group.
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To determine the effect of GO2KA1 on the plasma lipid profile, we evaluated the total
cholesterol, LDL and HDL, and triglyceride. Aspartate aminotransferase (AST/GOT) and
alanine aminotransferase (ALT/GPT) contents in blood. Compared to the control group,
the total cholesterol level was decreased significantly after administration of GO2KA1
(Figure 4). Total cholesterol level in control and GO2KA1 administration group was
98.2 ± 19.4 mg/dL and 79.2 ± 12.5 mg/dL, respectively.
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Figure 4. Comparison of Triglyceride (a), total cholesterol (b), HDL (c), LDL (d), GOT (e), GPT (f) and
serum adiponectin (g) contents with or without administration of GO2KA1. Each point represents
mean ± S.D. (n = 10). Triglyceride, total cholesterol, HDL, LDL, GOT, GPT, and serum adiponectin
contents were compared between control (Group I) and treatment group (Group II) at each time point
by unpaired Student’s t-test (* p < 0.05; ** p < 0.01; and *** p < 0.001).

We found different cholesterol compositions between the two groups. GO2KA1 admin-
istration group significantly increased HDL levels, whereas LDL levels were significantly
decreased compared to control group (Figure 4c,d).

We also observed the level of GOT and GPT contents in blood at the end day of
experiment. We found that both GOT and GPT levels in the blood were significantly
decreased in the GO2KA1 administration group. GOT contents in control and GO2KA1
administration group were 46.4 ± 21.7 IU/L, 28.7 ± 2.1 IU/L respectively, and GPT
contents in the control and GO2KA1 administration groups were 55.9± 7.6 IU/L, GO2KA1:
43.8 ± 5.2 IU/L, respectively (Figure 4e,f).
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Moreover, rat serum adiponectin levels after 42 days administration of GO2KA1 were
determined and are displayed in Figure 4g. Compared with the control group, significant
increases of serum adiponectin were shown in the GO2KA1 intake group (Figure 4g).

3. Discussion

In the present study, we demonstrated the anti-obesity effects of GO2KA1 in a rodent
preadipocyte cell line, 3T3-L1 cells and also in an SD rat model of HFD-induced obesity.
We found that treatment with GO2KA1 dose-dependently inhibited lipid accumulation and
the differentiation of 3T3-L1 preadipocytes into adipocytes. Treatment with GO2KA1 also
decreased the expression of C/EBPα and PPARγ, key transcription factors that regulate
adipogenesis and fat metabolism. Moreover, GO2KA1 treatment inhibited their down-
stream target genes including FABP4, LPL, and FAS that are adipocyte-specific and are
also involved in maintaining the adipocyte phenotype. The cytotoxicity assay showed that
GO2KA1 was not toxic to 3T3-L1 cells at the concentrations used in this study.

We also evaluated the anti-obesity effect of GO2KA1 administration in an SD rat model
of HFD-induced obesity for 42 days and this was compared to the control. We observed
that the GO2KA1 treated group showed significantly decreased body weight compared to
the control without a significant difference in food intake. Further, GO2KA1 administration
suppressed the triglyceride level and showed a positive plasma cholesterol profile by
increasing the HDL level and decreasing the LDL level. To elucidate the mode of action of
GO2KA1 in fat metabolism, we evaluated GOT, GPT, and adiponectin in serum. GOT and
GPT were significantly decreased, and adiponectin expression was significantly increased
compared to the control. The above findings suggest that GO2KA1 prevent the progression
of obesity with beneficial effects.

