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Abstract: A novel electrochemical sensor designed to recognize and detect tartrazine (TZ) was
constructed based on a molecularly imprinted polydopamine (MIPDA)-coated nanocomposite of
platinum cobalt (PtCo) nanoalloy-functionalized graphene oxide (GO). The nanocomposites were
characterized and the TZ electrochemical detection performance of the sensor and various reference
electrodes was investigated. Interestingly, the synergistic effect of the strong electrocatalytic activity
of the PtCo nanoalloy-decorated GO and the high TZ recognition ability of the imprinted cavities of
the MIPDA coating resulted in a large and specific response to TZ. Under the optimized conditions,
the sensor displayed linear response ranges of 0.003–0.180 and 0.180–3.950 µM, and its detection
limit was 1.1 nM (S/N = 3). The electrochemical sensor displayed high anti-interference ability, good
stability, and adequate reproducibility, and was successfully used to detect TZ in spiked food samples.
Comparison of important indexes of this sensor with those of previous electrochemical sensors for
TZ revealed that this sensor showed improved performance. This surface-imprinted sensor provides
an ultrasensitive, highly specific, effective, and low-cost method for TZ determination in foodstuffs.

Keywords: platinum cobalt nanoalloy; molecularly imprinted polydopamine; graphene oxide;
tartrazine; electrochemical sensor

1. Introduction

Tartrazine (TZ, Figure 1) is an artificially synthesized azo pigment that has been widely
used as a colorant in drinks, foods, cosmetics, and pharmaceuticals to make them more
attractive. However, TZ shows genotoxicity towards DNA, hemoglobin, and lymphocytes,
and neurotoxicity towards memory, learning, thought, and other neurobehavior. TZ can
cause symptoms such as diarrhea, allergies, eczema, migraines, dysphoria, and melancholia,
and even cancer after long-term excessive ingestion. On account of these risks, the use
of TZ is strictly regulated, and the maximum intake of TZ should not exceed 7.5 mg/kg
daily [1,2]. It is very important to determine TZ levels in materials to ensure consumer
safety. Recently, a diverse range of detection systems for TZ have been developed to
overcome the drawbacks of common analytical techniques, such as low sensitivity and
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anti-interference ability, complex programming, and lengthy analysis time. Among the
developed approaches, the electrochemical method exhibits obvious advantages in terms
of sensitivity, accuracy, time consumption, convenience, economy, and miniaturization [3].
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Figure 1. The molecular structure of tartrazine.

Sensitivity and specificity are two important factors governing the performance of
electrochemical sensors [4]. TZ contains an electrochemically active phenolic hydroxyl
group in its structure (Scheme 1) which can be directly used as the source of a detec-
tion signal at an electrode surface. However, the sensing performance depends on the
properties of the electrode–TZ interface. Diverse surfaces have been constructed for TZ
sensing (Table S1 in Supplementary Material). Generally, electrodes possessing surfaces
without recognition elements have been studied which mainly exhibited anti-interference
abilities based on the different electroactive potentials of interfering species. Four stud-
ies to date have used molecularly imprinted polymers (MIPs) as recognition elements in
electrochemical sensors for TZ based on polypyrrole, MWNTs-IL@PtNPs, PmDB/PoPd,
and acrylamide-CN, respectively (Table S1). The results of these studies indicated that
electrodes with MIPs were easy to prepare, cost-effective, operated quickly and conve-
niently, and demonstrated higher stability and efficiency than other recognition techniques,
including immunosensors and aptasensors. Thus, the use of MIPs combined with the devel-
opment of materials and techniques to improve sensing abilities should attract increasing
interest [5,6].

Biosensors 2022, 12, x FOR PEER REVIEW 3 of 15 
 

 
Scheme 1. Schematic illustration of various electrochemical interfaces with TZ. (a) GO, (b) GO–Pt, 
(c) GO–PtCo, (d) GO@NIPDA, (e) GO–Pt@NIPDA, (f) GO–PtCo@NIPDA, (g) GO@MIPDA, (h) 
GO–Pt@MIPDA, and (i) GO–PtCo@MIPDA. 

MIPs are also called “artificial antibodies” and have been used in solid-phase ex-
traction, molecular recognition, chromatographic separation, drug delivery, biological 
engineering, and biomimetic sensing. For MIP-based electrochemical sensors, the elec-
trocatalytic activity and microenvironment of the imprinted cavities are the most im-
portant factors influencing sensor performance [7,8]. Therefore, the matrix materials 
should be considered first. Two-dimensional graphene possesses outstanding electrical 
conductivity, and some its composites display high electrocatalytic activity, making them 
promising for application in MIP sensors [9,10]. Furthermore, surface-imprinted nano-
composites show remarkable advantages that improve the microenvironments of im-
printed cavities compared with those of conventional imprinted hybrids, such as more 
complete template removal, higher binding capacities, faster binding kinetics, and more 
facile electron transfer [7,8,11]. 

A simple, rapid, and cost-effective method for quantitative analysis of TZ with high 
sensitivity and selectivity still needs to be developed. Herein, a novel MIP nanocompo-
site sensor for TZ is prepared by grafting an ultrathin membrane of molecularly im-
printed polydopamine (MIPDA) onto the matrix surface of platinum cobalt nanoal-
loy-functionalized graphene oxide (GO–PtCo). The sensitivity and selectivity of the de-
veloped electrochemical sensor in TZ detection are investigated. 

