
August 2016 | Volume 4 | Article 861

Mini Review
published: 22 August 2016

doi: 10.3389/fped.2016.00086

Frontiers in Pediatrics | www.frontiersin.org

Edited by: 
Sergio Rosenzweig,  

National Institutes of Health, USA

Reviewed by: 
Thomas Arthur Fleisher,  

National Institutes of Health, USA  
Michail Lionakis,  

National Institute of Allergy and 
Infectious Diseases, USA

*Correspondence:
Mariacarolina Salerno  

salerno@unina.it

† Lucia De Martino and  
Donatella Capalbo equally  

contributed to the manuscript.

Specialty section: 
This article was submitted to 

Pediatric Immunology,  
a section of the journal  
Frontiers in Pediatrics

Received: 14 June 2016
Accepted: 02 August 2016
Published: 22 August 2016

Citation: 
De Martino L, Capalbo D, Improda N, 

Lorello P, Ungaro C, Di Mase R, 
Cirillo E, Pignata C and Salerno M 

(2016) Novel Findings into AIRE 
Genetics and Functioning: 

Clinical Implications.  
Front. Pediatr. 4:86.  

doi: 10.3389/fped.2016.00086

novel Findings into AiRe Genetics 
and Functioning: Clinical implications
Lucia De Martino1†, Donatella Capalbo2†, Nicola Improda1, Paola Lorello1, Carla Ungaro2, 
Raffaella Di Mase2, Emilia Cirillo1, Claudio Pignata1 and Mariacarolina Salerno1*

1 Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy, 2 Department of 
Pediatrics, Federico II University, Naples, Italy

Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), formerly 
known as autoimmune polyendocrine syndrome type 1, is a paradigm of a monogenic 
autoimmune disease caused by mutations of a gene, named autoimmune regulator 
(AIRE). AIRE acts as a transcription regulator that promotes immunological central 
tolerance by inducing the ectopic thymic expression of many tissue-specific antigens. 
Although the syndrome is a monogenic disease, it is characterized by a wide variability of 
the clinical expression with no significant correlation between genotype and phenotype. 
Indeed, many aspects regarding the exact role of AIRE and APECED pathogenesis still 
remain unraveled. In the last decades, several studies in APECED and in its mouse 
experimental counterpart have revealed new insights on how immune system learns 
self-tolerance. Moreover, novel interesting findings have extended our understanding 
of AIRE’s function and regulation thus improving our knowledge on the pathogenesis of 
APECED. In this review, we will summarize recent novelties on molecular mechanisms 
underlying the development of APECED and their clinical implications.
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inTRODUCTiOn

Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), formerly known 
as autoimmune polyendocrine syndrome type 1 (APS-1), is a rare disease caused by mutations of the 
autoimmune regulator (AIRE) which acts as a transcription regulator that promotes immunological 
central tolerance (1).

Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy represents a paradigm of 
genetically determined systemic autoimmunity. However, the great variability that characterizes 
APECED, irrespectively of AIRE genotype, implies that additional factors modulate the clinical 
expression of the disease.

Recent advances on how AIRE affects immunological tolerance and is linked to organ-specific 
autoimmunity have improved our understanding on the pathogenesis and the wide variability of 
clinical expression of APECED.

In this review, we will summarize new insights into AIRE genetics and functioning and its impli-
cations on APECED phenotype.

new inSiGHTS inTO AiRe FUnCTiOn

Autoimmune regulator is known to exert a crucial role in central tolerance and negative selection 
of autoreactive T cells (1). The induction of central tolerance is an intricate process that occurs 
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FiGURe 1 | AiRe controls gene expression with ordered stochasticity. AIRE seems to regulate pGE in mTECs in an apparently stochastic manner. Thus, 
single mTECs would express TRAs of mixed tissue origin rather than emulating cell line age-affiliated patterns displaying the highest degree and diversity of pGE. 
Indeed, different sets of TSAs are expressed in mTECs but whether a particular AIRE-regulated TSA is expressed in a given mTEC seems to be highly probabilistic. 
The “ordered” TSA expression refers to the increased likelihood that a particular set of TSA genes will be coexpressed in an individual mTEC. Coexpressed gene loci 
tend to colocalize to the same nuclear subdomain and TSA subsets align along progressive differentiation stages within the mature mTEC subset.
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within the thymus where immature T lymphocytes are “commit-
ted” to become mature cells able to respond to a huge number 
of foreign antigens, but preventing autoimmune reactions. 
Medullary thymic epithelial cells (mTECs) have a primary role in 
the negative selection and, in this context, AIRE acts as a crucial 
transcriptional regulator. In mTECs, AIRE induces promiscuous 
gene expression (pGE) of tissue-specific antigens (TSAs), which 
are, then, presented to maturing T cells. Autoreactive T cells that 
recognize these TSAs with high affinity undergo negative selec-
tion through their apoptosis or, alternatively, regulatory T cells 
(Treg) are generated in order to prevent autoimmunity (2, 3).