In our previous study, we showed that GO2KA1 supplementation in db/db mice exerted
significant inhibitory effects on mRNA expression of intestinal carbohydrate-digesting
enzymes in the small intestine, and decreased body weight [26]. In addition, we found in
our previous clinical studies that GO2KA1 supplementation significantly lowered fasting
glucose levels and decreased the size of subjects’ waists after 12 weeks compared to placebo
subjects [27,28]. These data from the animal and clinical studies suggest that GO2KA1
supplementation markedly retarded glucose digestion and absorption after sugar adminis-
tration, and is consistent with a line of evidence that the chitosan oligosaccharide plays an
important role in glucose homeostasis. Intestinal glucose transporters and carbohydrate
digesting enzymes expressed in the apical membrane play a critical role in glucose absorp-
tion. Deletion of glucose transporters and inhibition of carbohydrate enzymes failed to
transport glucose from the intestine to the body.

Epidemiological studies have shown a positive relationship between dietary fat intake
and obesity [16]. While the cause of obesity is complex, numerous studies have shown that
a diet high in fat is clearly a contributing factor for weight gain and the global prevalence
of obesity. Obesity is characterized by hypertrophic adipocytes and adipose tissue dys-
function, which limit the storage of triglycerides from dietary fatty acids. Reduced uptake
of dietary fatty acids by adipose tissue leads to hypertriglyceridemia and reduced HDL
cholesterol levels in the blood. A strong positive correlation was demonstrated between
body fat and serum-cholesterol and serum-triglyceride levels. Therefore, we evaluated
body weight as well as triglyceride and cholesterol in blood. Our data suggest that GO2KA1
administration significantly decreased body weight, triglyceride and total cholesterol levels
whereas, HDL cholesterol level significantly increased. Our findings suggest that GO2KA1
has the potential to control weight gain and this is possibly through its inhibitory effect
on adipogenesis.

Numerous of adipocyte-derived secretory factors have been identified as playing
a role in the maintenance of lipid homeostasis in the liver and a critical mediator is
adiponectin [31,32]. Adiponectin is secreted from adipose tissue into the blood stream and
attaches to adiponectin receptors (adipoR1 and adipoR2) in the liver. Adiponectin has been
shown to enhance insulin sensitivity and maintains a healthy liver by decreasing lipogene-
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sis and increasing β-oxidation through activation of AMP protein kinase [33,34]. Although
adiponectin is secreted from adipose tissue, adiponectin secretion is decreased in the obese
state which leads to lipid accumulation including triglyceride and non-HDL cholesterol.
Therefore, enhanced serum adiponectin levels have been emphasized in preventing obesity.
A study showed that 8-week administration of chitosan oligosaccharides increased serum
adiponectin in obese rats. We also observed this in an SD rat model which shown in
Figure 4. These results support our previous clinical studies [28] with pre-diabetic subjects
that long-term GO2KA1 consumption enhance the serum adiponectin level, and this could
be a possible mechanism for weight management.

GOT/GPT is located in the liver more than in any other organs. The normal range for
GOT is 8–40 IU/mL, and GPT is 5–30 IU/ ml. The high fat diet itself induces a significant
increase in both GOT and GPT levels which induces obesity and a fatty liver.

Our findings suggest that administration of the chitosan oligosaccharide (GO2KA1)
can help reduce body-fat accumulation in an SD rat model. Further studies are required
to evaluate the potential anti-obesity effect of the chitosan oligosaccharide (GO2KA1) in
humans. The identification of the cellular mechanism of GO2KA1 in view of hepatic
lipogenesis and fatty acid oxidation using an in vitro model, provides great potential to
identify novel targets for the prevention of obesity. In addition, it is necessary to evaluate
glucose and lipid metabolism in different tissues including skeletal muscle, and the liver.
The use of different preclinical animal models is needed to support the mode of action
of GO2KA1.

