
1SCiEnTifiC REPOrTs | 7: 15209  | DOI:10.1038/s41598-017-15484-5

www.nature.com/scientificreports

Reconstructing Yeasts Phylogenies 
and Ancestors from Whole Genome 
Data
Bing Feng1,2, Yu Lin3, Lingxi Zhou2,4, Yan Guo6, Robert Friedman5, Ruofan Xia2, Fei Hu2,  
Chao Liu1 & Jijun Tang   2

Phylogenetic studies aim to discover evolutionary relationships and histories. These studies are based 
on similarities of morphological characters and molecular sequences. Currently, widely accepted 
phylogenetic approaches are based on multiple sequence alignments, which analyze shared gene 
datasets and concatenate/coalesce these results to a final phylogeny with maximum support. 
However, these approaches still have limitations, and often have conflicting results with each other. 
Reconstructing ancestral genomes helps us understand mechanisms and corresponding consequences 
of evolution. Most existing genome level phylogeny and ancestor reconstruction methods can only 
process simplified real genome datasets or simulated datasets with identical genome content, unique 
genome markers, and limited types of evolutionary events. Here, we provide an alternative way to 
resolve phylogenetic problems based on analyses of real genome data. We use phylogenetic signals 
from all types of genome level evolutionary events, and overcome the conflicting issues existing 
in traditional phylogenetic approaches. Further, we build an automated computational pipeline to 
reconstruct phylogenies and ancestral genomes for two high-resolution real yeast genome datasets. 
Comparison results with recent studies and publications show that we reconstruct very accurate and 
robust phylogenies and ancestors. Finally, we identify and analyze the conserved syntenic blocks 
among reconstructed ancestral genomes and present yeast species.

Phylogenetic studies used to be the domain of morphological area, and were based on outward appearances 
and internal structures1. Later, molecular characters and DNA sequencing technologies have augmented these 
studies in building robust phylogenies2,3, although they often yield conflicting results4–8. Because local and biased 
sequences may not be enough to represent the entire genome. These sequences may also evolve in distinct rates, 
and cause conflicting phylogenetic signals. Currently, the widely accepted phylogenetic approach to alleviate 
these conflicting issues is to analyze shared gene datasets, and concatenate/coalesce their results from multiple 
sequence alignments to obtain a final phylogeny with the maximum support4–6. Recently, Salichos and Rokas 
analyzed a yeast gene dataset with 1,070 orthologs from 23 species and discovered 1,070 phylogenies. They con-
catenated these results into a final phylogeny with the maximum likelihood4. Marcet-Houben and Vakirlis also 
used similar approaches to build yeast phylogenies for 19 and 34 species5,6. Shen et al. used two different methods 
(concatenation and coalescence) and two data matrices (amino acids or the first two codon positions), and recon-
structed the 86-taxon phylogeny among the yeasts of the subphylum Saccharomycotina. In their study, 72 inter-
nodes were highly supported (14 internodes were new to their study after comparing with other publications), 11 
internodes were still unresolved or equivocal9. Nevertheless, contradictories still exist among these studies. These 
conflicting phylogenies can be due to method inconsistency, compositional bias, alignment ambiguity, model 
misspecification, and long branches attraction4,8.

Genome level evolutionary events and their biological significances have been studied for 80 years10. 
Computational methods were developed in the 1990s11,12, and have been widely explored in phylogeny reconstruc-
tions and evolutionary mechanisms in the past three decades13–18. The availability of fully sequenced/annotated  
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genomes and advanced computational algorithms have brought evolutionary studies beyond the mere sequence 
level19,20. Gene orders can be used as genome markers in genome level evolutionary studies21. They represent 
the genome content, gene permutations, and gene directions, which can reflect genome content and structural 
variations during evolution. Gene order based phylogeny reconstruction approaches obtain phylogenetic signals 
from genome level evolutionary events, and can bypass the troublesome multiple sequence alignment step in 
traditional methods19,20,22. However, gene order analyses are more computationally costly when compared with 
traditional sequence level phylogenetic studies, because researchers usually treat all gene order permutations for 
a special occasion as a single character out of billions of possible permutation states5,16,19,23,24.

Researchers have been working on the computational approaches for phylogeny and ancestral reconstructions 
on whole genome level data13,14,16,22,24–29. Most present approaches can only process simplified real genome data-
sets or simulated datasets with identical genome content and unique genome markers14,17,18,30–33. They are also 
restricted by handling complex evolutionary events, such as deletion, insertion, duplication, and whole genome 
duplication14,16–18,24,31,34. Recent phylogeny studies on real genome gene order data also had a few limitations. 
Luo et al. used the gene order data of five mammal genome to build the phylogeny, however, they only used the 
common shared gene orders35. Figueroa et al. and Weigert et al. used the gene order data from the mitochon-
drial genomes to study the phylogenies36,37. For current computational ancestral reconstruction methods, only 
ANGES38, Gapped Adjacency26, and MGRA216 are reported to be capable of handling non-identical genome con-
tent and all types of evolutionary events. However, they still suffer from the issues of low-resolution, accuracy, and 
robustness. Recently, gene duplication events have also been considered in real genome ancestral reconstructions, 
but only for the X-chromosome of six mammals39.