2. Materials and Methods 
2.1. Reagents and Instruments 

Tartrazine (TZ) and dopamine hydrochloride (DA) were purchased from Sig-
ma-Aldrich (St. Louis, MO, USA). Graphite, hexachloroplatinatic acid hexahydrate 
(H2PtCl6·6H2O), cobalt chloride hexahydrate (CoCl2·6H2O), sodium borohydride 
(NaBH4), Allura Red, sunset yellow, amaranth, brilliant blue, indigo carmine, sodium 
salicylate, vitamin C, glucose, sucrose, citric acid, benzoic acid, phenol, and sodium ace-
tate were purchased from the Aladdin Chemistry Co., Ltd. (Shanghai, China). Other 
chemicals were purchased from the Shanghai Chemical Reagent Co. (Shanghai, China). 

Scheme 1. Schematic illustration of various electrochemical interfaces with TZ. (a) GO, (b) GO–Pt,
(c) GO–PtCo, (d) GO@NIPDA, (e) GO–Pt@NIPDA, (f) GO–PtCo@NIPDA, (g) GO@MIPDA, (h) GO–
Pt@MIPDA, and (i) GO–PtCo@MIPDA.



Biosensors 2022, 12, 326 3 of 15

MIPs are also called “artificial antibodies” and have been used in solid-phase ex-
traction, molecular recognition, chromatographic separation, drug delivery, biological
engineering, and biomimetic sensing. For MIP-based electrochemical sensors, the electro-
catalytic activity and microenvironment of the imprinted cavities are the most important
factors influencing sensor performance [7,8]. Therefore, the matrix materials should be
considered first. Two-dimensional graphene possesses outstanding electrical conductivity,
and some its composites display high electrocatalytic activity, making them promising for
application in MIP sensors [9,10]. Furthermore, surface-imprinted nanocomposites show re-
markable advantages that improve the microenvironments of imprinted cavities compared
with those of conventional imprinted hybrids, such as more complete template removal,
higher binding capacities, faster binding kinetics, and more facile electron transfer [7,8,11].

A simple, rapid, and cost-effective method for quantitative analysis of TZ with high
sensitivity and selectivity still needs to be developed. Herein, a novel MIP nanocomposite
sensor for TZ is prepared by grafting an ultrathin membrane of molecularly imprinted poly-
dopamine (MIPDA) onto the matrix surface of platinum cobalt nanoalloy-functionalized
graphene oxide (GO–PtCo). The sensitivity and selectivity of the developed electrochemical
sensor in TZ detection are investigated.

2. Materials and Methods
2.1. Reagents and Instruments

Tartrazine (TZ) and dopamine hydrochloride (DA) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Graphite, hexachloroplatinatic acid hexahydrate (H2PtCl6·6H2O), cobalt
chloride hexahydrate (CoCl2·6H2O), sodium borohydride (NaBH4), Allura Red, sunset
yellow, amaranth, brilliant blue, indigo carmine, sodium salicylate, vitamin C, glucose,
sucrose, citric acid, benzoic acid, phenol, and sodium acetate were purchased from the
Aladdin Chemistry Co., Ltd. (Shanghai, China). Other chemicals were purchased from the
Shanghai Chemical Reagent Co. (Shanghai, China). All chemicals were of analytical grade
and used without further purification. The drink and food samples were purchased from
local markets. Double-distilled deionized water was used throughout this work.

Electrochemical experiments were performed using a CHI 660D electrochemical work-
station (Chenhua Instruments, Shanghai, China) with a conventional three-electrode system,
including a modified GCE (diameter: 3 mm) as a working electrode, a Pt wire supporting
electrode, and a saturated calomel reference electrode. Surface morphological images were
recorded using a scanning electron microscope (S-4800, Hitachi, Japan) and a transmission
electron microscope (JEM-3010, JEOL, Tokyo, Japan). All experiments were carried out at
room temperature unless otherwise noted.

2.2. Fabrication of the Molecularly Imprinted Nanocomposites

Graphene oxide (GO) was prepared from graphite powder using a typical method
with some modifications [12]. Typically, graphite (1.5 g), NaNO3 (1.5 g), and concentrated
H2SO4 (69 mL) were stirred together in an ice bath. Next, KMnO4 (9 g) was slowly added
to the mixture. The mixture was transferred to a water bath and stirred for 1 h at room
temperature. Water (100 mL) was added slowly. The solution was heated to 90 ◦C and then
held at this temperature for 30 min under stirring. Water (300 mL) was added, followed by
the slow addition of H2O2 (10 mL, 30%). The yellow suspension was filtered, washed with
1 M HCl and water until the pH was 7.0, and then vacuum dried at 60 ◦C to obtain GO.

PtCo nanoalloy-decorated GO (GO–PtCo) was synthesized by consulting the reported
method [13–15]. In brief, GO (12 mg) was dispersed in water (30 mL) by ultrasonication
for 1 h. Then, H2PtCl6·6H2O (3.424 mg) and CoCl2·6H2O (0.523 mg) were added and the
mixture was stirred for 24 h. Fresh NaBH4 (24 mg in 10 mL of water) was added quickly into
the mixture, which was then stirred for 2 h. The products were collected by centrifugation,
washed with deionized water to remove unreacted reagents and impurities, and then
dispersed in water (20 mL). Other nanoalloy particles were prepared by adjusting the
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amounts of materials added to the precursor solution. GO–Pt and GO–Co were prepared
by the same procedure in the absence of CoCl2·6H2O or H2PtCl6·6H2O, respectively.