4. Materials and Methods
4.1. Materials

Chitosan oligosaccharides classified by molecular weight (GO2KA1; MW < 1000 Da)
were purchased from Kunpoong Bio Co. Ltd. (Jeju, Korea). Corn starch, casein, vitamin
mix, mineral mix, calcium phosphate and sodium chloride were purchased from Raon Bio
(Yonginsi, Korea). Total cholesterol and total glyceride kits were purchased from Stanbio
laboratory (Boerne, TX, USA). Unless noted, otherwise, all chemicals were purchased from
Sigma-Aldrich Co. (St. Louis, MO, USA). The fast SYBR real-time PCR master mix, Dul-
becco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), bovine calf newborn
serum (BCS), penicillin-streptomycin (P/S), and trypsin-EDTA were obtained from Life
Technologies (Grand Island, NY, USA). Adiponectin ELISA kit was purchased from Thermo
Fisher Scientific (Invitrogen, Carlsbad, CA, USA). 3T3-L1 cells (ATCCV®CL-173TM) were
used below passage 12. 3T3-L1 preadipocytes were propagated and cultured in DMEM
medium supplemented with 10% BCS and 1% P/S until confluent and maintained for
additional 2 days and differentiated as reported previously [26] with or without GO2KA1.

4.2. Determination of Cell Viability

The effects of GO2KA1 on 3T3-L1 cell viability were determined using an established
MTT assay. Briefly, the 3T3-L1 preadipocytes cells were seeded at a density of 1 × 104 cells
per well in a 96-well plates and incubated in culture medium at 37 ◦C for 24 h to allow
attachment. The attached cells were either untreated control (CON) or treated with 200,
400, 600, or 800 µg/mL of GO2KA1 at 37 ◦C for 48 h. After 48 h of incubation the cells were
washed with phosphate-buffered saline (PBS) prior to the addition of MTT (0.5 µg/mL PBS)
and incubated at 37 ◦C for 2 h. Formazan crystals were dissolved with dimethyl sulfoxide
(100 µl/well) and detected at OD570 with a model Emax (Molecular Devices, Sunnyvale,
CA, USA).

4.3. Oil Red O (ORO) Staining

To determine the degree of differentiation as measured by intracellular lipid content,
ORO was performed as previously described [29]. Briefly, 3T3-L1 preadipocytes were
cultured in DMEM/high-glucose medium containing 10% calf serum until confluent
(Day −2) and maintained for an additional 2 days (until Day 0). Differentiation was
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induced on Day 0 by the addition of 0.5 mmol/L methylisobutylxanthine, 1 µmol/L
dexamethasone, 1.0 µg/mL insulin and 10% fetal bovine serum (FBS) in DMEM. After 48 h
(Day 2), the medium was replaced with DMEM containing 1.0 µg/mL insulin and 10% FBS.
Medium was changed every 2 days thereafter until the cells were collected for analysis [29].
GO2KA1 was reconstituted as 1000 µg/mL stock solutions in DMSO (dimethyl sulfoxide)
and added at the indicated concentrations on Day 0. Cells were cultured with GO2KA1
until cells were collected for analysis. After 8 days of differentiation 3T3-L1 adipocytes
were washed with 4% paraformaldehyde once and fixed with 4% paraformaldehyde for
20 min at room temperature. Cells were then washed with 60% isopropanol once and
stained with diluted Oil Red O solution for 30 min. After photographing the stained cells,
the dye retained in 3T3-L1 cells was eluted with 100% isopropanol and the absorbance was
measured by a microplate reader (SpectraMax M2, Molecular Devices, Sunnyvale, CA)
at 490 nm.

4.4. Quantitative Real-Time PCR

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Total RNA
was isolated with TRIzol® plus RNA purification kit according to manufacturer’s protocol
(Life Technologies, Grand Island, NY, USA). One microgram of total RNA was used to
synthesize cDNA using Revert Aid First Strand cDNA Synthesis kit (Thermo Scientific,
Waltham, MA, USA). The reaction was performed with Fast SYBR® Green Master Mix
containing 1 µM of primer pair and 100 ng of cDNA under 40 cycles with each of 95 ◦C for
1 sec and 58 ◦C for 20 s. Relative levels of the target mRNA expression were determined by
ViiATM 7 real-time PCR system (Life technologies, Grand Island, NY, USA), normalized to
GAPDH calculated with the 2−(∆∆nd) method. The primer sequences are listed in Table 2.
All the results were normalized to the housekeeping gene, glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), to control for variations in mRNA concentrations. Relative
quantification was performed using the comparative delta-delta Ct method according to
the manufacturer’s instructions (Applied Biosystems).