Yeasts have been used as models for higher level complex organisms, including mammals and humans40. 
Whole-genome sequencing studies have shown that yeasts have similar genome size, gene content, and coline-
arity of genes along the chromosomes of species41. Gordon reconstructed the yeast ancestral genome that went 
extinct 100 million years ago with a manual approach, using the gene order data of 11 species in Yeast Genome 
Order Browser (YGOB) (http://ygob.ucd.ie)42,43. In the latest version of YGOB, Byrne and Wolfe added nine addi-
tional yeast species, and reconstructed a ‘benchmark’ version of yeast ancestral genome from 20 species using the 
same method42,44. Jean proposed a computational method to reconstruct an ancestral genome for five non-WGD 
(Whole-genome duplication) species in YGOB45. Chauve later developed a computational method to reconstruct 
an ancestral genome using the same dataset as Jean but with two genome marker sets46. The “low-resolution 
marker set” contains the same 135 genome makers that were used by Jean45. The “high-resolution marker set” con-
tains 710 genome markers46. However, their studies are still based on low-resolution datasets with only five spe-
cies. Even the “high-resolution set” with 710 markers is still too low to reconstruct reliable ancestral architectures 
for current whole genome level studies. Vakirlis et al. sequenced 10 non-WGD species from the Lachancea genus 
and developed software AnChro to reconstruct their ancestral genomes, which contained 4446 to 4799 genes5.

We previously developed two computational phylogeny and ancestral reconstruction approaches, MLWD 
(Maximum Likelihood on Whole-genome Data)22 and PMAG (Probabilistic Method of Ancestral Genomics)27,32. 
The previous MLWD method only had fixed evolutionary models and was also restricted in handling complex 
evolutionary events, such as deletion, duplication and whole genome duplication. PMAG approach could only 
process simulated datasets with unique genome markers and limited types of evolutionary events27,32. In this 
study, we redesigned the evolutionary models and innovated the algorithms for these two approaches. We com-
bined these two methods to build an automated pipeline to reconstruct phylogenies and ancestral genomes for 
two high-resolution whole genome datasets of the Saccharomycetaceae family. Our pipeline now can process real 
genome data, which have non-identical genome contents, non-unique genome markers, and all types of evolu-
tionary events, including genome rearrangements, insertion, deletion, duplication, and whole genome duplica-
tion (WGD). Finally, we identified and analyzed conserved syntenic blocks among reconstructed ancestors and 
present yeast species.

Results
Yeasts phylogenies reconstruction.  We first used our improved approach MLWD (refers to the third 
point of the Methods) to construct the phylogeny for the first yeast genomes dataset with 11 species, which are 
available in YGOB (Version 3 April 2009). Five of them are post-WGD species under four genera. Six of them are 
non-WGD species under other four genera. This was the same dataset that used in Gordon’s ancestor reconstruc-
tion study43. As shown in Fig. 1(a), we correctly classified all yeast species into their corresponding genera, and 
also into their corresponding groups, post-WGD and non-WGD. We compared this phylogeny with the recent 
studies and publications. Our phylogeny agrees with NCBI taxonomy (http://www.ncbi.nlm.nih.gov/taxonomy) 
on all 11 species. Our phylogeny also matches the phylogeny that was used in Gordon’s ancestral reconstruction 
study43. Recently, Salichos used a sequence alignment based maximum likelihood approach to study the phylog-
eny of 23 yeast species by concatenation analysis of 1,070 orthologs4. Marcet-Houben, Vakirlis and Shen used 
similar methods to infer the phylogenies of 19,34 and 86 yeast species from shared orthologs and homologs5,6,9. 
Even though our approach uses gene order data and phylogenetic signals from genome level evolutionary events, 
our phylogeny agrees with all of these three studies on their shared 11 species.

We continued to construct the phylogeny for the second dataset with 20 species, which are available in the 
latest version of YGOB (version 7 August 2012)42,44. Twelve of them are post-WGD species under six genera. Eight 
of them are non-WGD species under other five genera. As shown in Fig. 1(b), we correctly classified these 20 yeast 
species into their corresponding genera, and also into their corresponding groups, post-WGD and non-WGD. 
This phylogeny also entirely agrees with the NCBI taxonomy. Although Salichos, Marcet-Houben, Vakirlis, Shen 
performed similar sequence alignment based approaches to reconstruct yeast phylogenies by analyzing different 
gene datasets, their phylogenies still had a few conflicts with each other4–6. Our phylogeny also had two disagree-
ments with these studies and with the phylogeny built in Fig. 1(a). We marked these two disagreements with dash 
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lines in the phylogeny built from 20 species in Fig. 1(b). Our phylogeny agreed with Marcet-Houben’s phylogeny 
on each of the shared 18 species, except for the placement of K. lactis, which was still at the same evolutionary 
position in both phylogenies. However, it was closer to the Lachancea genus in our phylogeny, while it was closer 
to the Eremothecium genus in other sequence alignment based phylogenies4–6,9. We could remove this small dis-
crepancy by using the phylogenetic signals only from genome rearrangement events (as shown in Supplementary 
Fig. 1). Overall, Our topology shows a global good agreement with previous knowledge on yeast phylogeny, 
except for the branch of S. uvarum as a sister species to S. cerevisiae which is likely to be artefactual. The dif-
ferences may be caused by the inconsistencies in multiple sequence alignments and inaccuracies in gene order 
annotations. The yeasts input genomes are not well assembled, which have irregular and fragmentary genome 
structures. Many genome contigs cannot be assembled or mapped back to regular chromosomes. For example, 
V. polyspora, S. uvarum, S. mikatae and S. kudriavzevii had 269, 73, 84 and 83 genome contigs (chromosomes), 
respectively. These short genome contigs may cause inaccurate adjacency information and result to misleading 
phylogenetic signals42. However, our pipelines still preserve all these information, because don’t want to lose any 
gene adjacencies and genome content information from the original datasets.

The above results illustrate that our phylogenies are as accurate as those built from NCBI taxonomy and 
sequence alignment based phylogenetic approaches, although we are using the gene order data and phylogenetic 
signals from genome level evolutionary events. Our method can alleviate these “chromosome assembly” issues 
in the real yeast genome data, since our phylogeny are reconstructed from the most basic gene relationships 
(gene adjacencies). It skips the multiple sequence alignment step, and avoids the conflicting phylogenetic signals 
from local and biased DNA sequences. We provide an independent and alternative way to build the phylogenies 
for real genome datasets, and eliminate the conflicting issues in traditional multiple sequence alignment based 
approaches.