In a typical synthesis of MIPDA-coated GO–PtCo (denoted GO–PtCo@MIPDA), DA
(15 mg) and TZ (15 mg) (molar ratio of ~7.4:2.6) were dissolved in water (30 mL) under
ultrasonication for 1 h in ice water. The mixture was added to the above GO–PtCo dis-
persion. The pH of the mixture was adjusted to 8.5 with Tris–HCl buffer solution. The
mixture was strongly stirred for 24 h at room temperature. After the reaction, the prod-
uct was centrifugally washed with water to remove any unreacted monomers, and then
immersed in a basic mixture (Vethanol:Vconcentrated ammonia:Vwater = 7:2:1) to extract the TZ
template molecules. Washing was repeated until no template molecules were detected in
the extraction solution, and then the product was rinsed thoroughly with distilled water.
Other imprinted nanocomposites were synthesized via a similar process by changing the
concentration of TZ template molecules or DA. For comparison, non-imprinted PDA-coated
GO–PtCo was prepared by the same procedure in the absence of the TZ template molecules;
the product was denoted as GO–PtCo@NIPDA. The template extraction process was also
performed on the control GO–PtCo@NIPDA composite.

The GO@MIPDA, GO–Pt@MIPDA, GO@NIPDA, and GO–Pt@NIPDA nanocomposites
were synthesized via a similar procedure to GO–PtCo@MIPDA and GO–PtCo@NIPDA
using GO or GO–Pt as the matrix. Adsorption experiments were conducted as follows. Each
material (3 mg) was added to TZ solution (4 mL; see Figure S7 for the concentrations used).
After stirring for 20 min at room temperature, the mixture was centrifuged, the supernatant
was collected, and its TZ content was determined by UV–Vis absorption spectroscopy.
The adsorbed amount was calculated according to the formula Q = V(c0−cS)/m, where
V represents the solution volume, c0 and cS are the TZ concentrations before and after
adsorption, respectively, and m is the mass of material.

2.3. Fabrication of Modified GCEs and Electrochemical Measurements

A bare GCE was polished with slurry alumina (0.3 µm and then 0.05 µm) and
then washed with water with the aid of ultrasonication. GO–PtCo@MIPDA suspension
(5 µL, 3 mg/mL in water) was carefully dropped onto the surface of the GCE. A GO–
PtCo@MIPDA film-coated GCE (denoted GCE/GO–PtCo@MIPDA) was obtained through
self-assembly during solvent evaporation in air. For repeated detection using one electrode, the
electrode was dipped in agitated eluent solution (Vethanol:Vconcentrated ammonia:Vwater = 7:2:1)
for 12 min to recover the functional surface of GCE/GO–PtCo@MIPDA before the next
measurement. Other modified electrodes, including GCE/GO, GCE/GO–Pt, GCE/GO–PtCo,
GCE/GO@NIPDA, GCE/GO–Pt@NIPDA, GCE/GO–PtCo@NIPDA, GCE/GO@MIPDA, and
GCE/GO–Pt@MIPDA, were prepared in a similar manner to GCE/GO–PtCo@MIPDA.

Each three-electrode system was assembled in a cell with 0.2 M acetate–sodium acetate
(Hac–NaAc) buffer solution containing a certain concentration of TZ. After the sensor
was immersed in solution for 10 min under mild magnetic stirring to reach adsorption
equilibrium, a CV or DPV was recorded unless otherwise noted. For the detection of TZ in
drink and food samples, corresponding 1.0 g/L solutions were used as detection samples.
Before TZ detection in these samples, the pH of the prepared water samples was adjusted
to 6.0, and the DPV peak corresponding to TZ in the real samples was recorded to reveal
the amount of TZ in each sample.

3. Results
3.1. Characterization and Electrochemical Behavior of Nanocomposites

Graphene oxide (GO) is known as an ideal matrix for in situ nucleation, growth,
and anchoring of naked metal nanoparticles because of its functional groups and lattice
defects, ultrahigh mechanical strength, and large planar structure. A one-step method
that involved reducing a metal precursor in GO solution was used to form the GO–PtCo
composite in situ [13–15]. Spherical PtCo nanoalloy particles with a diameter of less
than 25 nm were synthesized in situ on the GO surface (Figure 2b,f). The dispersion and
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size of nanoalloy particles are not very uniform and may be influenced by the surface
groups and defects of GO which affect the microenvironment for lattice growth. However,
we wanted to fabricate a bare atomic interface without any mediating ligands because
this should have been beneficial for electrocatalysis. In the absence of cobalt chloride
hexahydrate but otherwise identical conditions, tiny Pt nanoparticles with an almost
uniform size of approximately 5 nm were distributed on the GO surface (Figure S1d). GO
supporting pure Co nanoparticles was not produced in the absence of hexachloroplatinatic
acid hexahydrate, which is consistent with previous results [13–15]. After monomeric
self-polymerization, a melanin-like polydopamine with a cross-linked structure was coated
on the GO surface [16–19]. Electron micrographs of the surfaces coated with MIPDA
showed uniform contrast, revealing that the surfaces were fairly smooth and that the
coating process was well-controlled (Figure 2c,g and Figure S1b,e). After coating with non-
imprinted polydopamine (NIPDA), the surfaces exhibited partial agglomeration, indicating
that sunset yellow (SY) affected the self-polymerization of dopamine hydrochloride (DA)
on the GO surface to some extent (Figure 2d,h, and Figure S1c,f).
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Figure 2. TEM and SEM images of (a,e) GO, (b,f) GO–PtCo, (c,g) GO–PtCo@MIPDA, and (d,h) GO–
PtCo@NIPDA.

