

Expert Opinion

CHIPOR, HORSE, and beyond: unraveling the role of hyperthermic intraperitoneal chemotherapy (HIPEC) in ovarian cancer

Myong Cheol Lim (

Center for Gynecologic Cancer, National Cancer Center, Goyang, Korea

OPEN ACCESS

Received: Jan 15, 2025 Revised: Jan 16, 2025 Accepted: Jan 16, 2025 Published online: Jan 21, 2025

Correspondence to

Myong Cheol Lim

Division of Tumor Immunology, Center for Gynecologic Cancer and Center for Clinical Trials, Research Institute and Hospital, Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsanro, Ilsandong-gu, Goyang 10408, Korea. Email: gynlim@gmail.com

© 2025. Asian Society of Gynecologic Oncology, Korean Society of Gynecologic Oncology, and Japan Society of Gynecologic Oncology

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ORCID iDs

Myong Cheol Lim https://orcid.org/0000-0001-8964-7158

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

The advantage of hyperthermic intraperitoneal chemotherapy (HIPEC) is that it maintains direct exposure of anticancer drugs to the tumor while avoiding the use of intraperitoneal ports, which makes less complication from intraperitoneal chemotherapy while maintaining the survival benefit [1]. An additional advantage is that the chemotherapeutic agent can be exposed to the entire visceral and parietal peritoneum before adhesions occur after surgery. In addition, hyperthermia can be added, which is a great advantage in that it makes the tumor more BRCAness-like and increases its response to anticancer drugs [2].

In 2018, the OVHIPEC-01 trial, the first phase III randomized trial in ovarian cancer performed by van Driel et al. [3], reported that HIPEC increases progression-free survival (PFS) and overall survival (OS) when interval cytoreductive surgery is performed after neoadjuvant chemotherapy in stage III ovarian cancer. In 2022, Lim et al. [4] reported that there was no survival benefit of HIPEC during upfront surgery in the KOV-HIPEC-01 trial, but as in the OVHIPEC-01 trial, HIPEC increased PFS and OS when interval cytoreductive surgery was performed after neoadjuvant chemotherapy.

A meta-analysis later demonstrated that HIPEC is beneficial for survival in cases of recent exposure to chemotherapy within 6 months [5]. In the recent chemotherapy exposure group (<6 months), HIPEC was associated with improvement of both PFS (hazard ratio [HR]=0.585; 95% confidence interval [CI]=0.422–0.811) and (≥6 months) OS (HR=0.519; 95% CI=0.346–0.777), while in the non-recent chemotherapy exposure group, HIPEC failed to significantly affect PFS (HR=1.037; 95% CI=0.684–1.571) or OS (HR=0.932; 95% CI=0.607–1.430).

The CHIPOR and HORSE studies further contributed to the understanding of HIPEC's role in ovarian cancer [6,7]. The HORSE trial evaluated HIPEC in the first-recurred platinum-sensitive recurrent ovarian cancer during secondary cytoreductive surgery but found no significant benefit in either PFS (median PFS: 16.9 vs. 15.7 months; HR=0.97, p=0.863) or OS (median OS: 53.8 vs. 52.6 months; HR=0.96, p=0.870) [6]. However, the CHIPOR trial demonstrated a significant survival benefit by administering 6 cycles of platinum-based chemotherapy to patients with platinum-sensitive recurrent ovarian cancer, followed by consolidation HIPEC after cytoreductive surgery [7]. It showed a significant improvement in OS with HIPEC (median OS: 54.3 vs. 45.8 months; HR=0.73, p=0.024), supporting its application in selected cases.

https://ejgo.org

These 2 findings further support the hypothesis that HIPEC might offer clinical benefits in cases where recent chemotherapy exposure has occurred, and the tumor is resectable. Their findings may be explained by previously proposed hypotheses that hyperthermia can render chemo-resistant cancer cells more susceptible to chemotherapy. The rationale for this effect lies in heat-induced inhibition of HSP90, which disrupts DNA damage repair pathways and promotes the degradation of BRCA1/2 proteins, thereby sensitizing cells to the DNA damage caused by platinum-based chemotherapy [8,9].

In this consistent context, HIPEC is expected to provide a survival benefit in platinum-resistant recurrent ovarian cancer. However, since the role of cytoreductive surgery is unclear in this setting, we can look forward to the results of the KOV-HIPEC-02R (RECOVER) trial, which is currently registered in more than 80% and is expected to produce results within 2–3 years (NCT05316181). In primary ovarian cancer, the OVHIPEC-02 trial has been registered for more than 3-quarters of targeted number of the stage III patients after upfront surgery (NCT03772028). The role of HIPEC during interval cytoreductive surgery after neoadjuvant chemotherapy in stage III and IV patients with maintenance therapy with poly(ADP-ribose) polymerase inhibitors or bevacizumab is evaluated in the ongoing KOV-04, FOCUS (enrollment >50%, target number: 520) (NCT05827523). In near future, the role of HIPEC in the management of ovarian cancer could be clearly identified with these ongoing clinical trials of HIPEC.

REFERENCES

- Sugarbaker PH. A narrative review of what can HIPEC do. Eur J Surg Oncol 2023;49:106976. PUBMED | CROSSREF
- 2. Krawczyk PM, Eppink B, Essers J, Stap J, Rodermond H, Odijk H, et al. Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci U S A 2011;108:9851-6. PUBMED | CROSSREF
- 3. van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med 2018;378:230-40. PUBMED | CROSSREE
- 4. Lim MC, Chang SJ, Park B, Yoo HJ, Yoo CW, Nam BH, et al. Survival After Hyperthermic Intraperitoneal Chemotherapy and Primary or Interval Cytoreductive Surgery in Ovarian Cancer: A Randomized Clinical Trial. JAMA Surg 2022;157:374-83. PUBMED | CROSSREF
- 5. Kim SI, Kim JH, Lee S, Cho H, van Driel WJ, Sonke GS, et al. Hyperthermic intraperitoneal chemotherapy for epithelial ovarian cancer: a meta-analysis. Gynecol Oncol 2022;167:547-56. PUBMED | CROSSREF
- 6. Fagotti A, Costantini B, Fanfani F, Giannarelli D, De Iaco P, Chiantera V, et al. Hyperthermic intraperitoneal chemotherapy in platinum-sensitive recurrent ovarian cancer: a randomized trial on survival evaluation (HORSE; MITO-18). J Clin Oncol. Forthcoming 2024. PUBMED | CROSSREF
- 7. Classe JM, Meeus P, Hudry D, Wernert R, Quenet F, Marchal F, et al. Hyperthermic intraperitoneal chemotherapy for recurrent ovarian cancer (CHIPOR): a randomised, open-label, phase 3 trial. Lancet Oncol 2024;25:1551-62. PUBMED | CROSSREF
- 8. Löke DR, Helderman RFCP, Franken NAP, Oei AL, Tanis PJ, Crezee J, et al. Simulating drug penetration during hyperthermic intraperitoneal chemotherapy. Drug Deliv 2021;28:145-61. PUBMED | CROSSREF
- Dellinger TH, Han ES, Raoof M, Lee B, Wu X, Cho H, et al. Hyperthermic intraperitoneal chemotherapyinduced molecular changes in humans validate preclinical data in ovarian cancer. JCO Precis Oncol 2022;6:e2100239. PUBMED | CROSSREF