Yeast ancestral genomes reconstruction.  Yeast ancestral genomes reconstruction from 11 yeast spe-
cies.  Recently, Wolfe reported that whole genome duplication (WGD) was found in the common ancestor of six 
genera of Saccharomycetaceae family41. Gordon applied a parsimony-based approach to reconstruct the common 
ancestral genome dating back to 100 million years ago, right before yeasts’ WGD event43. Gordon used a sequence 

Figure 1.  Yeasts phylogenies built from all types of evolutionary events. The red line shows the non-WGD 
species, while the blue line shows the post-WGD species. Each leaf represents a species, and each internal node 
represents a common ancestor. We mark the disagreements between these two phylogenies with dash lines. 
(a) Phylogeny built for 11 yeast species. All internal edges have bootstrapping values of 100 except the branch 
between Lachancea genus and Eremothecium genus, which has a bootstrapping value of 68. We label A1–A9 as 
the reconstructed yeast common ancestors built from the first yeast dataset. The ancestor A9(PMAG09) shows 
the pre-WGD ancestor PMAG09, which is in the evolutionary step before yeasts’ WGD event. The ancestor A8 
is the post-WGD ancestor, had an additional genome copy from the pre-WGD ancestor A9. We also annotate 
the genes and their functions for all ancestral genomes in Supplementary Table 1. (b) Phylogeny built for 20 
yeast species. All of the internal edges have a bootstrapping value of 100 except the branch between Lachancea 
genus and Eremothecium genus (bootstrapping value of 84) and the branch between the S. cerevisiae and S. 
uvarum (bootstrapping value of 79). We label A1–A18 as the reconstructed common ancestors built from the 
second yeast dataset. The ancestor A17(PMAG12) shows the pre-WGD ancestor PMAG12, which is in the 
evolutionary step before yeasts’ WGD event. The ancestor A17’ is the post-WGD ancestor, had an additional 
genome copy from the pre-WGD ancestor A17. We also annotate the genes and their functions for all ancestral 
genomes in Supplementary Table 2.
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alignment based phylogeny as the guide tree, and manually reconstructed the gene orders of the ancestral genome 
from a dataset with 11 yeast species (this also refers to the first yeast genome dataset in this study)42,43. The pre-
liminary version of this manually reconstructed ancestral genome was reported as a ‘gold standard’ in Sankoff ’s 
studies43,47. In this paper, we use ‘MANUAL09’ to represent this version of the manually reconstructed yeast 
ancestor. In 2012, Byrne and Wolfe added nine additional yeast species to YGOB. They used the same method 
and reconstructed the ‘benchmark’ version ancestral genome, using genome information of 20 yeast species (this 
also refers to the second yeast genome dataset)42,44. We use ‘MANUAL12’ to represent this ‘benchmark’ version 
ancestral genome. The MANUAL12 ancestral genome was built from a dataset that contained more comprehen-
sive genome information of yeast species, indicating more accurate ancestral reconstructions than the ancestor 
built from the first dataset (MANUAL09).

In this study, we first used our improved computational approach PMAG (the fourth point of the Methods) to 
reconstruct the ancestral genomes for the first yeast genome dataset. We used the phylogeny that reconstructed 
from the same input data in Fig. 1(a) as the guide tree. It only took 20 minutes to solve this problem, and output 
all internal and root ancestral genomes for these 11 yeast species. There are nine ancestral genomes reconstructed 
and labeled as A1–A10 in the phylogeny of Fig. 1(a). Gene numbers of each ancestral genome vary between 4,841 
and 5,133. Each ancestral genome is represented by a list of ancestral genes with their corresponding gene orders 
that shared across the whole Saccharomycetaceae family. We further annotated all of the genes and analyzed their 
functions for each ancestral genome in Supplementary Dataset 1. Among our reconstructed ancestors, we use 
‘PMAG09’ (also labeled as A9 in Fig. 1) to represent our pre-WGD ancestor at the same evolutionary stage with 
MANUAL09 and MANUAL12. The post-WGD ancestor A8 had an additional copy of pre-WGD ancestor A9, 
therefore, it ad the same gene orders and genome information as pre-WGD ancestor A9.

Our first results comparison was among the genome content of PMAG09, MANUAL09, and MANUAL12 
ancestors, which contained 4,856, 4,703, and 4,943 genes, respectively. As Fig. 2(a) shows, the genome contents of 
our PMAG09 ancestor are very similar to both MANUAL09 and MANUAL12. Of all the genes in PMAG09, 4,645 
(95.6%) are shared by MANUAL09, and 4,836 (99.6%) are shared by MANUAL12. We also compared all gene 
adjacencies among these three ancestral genomes, which could reflect the absolute differences of gene contents, 

Figure 2.  (a) Genome content and gene adjacency comparisons among PMAG09, MANUAL09, and 
MANUAL12 ancestors. (b) Evolutionary events comparisons among the evolutionary histories of PMAG09, 
MANUAL09, and MANUAL12 ancestors. Figure (b) (A–C) show the total number of genome rearrangements 
events, gene loss and gain events, and overall evolutionary events between ancestral genomes and their shared 
five present post-WGD descendants.
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directions, and permutations between any two genomes. Figure 2(a) shows that our ancestor PMAG09 shares 
4,192 (86.3%) gene adjacencies with MANUAL09, and 4,464 (91.9%) gene adjacencies with MANUAL12.