Cyclic voltammetry (CV) was employed to investigate the electrochemical perfor-
mance of the materials (Figure 3). GO exhibited a weak anodic response to TZ at +0.962 V,
revealing an irreversible electrochemical process (Scheme 1). After decoration with Pt
nanoparticles, the peak strength and overpotential slightly increased and decreased, re-
spectively. Interestingly, the peak strength was further raised by 2.809 times after PtCo
decoration, indicating that the nanocomposite displayed prominent electrocatalytic activity
towards TZ. This property might be related to the bimetallic surface with good hetero-
geneous hybridization allowing efficient charge transfer [15], potentially offering high
sensitivity. However, interference signals from coexisting substances might accompany such
increases, especially those with similar response potentials. Therefore, it is important to find
efficient and simple approaches to produce surfaces with specific recognition abilities.
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Surface-imprinted polymers are increasingly being used as specific recognition el-
ements. Considering the attractive properties of PDA, including abundant functional
groups, a cross-linked structure, and robust adhesiveness [16–19], it is expected that surface-
imprinted materials with good performance could be obtained using PDA coatings. The
electrochemical responses of various surface-coated composites to TZ are presented in
Figure 4A. The original responses of GO, GO–Pt, and GO–PtCo to TZ disappeared after
coating with NIPDA. This indicates that the NIPDA layer had no electrocatalytic activity
towards TZ and instead exhibited a marked electronic blocking effect between the inner ma-
trix and outer TZ. Therefore, NIPDA-coated nanocomposites are unsuitable for TZ sensing
applications. Conversely, peak strengths of GCE/GO–Pt and GCE/GO–PtCo (GCE is the
underlying glassy carbon electrode coated with the composites) were enhanced by 1.235
and 1.523 times, respectively, after MIPDA coating (Figure 2 and Figure S1). These results
imply that the vacant cavities could anchor a large amount of configuration-suitable TZ,
whose electroactive phenolic hydroxyl group could be efficiently oxidized via the Pt and
PtCo surfaces and whose electrons could be readily transferred to the electrode (Scheme 1).
It should be pointed out that the original response peak of GCE/GO to TZ disappeared
after MIPDA coating. This might be because the electroactive sites were enveloped during
DA self-polymerization and the imprinted cavities were unsuitable for electron transfer
from TZ molecules. According to the CV analysis, GCE/GO–PtCo@MIPDA was selected
as a TZ sensor because it displayed the greatest response to TZ.
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Figure 4. (A) CVs of (a) GCE/GO@NIPDA, (b) GCE/GO@MIPDA, (c) GCE/GO–Pt@NIPDA,
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4.0, 4.2, and 4.5 µM. (C) Calibration curves of peak current versus TZ concentration for GCE/GO–
PtCo@MIPDA. Electrolyte: 0.2 M (pH = 6.0) acetate buffer solution. Scan rate: 0.1 V/s. Pulse width:
0.2 s. Pulse period: 0.5 s. Amplitude: 0.05 V.

3.2. Optimization of Conditions

According to the above investigation, it is clear that GCE/GO–PtCo@MIPDA had
a high sensing ability for TZ. To achieve better sensing performance, the experimental
conditions should be optimized, including the nanoalloy composition, the molar ratio of
DA to template molecules, the amount of DA monomer, incubation time, elution time, pH,
and adsorption kinetics.

3.2.1. Optimization of the Nanocomposite

The GO skeleton is composed of sp2-bonded carbon atoms arranged in a two-dimensional
honeycomb lattice that is one atom thick and has numerous oxygen-containing groups
on the basal plane and edges [12]. It is well known that the electrocatalytic performance
of GO-supported nanoalloys is closely related to their composition [15]. To investigate
this effect, the molar ratio of Pt to Co in the precursor solution was altered while keeping
the total molar amount constant. The corresponding current for TZ was recorded. It was
observed that the amount of surface PtCo decreased with an increasing amount of Co in
the precursor solution, indicating that Co played an important role in constructing the
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bimetallic nanocomposite (Figure S2A,B). In addition, Co NPs did not form on the GO
surface under the same conditions. With increasing amounts of Co in the bimetallic alloy,
the current strength for TZ first increased and then decreased (Figure S2C). The maximum
current was obtained using a precursor molar ratio of 3:1, indicating that the presence of
Co was a vital factor influencing the electrocatalytic performance of the sensor.

MIPDA was prepared via DA self-polymerization. The content of imprinted cavities
in the MIP was directly affected by the ratio of template molecules to functional monomers,
which further affects the rebinding and recognition abilities of the prepared sensor. There-
fore, the currents of imprinted nanocomposites produced using a series of DA:TZ molar
ratios of 9:1, 8.5:1.5, 8:2, 7.4:2.6, 7:3, 6.5:3.5, and 6:4 in MIPDA synthesis were recorded
(Figure S3A); the total molar amount was fixed at 0.1072 mmol. The obtained imprinted
nanocomposites exhibited a gradual decrease in TZ signal as the DA:TZ molar ratio in-
creased from 7.4:2.6 to 9:1. The reason for this might be that the MIPDA contained less
specific recognition cavities and excess PDA hindered electron transfer. When the molar
ratio was lower than 7.4:2.6, the current response decreased obviously, possibly because ex-
cess template molecules could not combine with the DA and hindered the polymerization,
resulting in a lower amount of effective binding cavities. Therefore, the optimal DA:TZ
ratio was 7.4:2.6 (15 mg of TZ and 15 mg of DA in the precursor solution), which was used
in subsequent experiments.