Autoimmune regulator gene encodes a 545 amino acid protein 
with a molecular weight of 58 kDa (1). Starting from the amino 
terminus, AIRE is composed of a caspase recruitment domain 
(CARD)/homogeneously staining region (HSR), nuclear locali-
zation sequences (NLS), a SAND (Sp100, AIRE NucP41/75, and 
DEAF) domain, two planthomeodomain (PHD) zinc fingers, a 
proline-rich region (PRR), and four LXXLL motifs (where L stays 
for leucine) distributed among the domains (4). The CARD/HSR 
is involved in the process of AIRE homomultimerization and 
seems also to anchor AIRE to the chromatin (4, 5). The NLS has 
a stretch of basic amino acids at positions 131–133 important for 
nuclear import (4). The SAND domain does not have a distinct 
DNA-binding motif, but it is involved in promoting a protein–
protein interaction with a transcriptional repressive complex 
(6). The two AIRE PHD fingers form a structural system for the 
recruitment of chromatin-related proteins and are engaged in 
AIRE transcriptional activity (7–9). LXXLL motif and PRR are 
implicated in promoting gene transcription (4).

Autoimmune regulator has a strict spatiotemporal regula-
tion, being ubiquitously transcribed during the earliest stages of 
embryogenesis, and then restricted to thymic cells (mTECs and 
B cells) and extra thymic hematopoietic stem cells that may have 
a role in CD4 tolerization (10, 11).

At the transcriptional level, the expression of AIRE in 
mTECs and peripheral lymphoid organs is regulated by receptor 

activator of nuclear factor κB (RANK) signaling and therefore 
by nuclear factor κB (NF-κB)-induced transcription through an 
upstream conserved non-coding sequences (CNSs) of the Aire 
gene containing NF-κB-binding sites (12, 13). In addition, post-
transcriptional mechanisms seem to modulate AIRE expression. 
A dioxygenase that catalyzes lysyl hydroxylation of splicing 
regulatory proteins (Jmjd6) is critical for AIRE expression. In 
fact, the intron 2 of Aire gene is not effectively spliced out in the 
absence of Jmjd6, resulting in marked reduction of mature Aire 
protein in mTECs and spontaneous development of multi-organ 
autoimmunity in mice (14).

The AIRE protein resides inside the nucleus, where it exhibits 
a speckled localization pattern (15). AIRE is a key regulator of 
TSA expression in mTECs and affects the transcription of thou-
sands of TSA genes in a “stochastic” and “ordered” manner (16, 
17). Indeed, a small percentage (1–3%) of the total number of 
mTECs expresses a particular TSA (18). Different sets of TSAs 
are regulated by AIRE within individual mTECs but whether a 
particular AIRE-regulated TSA is expressed in a given mTEC 
seems to be highly probabilistic (18, 19). Moreover, the “ordered” 
TSA expression refers to the increased likelihood that a particular 
set of TSA genes will be coexpressed in an individual mTEC (20) 
(Figure 1).

Autoimmune regulator acts in a very unusual way among 
transcription regulators, as it has no clear DNA-binding motif but 
seems to recognize genes that possess silenced chromatin states 
(6, 8, 9, 16). AIRE does not directly initiate TSA gene transcrip-
tion, but it promotes TSA expression through the release of stalled 
RNA polymerase, RNA elongation, and splicing of target TSAs 
(15, 21). Moreover, AIRE binds to several partners that have the 
potential for post-translational protein modification, including 
the modification of AIRE itself and that seem to be critical for its 
biological function (22–24).

Recent insights on AIRE’s regulation come from experi-
mental studies which suggest that estrogen induces epigenetic 
changes in the AIRE gene, leading to reduced AIRE expression 
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under a threshold that increases susceptibility to autoimmune 
diseases (25).