We identified all gene pairs (gene adjacencies) that never split during evolution, which were called “non-split 
adjacencies”. There were 697 “non-split adjacencies” shared by the descendant genomes of PMAG09 and 
MANUAL09, and 269 “non-split adjacencies” shared by the descendant genomes of MANUAL12. in our recon-
structed ancestral genomes, PMAG09 contained 638 (13.1%) “non-split adjacencies”. MANUAL09 contained 
609 (12.9%) “non-split adjacencies”. MANUAL12 contained 253 (5.1%) “non-split adjacencies”. After removing 
the “non-split adjacencies”, PMAG09 still shared 3,554 (84.2%) adjacencies with MANUAL09 and 4,211 (91.4%) 
adjacencies with the “benchmark ancestral genome” MANUAL12.

We further identified and compared the number of different types of evolutionary events between the 
automated/manually reconstructed ancestors and their shared five present post-WGD descendant genomes. 
We applied a computational method to calculate genome evolutionary events based on the principle of 
double-cut-and-join (DCJ) operation48,49, which could identify all events that occurred during evolutionary his-
tory. Under DCJ operation model, if we had identified n evolutionary events between genome A and Genome B, 
the gene order permutations could evolve from genome A to genome B by these n events. Figure 2(b) A shows 
that our ancestor PAMG09 presents the least number of genome rearrangement events when compared with 
MANUAL09 and MANUAL12. Figure 2(b) B shows a similar result for gene loss and gain events. Likewise, 
Fig. 2(b) C shows that our ancestor PMAG09 has the least number of overall evolutionary events among these 
three ancestors.

These results demonstrate that our ancestor PMAG09 is very similar to both manually reconstructed ancestral 
genomes in genome content and gene adjacencies. Although our ancestor PMAG09 is reconstructed from the 
same data as the old version ancestor MANUAL09, it is more similar to the “benchmark” ancestor MANUAL12. 
MANUAL12 is built from the second dataset with more comprehensive genome information of nine additional 
yeast species, which indicates more accurate ancestral reconstructions. Moreover, PMAG09 has fewer evolution-
ary events than both MANUAL09 and MANUAL12.

Yeast ancestral genomes reconstruction from 20 yeast species.  We further reconstructed the ancestral genomes 
for the second yeast genome dataset with 20 species. We used the phylogeny reconstructed from the same input 
data in Fig. 1(b) as the guide tree, and reconstructed the ancestral genomes in 55 minutes. There are 18 ancestral 
genomes reconstructed and labeled as A1–A19 in the phylogeny of Fig. 1(b). Gene numbers of each ancestral 
genome vary between 4,750 and 5,122. We listed the ancestral genes for each ancestor, and analyzed their func-
tions in Supplementary Dataset 2. Among the 18 ancestral genomes reconstructed here, we use ‘PMAG12’ (also 
labeled as A18 in Fig. 1(b)) to represent the pre-WGD ancestor at the same evolutionary step with MANUAL12. 
The post-WGD ancestor A17 had an additional copy of pre-WGD ancestor A18, therefore, it ad the same gene 
orders and genome information as pre-WGD ancestor A18. There are 4,813 genes in PMAG12 and 4,943 genes 
in MANUAL12. As Fig. 3(a) shows, these two ancestors are extremely similar. PMAG12 shares 4,807 (99.9%) of 
its genes and 4,457 (92.6%) of its gene adjacencies with MANUAL12. We compared the different reconstructions 
on the proportions of adjacencies that were split during evolution. There were 269 “non-split adjacencies” shared 
by the descendant genomes of PMAG12 and MANUAL12. In our reconstructed ancestral genomes, PMAG12 
contained 258 (5.3%) “non-split adjacencies”. MANUAL12 contained 253 (5.1%) “non-split adjacencies”. After 
removing all “non-split adjacencies”, PMAG12 still shared 4,199 (92.1%) adjacencies with the “benchmark 
ancestral genome” MANUAL12. We continued to compare the number of different types of evolutionary events 
between ancestors and their 12 descendants. As Fig. 3(b) shows, even though PMAG12 and MANUAL12 are built 
from the same dataset, PAMG12 has fewer genome rearrangements, fewer gene losses and gains, and fewer total 
evolutionary events than MANUAL12 in their evolutionary history.

These results also illustrate that our ancestors are very similar to the manually reconstructed ancestors in 
genome content and gene adjacencies. Furthermore, our automated approach searches for globally optimal gene 
permutations with maximum likelihood across the entire genome. However, the manual approach only scans a 
fixed number of genes, and visually compares these gene orders42–44. Therefore, the manual ancestral genomes 
might be restricted in a local view of gene adjacency and content, and reach a solution with a set of local opti-
mums. Moreover, as we expected, Fig. 3(a) shows that PMAG12 is more similar to the latest ‘benchmark’ ancestor 
MANUAL12 when compared with our PMAG09 built from the first dataset in Fig. 2(a).

Ancestral genome reconstruction on simulated data.  Currently, only a few computational ances-
tral reconstruction approaches can process all kinds of evolutionary events and non-identical content genomes. 
ANGES38, Gapped Adjacency26, and MGRA216 are reported to be capable of handling all kinds of genome level 
evolutionary events. However, ANGES can only process low-resolution datasets34,38. In this study, we considered 
each single gene as a marker to reach the highest resolution. We compared our approach with Gapped Adjacency 
and MGRA2, and evaluated their performances. We simulated a series of large-scale non-identical content yeast 
datasets with different types of events. In order to make the simulated data more close to the actual genome data, 
we statistically analyzed the evolutionary rates of current yeast species, and incorporated the rates of different 
types of events into the simulator.