The peak currents obtained when the quantity of DA was altered while keeping the
DA:TZ ratio at 7.4:2.6 during the self-polymerization process for 24 h are shown in Figure
S3B. The current response increased with DA quantity from 5 to 15 mg and then decreased
as the DA amount increased further. The maximum current response was obtained for a
DA quantity of 15 mg, which corresponded to the typical MIP nanocomposite. Therefore,
the specific amounts of DA and TZ used in the composite were both 15 mg.

It is known that the thickness of a PDA film can be controlled by modulating the
polymerization time, which also affects the depth of the imprinted cavities. Therefore, the
synthesis period of the MIP nanocomposite was studied. As shown in Figure S3C, the
maximum current response was clearly achieved with the MIPDA nanocomposite prepared
over 24 h. When the reaction period was longer than 24 h, the current response decreased,
suggesting that the layer was too thick to remove the template molecules completely
and readily transfer electrons. Therefore, a reaction time of 24 h was used to produce an
imprinted membrane of suitable thickness. Meanwhile, the NIP nanocomposite showed a
dramatic decrease in TZ signal with increasing DA quantity after exceeding the amount
of 0.5 mg (Figure S3D). This result further indicates that the thickness of the MIP is an
important parameter affecting the sensitivity and stability of the constructed sensor.

3.2.2. Incubation and Elution Times of the MIPDA Sensor

The GCE/GO–PtCo@MIPDA sensor was incubated in TZ solution for different times
at room temperature and then the response current was measured. As shown in Figure S4A,
the current signal gradually increased with lengthening incubation time and achieved its
maximum value when the incubation time was 10 min. This suggests that the adsorption
equilibrium can be reached within 10 min, meaning that the prepared sensor possesses
fast rebinding dynamics. Thus, to achieve high sensitivity and save assaying time, an
incubation time of 10 min was chosen.

To reuse GCE/GO–PtCo@MIPDA, the adsorbed TZ needed to be removed to recover its
molecular recognition ability. In this experiment, a basic mixture (Vethanol:Vconcentrated ammonia:Vwater
= 7:2:1) was used as the eluent to remove TZ; good results were achieved. Figure S4B
demonstrates the relationship between the extraction time and effective sensor recovery.
When the extraction time was longer than 12 min, the peak current originating from
adsorbed TZ almost disappeared. Therefore, 12 min was chosen as the optimal extraction
time to ensure complete elution of TZ so that the imprinted cavities could show excellent
recognition ability and a maximum current response to TZ in solution upon reuse.
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3.2.3. Solution pH

The pH of the buffer solution was also optimized for quantitative determination of TZ
(Figure S5). The response currents in the pH range of 5.0–7.5 using acetate buffer solutions
indicated that the anode peak current (ipa) increased with pH from 5.0 to 6.0 and reached a
maximum at pH = 6.0. Then, ipa decreased as the pH increased from 6.0 to 7.5 (Figure S5B).
Thereby, a pH of 6.0 was chosen as the optimal value for the quantitative determination of
TZ. Furthermore, as the pH of the medium was gradually increased, the oxidation peak
potential of TZ shifted to a more negative voltage, suggesting that protons were involved
in the electrochemical reaction. Over the pH range of 5.0–7.5, the peak potential of TZ at
GCE/GO–PtCo@MIPDA shifted linearly in the negative direction with increasing pH, with
a slope of –44.5 mV/pH (Figure S5C), indicating that one proton is directly involved in the
oxidation of TZ (Scheme 1). The deviation of this slope from the theoretical value could be
ascribed to the influence of PDA and the slowing of the electrode reaction.

3.2.4. Adsorption Characteristics

Adsorption experiments were used to evaluate the molecular imprinting effect of
TZ. The adsorption kinetics of TZ on GCE/GO–PtCo@MIPDA were investigated at dif-
ferent time intervals (Figure S6A). The adsorbed amount (Q) of TZ on GO–PtCo@MIPDA
increased rapidly during the first 12 min, confirming its fast adsorption kinetics and the
adsorption process almost reached equilibrium in this time. In contrast, GO–PtCo@NIPDA
exhibited increasing Q during the first 8 min, indicating the occurrence of non-specific ad-
sorption. In contrast, GO–PtCo had no obvious influence on the Q of TZ against adsorption
time. This is because GO–PtCo had no imprinted cavities and showed low resistance to
non-specific binding.