In summary, induction of pGE by AIRE is dependent on a 
complex regulatory mechanism which has only been partially 
unraveled so far.

In addition to the key role exerted on pGE, AIRE seems also to 
be critical for thymic generation of Treg cells during the perinatal 
period (3, 26). However, on this issue, further work is needed (3).

Moreover, recently a new hypothesis on Aire functioning in 
tolerance has been postulated. Aire may enforce immune toler-
ance by ensuring that autoreactive T cells differentiate into the 
Treg cell lineage; dysregulation of this process results in the diver-
sion of Treg cell-biased clonotypes into pathogenic conventional 
T cells (27).

Furthermore, AIRE has several functions that are independent 
of its promotion of TSA expression in mTECs such as immu-
noregulatory functions in extrathymic AIRE-expressing cells 
and thymic B cells (15, 28). Moreover, AIRE enhances negative 
selection by regulating the repertoire of thymic dendritic cells 
and promoting apoptosis of mTECs (29, 30).

Finally, it has been postulated that AIRE regulates thymic 
maturation and architecture, probably through the expression of 
microRNAs (15, 31–34).

In summary, although our knowledge has increased in recent 
years, we still lack a coherent model incorporating and explain-
ing all the intricacies of AIRE and its role in the regulation of 
immunological tolerance.

new inSiGHTS inTO AiRe MUTATiOnS

In humans, AIRE, identified on chromosome 21q22.3 by posi-
tional cloning in 1997, consists of 14 exons spanning 11.9 kb of 
genomic DNA (15). Mutations in the AIRE gene result in the 
development of APECED, a rare autoimmune condition, but 
reported worldwide, with a higher prevalence in genetically 
isolated populations (1).

Nowadays, 101 APECED-causing mutations have been 
found throughout AIRE (http://www.hgmd.cf.ac.uk/ac/gene.
php?gene=AIRE). These mutations include nonsense/missense 
mutations, deletions, or insertions and often abolish AIRE tran-
scriptional activity or its localization to nuclear bodies (15, 35).

Despite its monogenic nature, APECED is characterized 
by a wide variability of the clinical expression and no strong 
genotype–phenotype correlation has been found among several 
populations (1, 35). Noteworthy, this lack is exemplified by the 
significant intrafamilial differences even between siblings carry-
ing the same mutation, suggesting that disease-modifying genes, 
environmental factors, and immune system dynamics may play a 
role in modulating clinical expression of the syndrome (36, 37).

Autoimmune polyendocrinopathy candidiasis ectodermal 
dystrophy has been originally considered an autosomal– recessive 
disease, and most mutations were assumed to be inherited in 
an autosomal–recessive manner, except for one mutation in the 
SAND domain, p.G228W, which exerts a dominant inheritance 
pattern (38).

However, recent evidences highlight that also heterozy-
gous mutations of the gene can be associated with increased 

susceptibility to autoimmune diseases or incomplete forms of 
APS-1 (39). Patients with atypical or incomplete manifestations 
of APECED or with other immune diseases carrying heterozy-
gous mutations of AIRE have been also described (38, 40–49). 
Cervato et al. showed different AIRE mutations in heterozygous 
state in relatives of APECED patients with various degrees of 
autoimmune or non-autoimmune diseases, but none of which 
affected by one of the major components of APECED (50).

Recently, Oftedal et al. reported a group of novel monoallelic 
and dominant-negative AIRE mutations clustered within the 
first PHD1 zinc finger domain in patients with various degrees 
of autoimmunity (39). The PHD1 domain is critical for AIRE’s 
transcription–transactivation activity and mutations in this 
domain seems to affect the structure and thus the function of 
the entire AIRE tetramer. However, the significance of these 
monoallelic mutations is still unclear since the same alterations 
were found in varying autoimmune phenotypes, ranging from 
milder phenotypes of late-onset APECED to autoimmune 
polyglandular syndrome type 2 (APS-2) and isolated organ-
specific autoimmunity following incomplete inheritance. A 
possible explanation is that AIRE tetramers still have some 
residual activity sufficient to ensure partial self-tolerance. 
Moreover, PHD1 mutations scanned in a public databases 
revealed an estimated frequency of about 0.0008, which is in 
the range of several autoimmune conditions that affect about 1 
in 1,000 people, thus suggesting that mutations in AIRE might 
be more widespread in patients with autoimmunity than previ-
ously thought (39).