We simulated each dataset with 20 genomes. The start genome contained eight chromosomes and 5,000 genes. 
The number of gene adjacencies changes per edge along the phylogeny was set in the interval of [2750, 8250], 
which kept the “non-split adjacencies” at an extremely low rate. In addition, we calculated the “non-split adja-
cencies” that shared by all simulated datasets. There were only five “non-split adjacencies” on average in each 
simulated datasets. So the “non-split adjacencies” was not an issue for the simulated dataset, since there were only 
few of them under this high evolutionary rate.



www.nature.com/scientificreports/

6SCiEnTifiC REPOrTs | 7: 15209  | DOI:10.1038/s41598-017-15484-5

To make these experiments statistically reliable, we simulated 10 independent datasets with distinct phyloge-
nies. For each dataset, we needed to reconstruct 18 ancestral genomes, including 1 root ancestor and 17 internal 
ancestors. We compared the overall average accuracies and running time in reconstructing the genome content 
and gene adjacencies. The performances of ancestral genomes reconstruction were evaluated by the rate of cor-
rectly reconstructed genes and gene adjacencies divided by the total number of genes and gene adjacencies) in 
both reconstructed and true ancestors: ∪

∩
′
′

G G
G G

( )
( )

. G and G′ represented the genes and gene adjacencies in the recon-
structed and true ancestral genomes. There were two types of errors: false positive (FP) and false negative (FN). 
False positives were genes and gene adjacencies were existing in G but missing in G′. The false negatives were 
defined similarly, by swapping G and G′.

For ancestral genome content reconstruction, our approach PMAG can achieve a very high overall average 
accuracy of 99.7%. Gapped Adjacency can reach a lower overall average accuracy of 94.0%. However, MGRA2 
cannot produce any output after running for 48 hours (MGRA2 does produce accurate outputs for some simple 
datasets with identical genome content, smaller set of genes, and low evolutionary rates). For ancestral adjacency 
reconstruction, PMAG can still maintain a very high overall average accuracy of 95.1%. Gapped Adjacency can 
only achieve an overall average accuracy of 76.8%, which is not reliable enough for current computational meth-
ods. MGRA2 cannot produce any output. For each experiment, PMAG requires 11,530 seconds on average to 
reconstruct all ancestral genomes, and Gapped Adjacency requires 3,553 seconds on average to complete the 
same task.

In conclusion, out method PMAG outperforms Gapped Adjacency and MGRA2 in the accuracies of ances-
tral genome contents and adjacencies reconstructions. Both PMAG and Gapped Adjacency can achieve a very 
high accuracy in reconstructing genome content. However, Gapped Adjacency cannot reconstruct reliable 
genome adjacencies for ancestral genomes, because its accuracy is under 80%. Additionally, Gapped Adjacency 
requires less running time than PMAG, and MGAR2 cannot produce any output after running for 48 hours for 
all experiments.

Evolutionary and functional analyses of syntenic blocks.  Comparisons analyses of syntenic blocks 
between genomes are powerful approaches to study genomic evolution, gene origin, and gene co-evolution15,50. 
In this study, we followed the rigorous and precise rules to define the syntenic blocks, which was the genomic 
regions that contain two or more genes, maintaining the same gene order and orientation51. We ran whole 
genome comparisons among our automated reconstructed ancestors and manually reconstructed ancestors. We 
identified all syntenic blocks and analyzed their gene functions in Supplementary Dataset 3. As Table 1 shows, 
PMAG09 shares 337 syntenic blocks with MANUAL09, which contains 4553 (93.7%) syntenic genes. PMAG09 
shares 256 syntenic blocks with MANUAL12, which contains 4753 (94.2%) syntenic genes. Although both 

Figure 3.  (a) Genome content and gene adjacency comparisons between PMAG12 and MANUAL12 ancestors. 
(b) Evolutionary events comparisons between the evolutionary histories of PMAG12 and MANUAL12 
ancestors. Figure (b) (A–C) show the total number of genome rearrangements events, gene loss and gain events, 
and overall evolutionary events between ancestral genomes and their shared 12 present post-WGD descendants.
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PMAG09 and MANUAL09 are reconstructed from the same dataset, PMAG09 is more similar to MANUAL12 in 
genome contents and chromosome sub-structures (shares more syntenic genes, less syntenic blocks, and longer 
syntenic block lengths). Table 1 also shows that PMAG12 shares 233 syntenic blocks with MANUAL12, which 
contains 4733 (93.7%) syntenic genes. PMAG12 has the highest similarity with MANUAL12 in genome contents 
and sub-structures when compared with MANUAL09 and PMAG09. We also draw the chromosome dot plots 
between our ancestors and the “benchmark” ancestor MANUAL12, which could illustrate the level of colinearity 
between them. As the Fig. 4(a,b) shown, our reconstructed ancestral genome PMAG09 and PMAG12 have good 
chromosome colinearity with the “benchmark” ancestral genome MANUAL12, which illustrated that they shared 
many chromosome sub-structures. In addition, Fig. 4(b) also illustrates that our PMAG12 ancestor has better 
chromosome colinearity with the “benchmark” ancestral genome MANUAL12 when compared with PMAG09.

As we expected, our ancestor PMAG09 and PMAG12 agree more with the latest ‘benchmark’ ancestor 
MANUAL12 in genome contents and structures than ancestor MANUAL09 that build from the first dataset. 
Furthermore, our PMAG12 ancestor agrees more with MANUAL12 than our PMAG09 ancestor, since the recon-
struction of PMAG12 uses additional information. The above results are also consistent with the results that we 
obtained in the ancestral genome dot plots in Fig. 4, as well as the results in the ancestor genome contents and 
gene adjacencies comparisons in Figs 2(a) and 3(a).