The adsorption isotherms of TZ on GO–PtCo@MIPDA, GO–PtCo@NIPDA, and GO-
PtCo were measured at different initial concentrations of TZ to investigate their binding
capacities. As shown in Figure S6B, the amount of TZ adsorbed on GO–PtCo@MIPDA
increased with TZ concentration from 0.015 to 0.175 mM and reached saturated adsorp-
tion over 0.175 mM. In this case, the experimental maximum adsorption capacity was
80.1 µmol/g. For GO–PtCo@NIPDA and GO–PtCo, the amount of TZ adsorbed changed
more slowly with increasing TZ concentration. Similarly, when the TZ concentration
exceeded 0.08 and 0.015 mM for GO–PtCo@NIPDA and GO–PtCo, respectively, the ad-
sorption curves exhibited a plateau, indicating that saturated adsorption was achieved.
The maximum adsorption capacities of GO–PtCo@NIPDA and GO–PtCo were 5.9 and
0.35 µmol/g, respectively, which were much lower than that of the MIP, suggesting lower
binding affinity for TZ. These results could be explained by the fact that the imprinting
process of GO–PtCo@MIPDA formed specific recognition cavities that showed a memory
function and high adsorption capacity for TZ. In contrast, for GO–PtCo@NIPDA and GO–
PtCo, non-specific adsorption was dominant because of their lack of TZ recognition sites.
Therefore, the amount of TZ adsorbed by these composites was low.

3.3. Analytical Performance
3.3.1. Calibration Curve

Differential pulse voltammetry (DPV) gives better peak shape and higher sensitivity
than CV. As shown in Figure 4B, under optimum conditions, the change of peak current
(ip) from GCE/GO–PtCo@MIPDA exhibited linear relationships with TZ concentration (C)
in the ranges of 0.003–0.180 and 0.180–3.950 µM, with regression equations of ip (µA) =
−113.3156 × C (µM) − 0.03219 (R2 = 0.9983) and ip (µA) = −22.0380 × C (µM) − 16.4604
(R2 = 0.9989), respectively. The detection limit was 1.1 nM (S/N = 3). When C was above
3.950 µM, the calibration curve gradually deviated from the straight line, indicating that
saturated adsorption was gradually reached. A linear range of 0.040–9.650 µM and detec-
tion limit of 16.5 nM were obtained for GCE/GO–PtCo (Figure S7A). The detection limit of
GCE/GO–PtCo@MIPDA was 14.8 times lower than that of GCE/GO–PtCo, demonstrating
the considerable improvement induced by the MIPDA layer. GCE/GO–PtCo@NIPDA did
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not display a current peak or linear response to TZ, indicating that the NIPDA overlayer
acted as an electronic barrier with no effective binding sites for TZ.

3.3.2. Sensor Selectivity, Reproducibility, and Stability

The binding selectivity of GCE/GO–PtCo@MIPDA for TZ and other structural analogs,
which are possible coexisting additives that may be present with higher concentrations,
was evaluated by competitive experiments. As shown in Figure 5A, the peak current after
incubation in TZ mixtures with interfering substances showed no obvious discrepancy
with that after incubation in pure TZ solution, implying that the MIPDA sensor displayed
a highly specific recognition ability for TZ and that it was not affected by interfering
species, even structural analogs. In comparison, some coexisting species seriously disturbed
the current response of GO–PtCo to TZ (Figure 5A), which was caused by its lack of a
specific recognition element. The highly selective electrochemical surface of GCE/GO–
PtCo@MIPDA should originate from the synergistic effect of the MIPDA cavities that
matched TZ and rest of the MIPDA layer acting as an electronic barrier to outside molecules.
These results also suggest that the binding cavities in the imprinted surface were only
complementary with the size and shape of TZ, which might facilitate the electroactive sensor
response via covalent or non-covalent interactions between TZ and cross-linked PDA.
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The reproducibility of the response of GCE/GO–PtCo@MIPDA was estimated by
detecting a 0.15 µM TZ solution with six different electrodes prepared under the same
conditions. The current response showed a relative standard deviation (RSD) of 3.25% for
six independent measurements. A RSD of 4.17% was obtained after 20 cycles of washing
and measurement, and the signal strength decreased to 95.00% of the initial strength after
75 cycles, indicating the good reproducibility and excellent recyclability of the sensor.
Moreover, the stability of the sensor was evaluated by storing six independently fabricated
electrodes for six weeks at room temperature. The peak current did not change markedly
over the first two weeks. After six weeks, the average signal was 96.04% of the initial
response. These measurements indicate that GCE/GO–PtCo@MIPDA possesses suitable
reproducibility and stability for successful use as a sensor.

3.3.3. Application

The practical application of the electrochemical sensor was assessed by detecting the
TZ levels of different samples (Table 1). The recoveries of six independent experiments
ranged from 95.3% to 105.1%, and the RSD was below 4.37%. These results reveal the good
accuracy and reliability of the sensor and its ready ability to detect TZ in real foodstuffs.
The detection limit of the sensor of 1.1 nM is sufficient to detect TZ in real samples,
which are allowed to contain from 50 to 500 µg/g [2]. Overall, GCE/GO–PtCo@MIPDA
displays excellent electrochemical performance and is suitable for practical application in
TZ detection.

Table 1. Detection results for TZ in samples using GCE/GO–PtCo@MIPDA (n = 6).

Samples TZ Added
(µM)

TZ Expected
(µM)

TZ Found
(µM)

Recovery
(%) RSD (%)

Orangeade
0 - 0.061 - -

0.090 0.151 0.147 97.4 3.52
0.500 0.561 0.550 98.0 2.83

Yellow wine
0 - 0.027 - -

0.090 0.117 0.119 101.7 1.65
0.500 0.527 0.533 101.1 2.37

Ice cream
0 - 0.020 - -

0.090 0.110 0.106 96.4 4.08
0.500 0.520 0.507 97.5 3.62

Jelly
0 - 0.075 - -

0.090 0.165 0.172 104.2 4.37
0.500 0.575 0.568 98.8 3.55

Instant juice
powder

0 - 0.047 - -
0.090 0.137 0.144 105.1 4.30
0.500 0.547 0.549 100.4 1.18

Candy
0 - 0.038 - -

0.090 0.128 0.124 96.9 3.77
0.500 0.538 0.519 96.5 3.91

Cookie
0 - 0.058 - -

0.090 0.148 0.141 95.3 4.36
0.500 0.558 0.535 95.9 4.09

Average of six detection results obtained using the developed sensor. RSD = relative standard deviation.