Moreover, Sparks et al. identified additional dominant-negative 
AIRE mutations associated with the modulation of insulin gene 
expression in thymus which is essential to induce either insulin 
tolerance or the development of insulin autoimmunity and type 
1 diabetes (51).

APeCeD: FROM “CLASSiCAL” TO  
“nOn-CLASSiCAL” PHenOTYPe

In the light of these new knowledges, the original classification 
of APECED as unique autosomal–recessive disease seems to be 
incomplete. Taking into account the huge spectrum of pheno-
types related to AIRE mutations, Oftedal et al. interestingly pro-
posed to differentiate APECED in two major forms: (1) “classical 
APECED,” characterized by recessive inheritance, presence of at 
least two of the three main components, and interferon (IFN) 
antibodies; and (2) “non-classical APECED,” characterized by 
dominant heterozygous mutations mainly in AIRE’s PHD1 zinc 
finger and a milder, less penetrant autoimmune phenotype (39) 
(Table 1).

Classical diagnosis of APECED has been originally defined by 
the presence of two of the three most common features: chronic 
mucocutaneous candidiasis (CMC), chronic hypoparathyroidism 
(CH), and Addison’s disease (AD) (52).

Neutralizing autoantibodies against type 1 IFN (especially 
IFN-ω and IFN-α) have been found to strictly correlate with AIRE 
deficiency, thus leading to consider these autoantibodies as a pre-
cocious diagnostic tool for APECED and an additional diagnostic 
criteria for the diagnosis of APECED (52, 53). However, IFN 
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TABLe 1 | APeCeD in “classical” and “non-classical” forms.

“Classical 
APeCeD”

“non-classical APeCeD”

Inheritance AR AD
Mutation Homozygous/

compound 
heterozygous

Heterozygous

Phenotype APECED 
(two of the 
three main 
components)

Various degrees of autoimmunity (from late-
onset classical APECED or APS-2 to isolated 
organ-specific autoimmunity, i.e., vitamin 
B12 deficiency, pernicious anemia, vitiligo)

Onset Childhood Childhood/adulthood
Penetrance Complete Incomplete
IFN antibodies Present Variable
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autoantibodies seem to be less prevalent in the “non-classical” 
form, probably reflecting some residual AIRE function (39).

Molecular analysis of Aire may help to confirm the 
clinical diagnosis, especially in those cases with an atypical 
presentation.

Both “classical” and “non-classical” phenotypes are character-
ized by a wide heterogeneity in the severity and in the number of 
components among affected subjects with a wide variability even 
between siblings with the same genotype (39, 54).

Chronic mucocutaneous candidiasis is the first sign to appear 
followed by CH, before the age of 10 years, and later by adrenal 
insufficiency. However, a precise chronological order is not 
always present (52).

In addition to the classic triad (CMC, CH, and AD), the phe-
notype of APECED includes several autoimmune manifestations, 
which in some cases may also precede the classical triad (52).

The spectrum of endocrinopathies associated with APECED 
includes hypergonadotropic hypogonadism, type 1 diabetes 
(T1D), autoimmune thyroid diseases (ATD), growth hormone 
(GH) deficiency, and other pituitary defects (52).

The appearance of ectodermal abnormalities is also quite com-
mon including dental enamel hypoplasia, pitted nail dystrophy, 
and alopecia. Keratopathy, vitiligo, calcifications of the tympanic 
membranes, and periodic maculopapular, morbilliform, or 
urticarial rash with fever (52) are also included in the clinical 
spectrum of APECED.

Furthermore, gastrointestinal autoimmunity in APECED 
may lead to autoimmune gastritis, autoimmune hepatitis (AIH), 
intestinal disorders with chronic diarrhea alternating with obsti-
pation, and cholelitiasis (54).

Asplenia, tubulointerstitial nephritis, interstistial lung disease 
(ILD), vasculitis, Sjogren’s syndrome, cutaneous vasculitis, hemo-
lytic anemia, scleroderma, metaphyseal dysplasia, and celiac 
disease have also been reported in APECED (55–58). Recently, 
a diagnosis of APECED was established by performing whole 
exome sequencing in a patient with increased renal echogenicity 
on renal ultrasound (59).

Muscle disease, with very similar clinical features of progres-
sive limb-girdle myopathy, is a rare component of APECED (60).

To date, two patients with APECED have been affected by 
encephalitis leading to a severe and life-threatening condition 
(61, 62).