Next, we continued to run whole genome comparisons between all automated/manually reconstructed ances-
tral genomes and their five present post-WGD descendants to identify their shared conserved syntenic blocks. 
Table 2 shows that both PMAG09 and PMAG12 share more syntenic genes with the present yeast species than 
MANUAL09 and MANUAL12 do. They also preserve less syntenic blocks and longer average syntenic block 
lengths with present yeast species. These results demonstrate that our ancestors PMAG09 and PMAG12 share 
more genome contents and sub-structures with the present yeast species when compared with manually recon-
structed ancestors. These results also agree with our previous results in Figs 2(b) and 3(b). Furthermore, we anno-
tated the genes and analyzed their functions for each syntenic blocks among automated/manually reconstructed 
ancestors and present yeast species in Supplementary Dataset 4. This information is critical to locating conserved 
co-evolution genes and functional gene groups that exist in both ancestral and present species. It can be used 
to discover the correlations between genome level structural and functional variations in yeasts’ evolutionary 
history.

Discussion
Initially, studies of yeast phylogenies were based on morphological phenotypes and characters such as sexual 
states, germinations, and fermentations52. Currently, widely accepted yeasts phylogenetic approaches are based on 
multiple sequence alignment, however, still have limitations and often have conflicting results with each other4–6,8. 
In this study, we reconstructed the phylogenies for two high-resolution yeasts genome datasets using the phy-
logenetic signals from genome level evolutionary events. The comparisons with the NCBI taxonomy and recent 
publications demonstrated that our approach could also reconstruct very accurate and robust phylogenies. We 
provide a new and alternative method to resolve the same phylogenetic problems, but use different types of data 
and phylogenetic signals. Our approach considers each gene as a single marker and uses 14,101 total markers. 
Therefore, it will not miss the phylogenetic signals from small scale evolutionary events. It skips the multiple 
sequence alignment step, and avoids conflicting phylogenetic signals from distinct molecular sequences in tradi-
tional phylogenetic approaches. Therefore, our approach can eliminate the conflicting issues that exist in current 
multiple sequence alignment-based phylogenetic approaches. Current whole genome level phylogenetic studies 
on real data are limited in simplified identical content genomes35 and mitochondrial datasets36,37. However, our 
approach uses a new evolutionary model that can process the real whole genome data, non-identical content data, 
and all types of complex evolutionary events. This model is based on the principle of double-cut-and-join (DCJ) 
operations, and incorporates the evolutionary rates of the Saccharomycetaceae family. It can be extended to other 
multiple chromosome species, after we encoding all existing genes into gene orders and marking out all possible 
homologous genes that shared by more than one genomes.

Reconstructing ancestral genomes offers opportunities to study the evolutionary mechanisms and trajectories 
of present species. Studies that focused on developing computational ancestor reconstruction approaches face 
many difficulties. Present computational approaches suffer from issues of simplistic evolutionary models, com-
plex datasets, and complex evolutionary events14,15,17,18,25,28,34. Recent studies of Vakirlis’ et al. have made great 
achievements on computational ancestral reconstruction approaches. They newly sequenced ten yeast species in 
the Lachancea genus and used software AnChro to reconstruct the ancestral genomes on the Lachancea genus 
level5. They used SynChro to identify conserved syntenic blocks based on the DNA sequence information and 
additional parameters53. They used ReChro to identify cycles of breakpoints for each pairwise combination of 
genomes54. They provided a granular view of genome evolution within an entire eukaryotic genus5. In this study, 
we built an automated pipeline to reconstruct phylogenies and ancestral genomes from whole genome data. First, 
we built the phylogenies, and then used them as guide trees to reconstruct ancestral genomes from the same 

Manual Ancestral 
Genomes

PMAG09 Ancestor PMAG12 Ancestor

Genes Blocks Avg Length Genes Blocks Avg Length

MANUAL09 Ancestor 4553 337 13.51 4554 319 14.28

MANUAL12 Ancestor 4753 256 18.57 4733 233 20.31

Table 1.  Syntenic genes and blocks among ancestral genomes.
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input data. Experiments on simulated datasets illustrate that our approach achieves better performances than 
other current, automated ancestor reconstruction approaches. Ancestor reconstructions on two real yeast genome 
datasets show that our ancestors are very similar to the manually reconstructed “benchmark” ancestral genomes 
in genome contents, gene adjacencies. They also shared many chromosome sub-structures with each other. Our 
maximum likelihood based ancestral reconstruction approach treats the entire genome as a single stage out of 
billions of possible genome permutation stages, and searches for the global optimal genome permutations. We 
considered each gene as a basic marker, and reconstructed ancestral genomes by maximizing the overall condi-
tional probabilities of the ancestral marker sets along the edges of phylogenetic tree. We used a TSP (Traveling 
Salesman Problem) solver to connect ancestral gene adjacencies into genomes with maximum probability, which 
could successfully assemble ancestral genes into complete chromosomes with low error rates.

Whole genome level evolutionary studies improve our understanding of evolutionary procedures, gene ori-
gins, and gene co-evolutions15,20. Studies of syntenic blocks in gene order level have several applications in ana-
lyzing the genome’s structural and functional evolutions15. In this study, we identified the syntenic blocks, which 
were shared by our ancestors and manually reconstructed ancestors. Analysis results of the syntenic blocks can 
obtain the same conclusions with the comparison results from genome content and adjacencies discussed in 
Figs 2 and 3. In Supplementary Dataset 3, we provided functional analyses of these conserved syntenic genes and 
blocks. The information from these ancestral syntenic blocks is more reliable and credible since it is confirmed 
by two different ancestral reconstruction approaches. We also identified the conserved syntenic blocks between 
the ancestral genomes and their shared five present post-WGD descendants. In Supplementary Dataset 4, we pro-
vided functional analyses for them. These results can be used to locate the syntenic genes and blocks, which inher-
ited from the same ancestor to maintain their functional relationship during evolutionary processes. Genome 
level evolutionary events may also break old syntenic blocks, and bring new blocks with new genetic relation-
ships, which can result in structural and functional variation. By analyzing the correlations between evolutionary 
events and these functional variations, we can use syntenic blocks as genome markers to detect critical evolu-
tionary events, such as functional gene gain and loss. By combining the information on ancestral genomes found 
in Supplementary Datasets 1 and 2, we can study the genotypes and phenotypes of ancestral genomes that have 
gone extinct. Annotated gene orders within shared syntenic blocks can be used to locate the orthologous genes 
across different species. We can use them to trace the gene origins, evolutionary paths, and functional variations 
in yeasts’ evolutionary histories.