3.4. Comparison of Sensor Performance

Over the past decade, TZ has been detected using numerous electrochemical methods.
The analytical performance of the MIPDA sensor for TZ was compared with that of previous
TZ assays using well-known technical indicators for analytical methods, including linear
interval, detection limit, recognition component, anti-interference ability, and recovery from
real samples (Table S1). The MIPDA sensor is more sensitive than most others previously
reported. Ultrasensitive TZ detection was achieved because of the facile electron transfer
between the TZ-enriching cavities that readily captured TZ in a suitable configuration and
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the highly electroactive surface of GO–PtCo. In addition, the anti-interference ability of
our sensor was the best achieved to date. The selective electrochemical sensor for TZ was
achieved through the synergistic effects of the MIPDA cavities complementary to TZ and
the anti-interference screening ability of the rest of the MIPDA coating. The sensor also
exhibited improved performance in terms of linear interval and recovery compared with
those of previously reported electrochemical sensors for TZ. This comparison confirmed
that our GO–PtCo@MIPDA composite is an appropriate platform for electrochemical
sensing of TZ. The prepared MIPDA sensor displayed a wide linear range with a low
detection limit, indicating its promise for quantitative assaying of TZ. In addition, the
GO–PtCo@MIPDA composite has the advantages of low production cost and a facile
one-pot preparation procedure in aqueous solution at ambient temperature, which is
environmentally friendly.

3.5. Discussion of Electrochemical Sensing Surfaces

The surface of the GO-modified electrode exhibited a small anodic peak response
to TZ, which was not displayed by the bare electrode surface, indicating that there are
electrochemically active sites on GO for configuration-suitable molecules within the diffu-
sion layer (Figure 3, curve b, and Scheme 1a). Larger anodic peaks were obtained on the
corresponding surfaces of Pt- or PtCo-decorated GO (Figure 3, curves d and f, respectively,
and Scheme 1b,c, respectively). These results clearly show that Pt and PtCo provided more
active sites for TZ than GO, supporting the idea that incorporating metal nanoparticles is
an effective strategy for increasing the electrocatalytic activity of GO [20–23]. In addition,
the presence of Co in the nanoalloy further influenced the electrocatalytic activity of the
sensor, which is a result worthy of further research.

Under alkaline conditions (pH > 7.5), DA is first oxidized by oxygen to DA quinone,
followed by 1,4-Michael-type intramolecular cyclization to yield leucodopaminechrome.
Leucodopaminechrome undergoes further oxidization and intramolecular rearrangement
to form 5,6-dihydroxyindole and its isomer, which subsequently polymerize to give PDA, a
melanin-like polymer with a cross-linked structure. PDA obtained by self-polymerization
of DA tends to coat diverse substrates as a thin film, especially GO and metallic surfaces. It
is generally accepted that the catechol group plays the central role in the mussel-mimicking
behavior of PDA [16,17]. The current peaks disappeared after coating NIPDA on the surface
of GO, GO–Pt, and GO–PtCo (Figure 4, curves a, c, and e, respectively, and Scheme 1d–f,
respectively), meaning that NIPDA showed no electrocatalytic activity towards TZ and
prevented the access of TZ to the conductive matrix. After surface coating of GO–Pt and
GO–PtCo with MIPDA, the peak strengths for TZ were obviously enhanced over those
of GCE/GO-Pt and GCE/GO-PtCo, respectively, which was attributed to the imprinted
cavities in MIPDA (Figure 4, curves d and f, respectively; Figure 3, curves d and f, respec-
tively; and Scheme 1h,i, respectively). For GO@MIPDA, the original peak response of GO
to TZ disappeared, indicating that the original electroactive sites were used as grafting
sites and covered by electrochemically inert PDA (Figure 4, curve b; Figure 3, curve b; and
Scheme 1g). Overall, GO–PtCo@MIPDA showed the greatest response to TZ, indicating
that it displays the most promise for application as a TZ sensor.

Usually, surface MIP composites are prepared by polymerizing cross-linkers, func-
tional monomers, and template molecules through covalent or non-covalent interactions via
various routes, including free-radical polymerization, reversible addition–fragmentation
chain transfer polymerization, atom transfer radical polymerization, and the sol–gel
method. An imprinted hybrid material with recognition ability is obtained after removal
of the embedded template molecules [7]. Here, the surface MIPDA was fabricated in one
step through DA self-polymerization in the presence of template molecules, which avoided
the tedious multiple preparation steps needed to produce previous GO-based MIPs, repre-
senting an improved fabrication technology compared to those reported previously [8,11].
The whole synthesis was carried out in aqueous solution at ambient temperature under
mild reaction conditions that were environmentally friendly. Further development of PDA
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is warranted because of its extensive adherence ability and promising behavior as a new
functionalized surface.