The “non-classical” form of APECED has been suggested to 
be characterized by variable autoimmune phenotypes, ranging 
from late-onset APECED to different combinations of autoim-
mune manifestations (APS-2), isolated organ-specific autoim-
munity or autoantibodies, but no signs of autoimmune disease 
within individuals who harbor monoallelic AIRE mutations. 
In particular, families with vitamin B12 deficiency, pernicious 
anemia, and/or vitiligo at early age have been found to carry 
heterozygous PHD1 mutations, although the clinical phenotype 
has been expanded when larger materials were investigated. 
Indeed, organ-specific autoimmunity in the heterozygous cases 
seems to present in milder form and incomplete penetrance 
with respect to classical (39). These observations open a new 
window on the possibility that mutation carriers have a risk 
for developing some degree of APECED or other form of 
polyendocrinopathy.

However, more research is needed to determine the contribu-
tions of such AIRE variants to autoimmune susceptibility, espe-
cially in kindreds with a strong family history of autoimmunity.

In either “classical” or “non-classical” form of APECED, early 
diagnosis and regular surveillance, including periodic evalua-
tion of hormonal and biochemical parameters, are essential to 
allow the prevention of severe and life-threatening events (i.e., 
hypocalcemia, adrenal crisis), even in the absence of clinical 
symptoms (63).

OLD AnD new AUTOAnTiBODieS

Autoimmune polyendocrinopathy candidiasis ectodermal 
dystrophy features multi-organ autoimmunity and autoantibody 
responses against target molecules with restricted tissue expres-
sion profiles. Consequently, autoantibody markers have acquired 
a central role in research and clinical diagnosis of APECED, 
providing a tool for diagnosis, and as predicting factor for the 
clinical course of the disease.

Chronic mucocutaneous candidiasis is a sign of the underlying 
immunodeficiency. Although the pathogenesis of CMC seems to 
be different from the all other autoimmune manifestations of the 
disease, an autoimmune pathogenesis for APECED-related CMC 
has also been proposed (64). APECED patients also develop high 
titer of neutralizing autoantibodies against IL-22, IL-17F, and 
IL-17A (64). Indeed, the neutralizing autoantibodies to Th17 
cytokines or the impaired production of IL-22 and IL-17A seem 
to be associated with susceptibility to Candida infection (64).

The occurrence of endocrine manifestations is usually asso-
ciated with a specific array of organ-specific autoantibodies. 
NATCH leucine-rich repeat protein 5 (NALP5) has been identi-
fied as the target for autoimmune attack in the parathyroid cells 
(65) in APECED. Autoantibodies specific for the steroidogenic 
enzymes (CYP21A2 and CYP17A1) and side chain cleavage 
enzyme (CYP11A1) are useful markers for the autoimmune 
destruction of the adrenal cortex even years before the clini-
cal onset of the disease (5, 66). Autoantibodies to cytochrome 
CYP11A1 are associated with ovarian insufficiency (66). T1D 
is correlated with autoantibodies against insulin, IA-2 tyrosine 
phosphatase-like protein, and glutamic acid decarboxylase 
GAD65 (67).
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Autoimmune hepatitis is characterized by the presence of 
autoantibodies specific for liver-expressed cytochromes CYP1A2 
and CYP2A6 (67). Gastrointestinal symptoms have been associ-
ated with the presence of autoantibodies against tryptophan 
hydroxylase (TPH) (68). Enteroendocrine cells can also be the 
target of an autoimmune attack. Therefore, in some cases, the 
intestinal dysfunction might be viewed as an autoimmune endo-
crinopathy (69). Recently, circulating autoantibodies to Paneth 
cell-specific alpha 5 defensin and reduced numbers of Paneth 
cells in APECED patients have been reported and also associated 
with intestinal dysfunction (70).

Autoantibodies against TPH have been associated with 
alopecia, vitiligo, and enamel dysplasia and anti-SOX9/SOX10 
antibodies with vitiligo (71, 72).

Autoantibodies directed against the potassium channel 
regulatory protein (KCNRG) and BPIFB1, found in epithelial 
cells of terminal bronchioles, have been suggested as a marker 
for pulmonary disease in APECED patients (64, 73).