Figure 4.  Chromosome dot plots between our ancestors and the “benchmark” ancestor MANUAL12. The 
eight y-axes of eight sub-figures showed the eight chromosomes of MANUAL12. The x-axes of each sub-figures 
represented all eight chromosomes of our ancestors.

Present Yeast 
Genomes

PMAG09 PMAG12 MANUAL09 MANUAL12

Genes Blocks
Avg 
Length Genes Blocks

Avg 
Length Genes Blocks

Avg 
Length Genes Blocks

Avg 
Length

S. cerevisiae 3524 1123 3.14 3485 1133 3.08 3307 1108 2.99 3474 1152 3.02

S. uvarum 3459 1123 3.08 3411 1125 3.03 3263 1102 2.96 3401 1140 2.98

C. glabrata 3312 1122 2.95 3282 1116 2.94 3094 1072 2.89 3222 1114 2.89

N. castellii 3338 1112 3.00 3323 1111 2.99 3180 1089 2.92 3324 1130 2.94

V. polyspora 3520 1102 3.19 3462 1088 3.18 3315 1065 3.11 3434 1108 3.10

Table 2.  Syntenic genes and blocks between ancestral genomes and present yeast genomes.
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Methods
Yeast genome datasets.  We reconstructed phylogenies and ancestral genomes for two yeast whole genome 
datasets. Both datasets are available in the Yeast Gene Order Browser (YGOB) (http://ygob.ucd.ie)42. The first 
dataset contains the genome data of 11 yeast species (Version 3, April 2009), including five post-WGD species 
under four genera (S. cerevisiae, S. uvarum, C. glabrata, N. castelliie, V. polyspora) and six non-WGD species 
under four genera (Z. rouxii, K. lactis, E. gossypii, L. kluyveri, L. thermotolerans and L. waltii). This is the same 
dataset that used in Gordon’s study for reconstructing yeast ancestor MANUAL0942,43. The second yeast dataset 
is also available in YGOB (Version 7, August 2012), and contains nine additional species compared to the first 
dataset42,44. Twelve species are post-WGD species under six genera (S. uvarum, S. kudriavzevii, S. mikatae, S. cer-
evisiae, V. polyspora, T. phaffii, T. blattae, N. dairenensis, N. castellii, K. naganishii, K. africana, C. glabrata). Eight 
species are non-WGD species under five genera (Z. rouxii, T. delbrueckii, K. lactis, E. gossypii, E. cymbalariae, 
L. kluyveri, L. thermotolerans, L. waltii). This is also the same data used by Byrne and Wolfe to reconstruct the 
‘benchmark’ version of ancestral genome MANUAL12 in the latest version of YGOB42,44.

Binary encoding yeast genome data.  In this study, we used gene orders to represent gene permutations 
and directions on the chromosomes of yeast genomes. We considered each single gene as a genome marker, and 
used distinct integers to represent the homologous genes across different yeast species. The yeasts homologous 
genes were defined by the original database YGOB, which was based on the BDBH BLASTP (E < 1e−5) using  
L. waltii and S. cerevisiae as reference genomes42. Each group of homologous genes was represented by a specific 
gene order, no matter how many genes were in this group. We used corresponding gene orders to represent the gene 
permutations and positioning relationships on yeasts genomes for all species. In this study, there were total 14,101 
gene orders in our high-resolution genome marker set that used for phylogeny and ancestral reconstructions. The 
sign (+/−) of a gene order indicates gene’s direction or strand. Each gene is labeled by two ends, head and tail. The 
head represents a gene’s 5′ end, and the tail represents the 3′ end. For example, gene 1 can be represented by {1h, 
1t}. We used the gene ends and their adjacencies to describe the permutations and positional relationships for all 
genes on the chromosome. For instance, if gene 1 and gene 2 were adjacent, or gene −2 was followed by gene −1 
equivalently, then these two genes can form a gene adjacency {1t, 2h}. A gene order sequence {1, −2, 3, 4} can be 
labeled by a set of gene adjacencies: {1t, 2t}, {2h, 3h}, {3t, 4h}. In this paper, our algorithms further encoded genome 
content and gene adjacencies into binary sequences for each chromosome. For instance, for two genomes with only 
one chromosome, G1 = {1, −2, 3, 4}, and G2 = {1, 2, 3, 4, −5}, we binary encode them as shown in Table 3.

Improving MLWD for yeasts phylogenies reconstruction.  The previous MLWD method was 
restricted by its fixed evolutionary model and the limitations in handling complex evolutionary events, such as 
deletion, duplication and whole genome duplication. In this study, we considered each single gene as the smallest 
genome marker to process high-resolution genome datasets. First, we statistically analyzed the evolutionary rates 
of different types of events for all species under the Saccharomycetaceae family. Next, we calculated the gene 
content and gene adjacencies transition probabilities according to these genome evolutionary events. Next, we 
used these transition probabilities to build a constrained evolutionary model based on the principle of 
double-cut-and-join (DCJ) operation48,49. This yeast evolutionary model takes all kinds of genome level evolu-
tionary events into account, including rearrangements, insertions, deletions, and duplications. Based on the DCJ 
operation, each event will always remove two old adjacencies randomly, and use the new ends to create two new 
adjacencies. However, our yeast evolutionary model considers that each genome has n genes and n + O(C) adja-
cencies with constrained adjacency variations. There are +( )n2 2