To construct imprinted composites with effective electron transfer surfaces, good
interfacial bonding and interactions between the matrix and MIPs are very important. TZ
was first mixed with DA in water to induce molecular self-assembly via intermolecular
forces, such as hydrogen-bonding and π–π and electrostatic interactions. During DA self-
polymerization, template TZ molecules were embedded in the PDA through intermolecular
forces. The embedded TZ molecules were closely anchored to the GO–PtCo surface with
a configuration suitable to allow effective electron transfer. Due to the small dimensions
and the extremely high surface-to-volume ratio of the imprinted molecules, most were
situated at or close to the matrix or metal surface to form a stable state. After the removal
of embedded template molecules, three-dimensional imprinted cavities complementary to
the template molecules in terms of shape, size, and functional groups were formed; these
cavities could rebind template molecules with high specificity. This laid the foundation for
the manifested high selectivity of the electrochemical sensor, combined with the electrocat-
alytically inert MIPDA surface, which helped to prevent interference from other materials.
Therefore, GO–PtCo@MIPDA displayed an obvious preconcentration effect by binding
to TZ in a suitable configuration, increasing the local amount of TZ compared with that
in the diffusion layer near GO–PtCo. The electrochemical behavior of GO–PtCo@MIPDA
towards TZ indicated that the layer of MIPDA must be ultrathin and that the PtCo surface
in the cavities might be nearly bare, which increased the electrocatalytic activity for TZ.
Therefore, the strongest electrical sensing signal was effectively transferred to the electrode
via the highly specific GO–PtCo@MIPDA interface. These interesting phenomena could
be ascribed to the combined effects of the highly electroactive surface of PtCo and the
specificity of the imprinted cavities for TZ [24–26].

Overall, GO–PtCo@MIPDA combined the synergistic effects of the conductive ma-
trix of GO, high electroactivity of PtCo, specific recognition cavities in MIPDA, and the
blocking effect of MIPDA to interfering molecules. These combined features led to the
achieved excellent electrochemical response and selectivity of GO–PtCo@MIPDA, making
it attractive for sensing applications.

4. Conclusions

PtCo nanoalloy particles were synthesized on the surface of GO in situ and the
obtained nanocomposite exhibited facile electrocatalysis of TZ. After the surface of GO–
PtCo was coated with MIPDA, an electrochemical sensor for TZ with ultra-high sensitivity,
high selectivity, good reproducibility, and long-term stability was obtained. The ultra-high
sensitivity was ascribed to the facile electron transfer between the TZ-enriched cavities with
a suitable configuration and the highly electrocatalytically active surface of GO–PtCo. The
highly selective electrochemical surface for TZ was achieved through the MIPDA cavities
that specifically matched TZ and the rest of the PDA coating behaving as an electronic
barrier to other molecules. The good reproducibility and stability obtained were also
related to the synergistic effect between the GO matrix and the imprinted polymer. This
sensor showed potential for use in TZ determination and represents a strategy that may
be adopted for other molecules. In the future, it will be important to research further
heterogeneous composites of nanoalloys and graphene, the imprinting applications of
polydopamine, signal transduction, and synergistic sensors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12050326/s1, Figure S1: TEM images of (a) GO, (b) GO@MIPDA,
(c) GO@NIPDA, (d) GO–Pt, (e) GO–Pt@MIPDA, and (f) GO–Pt@NIPDA; Figure S2: TEM images of
GO–PtCo produced using different molar ratios of H2PtCl6·6H2O to CoCl2·6H2O of (A) 1:1 and (B) 1:3
in precursor solution. (C) The relationship between the molar ratio of H2PtCl6·6H2O to CoCl2·6H2O
in precursor solution and the current strength for TZ (9.00 µM); Figure S3: Effects of different (A)
molar ratios of template molecules to functional monomers, (B) weights of DA in precursor solutions,
and (C) synthesis periods on the current response of the MIPDA–nanocomposite-modified electrodes
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to 3.50 µM of TZ. (D) Effect of the weight of DA added to the precursor solution on the current
response of the NIPDA–nanocomposite-modified electrode to 3.50 µM of TZ. Error bars are standard
deviations across three repeated experiments; Figure S4: Effects of the (A) incubation time and (B)
elution time on the response current from GCE/GO–PtCo@MIPDA. The concentration of TZ was
3.50 µM. Error bars are standard deviations across three repeated experiments; Figure S5: (A) CVs
of GCE/GO–PtCo@MIPDA in 0.2 M acetate buffer solutions with 3.50 µM TZ and pHs of (a) 5.0,
(b) 5.5, (c) 6.0, (d) 6.5, (e) 7.0, and (f) 7.5. (B) Relationship between the peak current (ipa) of TZ and
pH. (C) Relationship between the peak potential of TZ and pH. Scan rate: 0.1 V/s; Figure S6: (A)
Adsorption kinetics in 0.20 mM TZ solution and (B) adsorption isotherms of various composite
materials; Figure S7: (A) DPVs for GCE/GO–PtCo exposed to TZ concentrations of (from a–j): 0,
0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.1, 0.2, 0.5, 1.0, 2.0, 4.0, 7.0, 9.5, 9.65, 9.7, 10.5, and 13.0 µM. (B)
Calibration curves of peak current versus TZ concentrations at GCE/GO–PtCo. Electrolyte solution:
0.2 M HAc–NaAc (pH = 6.0). Pulse width: 0.2 s. Pulse period: 0.5 s. Amplitude: 0.05 V; Table S1:
Comparison of the analytical performance between the proposed method and graphene/MIP-based
electrochemistry methods used in the past decade [27–53].
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