Table 2. Primer for real-time quantitative PCR.

Genes Primer Sequences

Accession Number Forward (5′-3′) Reverse (5′-3′)

GAPDH
CGTCCCGTAGACAAAATGGT TTGATGGCAACAATCTCCACNM_008084

PPARγ
GAAAGACAACGGACAAATCACCGGGGGTGATATGTTTGAACTTGNM_011146

C/EBPα
TTGTTTGGCTTTATCTCGGC CCAAGAAGTCGGTGGACAAGNM_007678

FABP4
AGCCTTTCTCACCTGGAAGA TTGTGGCAAAGCCCATCNM_024406

FAS
TGATGTGGAACACAGCAAGG GGCTGTGGTGACTCTTAGTGATAANM_007988

LPL
GGACGGTAACGGGAATGTATGA TGACATTGGAGTCAGGTTCTCTCTNM_008509

PCR, polymerase chain reaction; PPARγ, peroxisome proliferator-activated receptor γ; C/EBPα,
CCAAT/enhancer-binding protein α; FAS, fatty acid synthase; LPL, lipoprotein lipase; GAPDH, glyceraldehyde
3-phosphate dehydrogenase.

4.5. In Vivo Experimental Design

Five-week-old male Sprague-Dawley (SD) rats were purchased from Joongang Experi-
mental Animal Co. (Seoul, Korea) and fed a high fat diet (30% fat) (Table 3) for 42 days.
After 3 days the normal diet (Pico 5053) was switched to a high fat-diet (HFD) (Oriental Bio.
Co., Seongnam, Korea) for 42 days. During the HFD administration for 6 weeks, rats were
divided into two groups, one group received HFD and the second group received HFD
with GO2KA1. GO2KA1 was orally administrated, 2 times a day (9–10 a.m. and 4–5 p.m.).
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Distilled water (D.W.) was used as a vehicle for a solution of the experimental compound,
GO2KA1. In a control group, D.W. was used as a vehicle for oral administration without
GO2KA1 using a zonde injection needle. The dose of each GO2KA1 administration was
0.05 g/kg-body weight, yielding a final dose of 0.1 g/kg-body weight/day. The animals
were housed in individual cages in a room with a 12 h light/dark cycle (lights on from
06:00 h) with 50% ± 7% relative humidity. In this study, ten SD rats were used for each
group. The experimental protocols were approved by the Institutional Animal Care and
Use Committee (IACUC) of the Hannam University (Approval number: HNU2014-0019).
The rats had free access to water throughout the experimental period. The rats were
anesthetized with pentobarbital and sacrificed, and blood was collected and serum was
processed and stored at −80 ◦C until used.

Table 3. Composition of high fat-diet (g/kg).

High Fat Diets (g/kg)

Corn starch 321
Sucrose 100
Casein 200

Corn oil 100
Lard 200

Cellulose 30
DL-methionine 2
Vitamin mix (1) 10
Mineral mix (2) 35

Choline bitartrate 2
(1) Vitamin mixture: AIN-93VX; (2) Mineral mixture: AIN-93G.

Group I: Control.
Group II: GO2KA1 0.1 g/kg-body weight/day.

4.6. Blood Analysis

The plasma total cholesterol and total glyceride concentration was measured using a
kit (Stanbio lab., Boerne, TX, USA). Serum adiponectin levels in SD rats were detected by
ELISA kit (Invitrogen, Carlsbad, CA, USA).

4.7. Statistical Analysis

Statistical analyses were carried out using the statistical package SPSS 10 (Statistical
Package for Social Science, SPSS Inc., Chicago, IL, USA) program and significance of each
group was verified with the analysis of One-way analysis of variance (ANOVA) followed
by the Duncan’s multiple range test of p < 0.05 and the Student’s t-test for comparison
of means.
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