The autoimmune nature of renal destruction has been 
confirmed by examining biopsy samples and by determining 
antiproximal tubular autoantibodies (74, 75). Furthermore, 
autoantibodies targeting kidney collecting ducts specific antigens 
[aquaporin 2 (AQP2) and two transcription factors regulating the 
aquaporin 2 promoter, namely homolog of the human homeobox 
B7 (HOXB7) and NF of activated T cells 5 (NFAT5)], have been 
recently identified in APECED patients affected with tubuloint-
erstitial nephritis (76).

Recently, B cell response against a panel of over 9,000 human 
proteins has enabled to have a detailed profiling of known 
autoantigens and to identify novel immune targets in APECED. 
As for the lack of genotype–phenotype relationship, it has been 
shown that AIRE genotype did not appear to be an important 
determinant of autoantibody expression. Moreover, two novel 
gonadal autoantigens, melanoma antigen family B 2 (MAGEB2) 
and protein disulfide isomerase-like testis (PDILT), have been 
identified that potentially could contribute to infertility in male 
and female patients with APECED (77). Another mechanism 
proposed to explain subfertility in males with APECED is the 
presence of autoantibodies against the prostatic antigen transglu-
taminase 4 (TGM4), causing prostatitis, and possible abnormal 
sperm maturation (78).

Neutralizing autoantibodies specific for type I IFNs discov-
ered in 2006 by Meager et al. (79) are hallmark of the “classical” 
APECED and are detectable in AIRE-deficient children as early as 
a few months of age, before the appearance of clinical symptoms 
or organ-specific autoantibodies (79). Autoantibodies against 
IFN seems to be less prevalent in “non-classical” APECED, prob-
ably reflecting some residual AIRE function (39).

In conclusion, we should take into account that the autoim-
mune response in APECED appears orders of magnitude more 
limited than could be expected. There is a great discrepancy 
between the number of AIRE-controlled genes (around 4,000) 
and the number of detected autoantigens in APECED (around 
20). Several explanations must be considered. First, it could be 
that only a subset of self-antigens is able to activate autoimmune 
responses. Moreover, the peripheral tolerance mechanisms may 

provide additional filters for the development of autoimmunity. 
Finally, it has been observed that autoimmunity in APECED 
preferentially targets molecules with restricted tissue expres-
sion profiles.

new inSiGHTS inTO AiRe GeneTiCS 
AnD FUnCTiOninG: CLiniCAL 
iMPLiCATiOnS

The genetic basis of autoimmunity is a complex problem. The 
main lesson from recent evidence is that the mutations of AIRE 
can lead to various degrees of clinical autoimmunity, ranging 
from “classical” APECED to specific autoimmune conditions, 
which had not been previously mined for genetically determined 
conditions. Therefore, partial alterations of AIRE could play a 
role in common autoimmune disease; however, to measure the 
penetrance and the relative risk conferred by pathogenic AIRE 
mutations in its monoallelic variants, it will be necessary to 
sequence Aire in large cohorts of healthy individuals and autoim-
mune patients and to characterize experimentally in-depth all 
mutant alleles.

Furthermore, in the last decade, knowledge of AIRE’s function 
and regulation has been significantly expanded leading to the 
identification of several partners and regulators of AIRE. Taken 
together, these molecular insights open new perspectives in 
understanding the phenotypic variability related to AIRE muta-
tions and might provide interesting targets for novel therapeutic 
approach.

Indeed, an unanimously accepted effective therapy for 
APECED is not currently available. The use of immunosup-
pressive treatment in this category of patients may lead to a 
transient immunodeficiency with the risk to worsen their CMC 
and seems not able to stop the progression of all APECED 
manifestations (80). Thus, the management is mainly based on 
the care of each individual component and is mainly character-
ized by substitutive treatments for hormone deficiencies and 
immunomodulators have been only used in selected severe 
phenotypes (80, 81).

Although thymic transplantation has been proven useful in 
the treatment of differentiative thymic disorder (82), no data 
are available on this intervention on alterations of the thymic 
negative selection process. Thymic compartment can be targeted 
to modulate immune tolerance, for example, by enhancing 
AIRE expression, promoting deletion of self-reactive T cells and 
enhancing positive Treg cell selection, or inducing differentiation 
of TECs from pluripotent stem cells, offering new exciting pos-
sibility in therapeutic manipulation (15).

In conclusions, the new insights in the biology of AIRE and 
its control in immune tolerance offer exciting possibilities for the 
exploration of diagnostic and therapeutic strategies that would 
benefit APECED patients.
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