2
 possible ends. The transition probability to 

lose an adjacency is estimated by + + +
+

R D I d
n O C

2( )
( )

. The probability to gain a new adjacency is estimated by 
+ + +

+

R D I d
n O n

2( )
2 ( )2 . n and C represent the total number of genes and chromosomes for a specific species. R, D, I and d 

represent the estimated number of rearrangements, duplication, insertion, and deletion events for this species 
based on the evolutionary rates of Saccharomycetaceae family. We also applied their corresponding transition 
probabilities to the ancestral genome reconstructions. After encoding the yeast genomes into binary sequences 
(as shown in Table 3) and computing the transition probabilities, we fed this information into the phylogeny 
reconstruction program RAxML with fast bootstrapping55 to reconstruct the yeast phylogeny with overall maxi-
mum likelihood. The reconstructed phylogeny and the same input genome data will be fed into the next stage 
PMAG for ancestral reconstruction. The bootstrapping support value for each internal node and leaf on the phy-
logeny is considered in three levels: strong support (bootstrap value > 90), medium support (bootstrap value 
between 60 and 90), and weak support (bootstrap value < 60).

Improving PMAG for yeasts ancestral genomes reconstruction.  Most present computational ances-
tral reconstruction approaches can only process simplified real data or simulated datasets with unique genome 
marker and limited types of evolutionary events14,17,18,30–33. The previous version of our PMAG approach also 

Genomes

Gene Adjacencies Genome Content

{1t, 2t} {1t, 2h} {2t, 3h} {2h, 3h} {3t, 4h} {4t, 5t} 1 2 3 4 5

Genome 1 1 0 0 1 1 0 1 1 1 1 0

Genome 2 0 1 1 0 1 1 1 1 1 1 1

Table 3.  Binary encoding genome data.

http://ygob.ucd.ie
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faced the same problems23,32. In this study, we improved the algorithms of PMAG approach to process all kinds of 
evolutionary events and high-resolution real genome data. Our improved approach was based on Bayes theorem 
and probabilistic frameworks. It used the yeast genome transition evolutionary model to compute the gene adja-
cencies of a specific ancestral genome for each edge of the yeast phylogeny. We considered each gene as a basic 
genome marker, and reconstructed the ancestral genomes by maximizing the overall conditional probabilities of 
ancestral marker sets along the edges of the phylogenetic tree.

First, we encoded genome content and gene adjacencies into binary sequences, as shown in Table 3. The dupli-
cated genes and adjacencies were encoded as additional distinct elements, and stored into an additional matrix. 
We further computed the conditional probabilities for all possible adjacencies across all genomes, and assigned 
the probabilities as their weights. Next, we used the reconstructed yeast phylogeny (from the phylogeny recon-
struction step) as the guide tree, and assembled gene adjacencies into ancestral genomes for all internal tree nodes 
with the maximum portability. The existence of gene or adjacency in ancestral genome is determined by its con-
ditional probability in the present state. Suppose a is the ancestral node on a phylogenetic tree. The conditional 
probability of node a that it has a gene/adjacency G is P(Ga|Oa), representing in Equation (1):

| =
|

=
∑

P G O P G P O G
P O

f p G

f p G
( ) ( ) ( )

( )

( )

( ) (1)
a a

a a a

a

G a a

G G a a

a

a a

Oa is currently observed state in all the subtrees of the ancestral node a. fGa
 is the frequency of a gene/adjacency 

Ga. pa(Ga) is the observed probability of leaves in the subtree of node a, which has the gene/adjacency G. It can 
further be calculated by Equation (2):

∑ ∑= ×p G T d p G T d p G( ) ( ) ( ) ( ) ( ) (2)a a G G G r r r G G G l l lr a r l a l

r and l represent the left and right children of the ancestor node a. Tab(d) is the transition probability of gene a 
changing to gene b after d steps evolution.

The reconstruction of each ancestral genome was not only based on the genome information of its descend-
ants, but also based all available genomes in the datasets. For each ancestral genome reconstruction, we re-rooted 
the tree and treated the ancestral genome that needed to reconstruct as the new root, and built the ancestral 
genome with the global maximum probability over all species. We reconstructed gene orders of ancestral nodes 
by using a similar idea from a previous probabilistic reconstruction approach for sequence data56. We also used 
the RAxML55 to estimate evolutionary distance d. Our method iterated the steps above to compute all of proba-
bilities of adjacencies for each internal genome. Once all of these probabilities were obtained, We converted this 
genome adjacencies assembly/reconstruction problem into an instance of the Traveling Salesman Problem (TSP), 
and used the Chained-Lin-Kernighan heuristic TSP solver Linkern to solve this problem57. The original yeasts 
input genomes were not well assembled. Many genome contigs couldn’t be assembled or mapped back to regular 
chromosomes. Even though the real yeast genome data suffered from these issues, the TSP solver helped us to 
better assemble/reconstruct ancestor genomes by using all available adjacencies information in known genomes. 
We mapped the gene content, gene adjacencies, and duplicated genes information with the outputs from TSP 
solver. Finally, we determined the chromosome structures of reconstructed ancestral genomes based on the chro-
mosome structure information of its parent and children genomes. We first identified all chromosome telomeres 
for its parent and two children genomes. Next, we introduced the ancestral chromosome telomeres with new 
chromosome telomeres by the following orders: 1, telomeres shared by all three genomes (one parent and two 
children genomes); 2, shared by two children genomes; 3, shared by any two genomes; 4 existed in the parent 
genomes; 5 existed in one of children genomes. Finally, when the chromosome number reached the number of its 
two children genome or its parent genome, we output the updated ancestral genomes with correct chromosome 
number and chromosome telomeres.

Code Availability.  Code package is available in the Supplementary Info files. There is a ReadMe.txt file to 
show how to configure and run the package.
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