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Background: Molecular typing based on single omics data has its limitations

and requires effective integration of multiple omics data for tumor typing of

colorectal cancer (CRC).

Methods: Transcriptome expression, DNA methylation, somatic mutation,

clinicopathological information, and copy number variation were retrieved

from TCGA, UCSC Xena, cBioPortal, FireBrowse, or GEO. After pre-

processing and calculating the clustering prediction index (CPI) with gap

statistics, integrative clustering analysis was conducted via MOVICS. The

tumor microenvironment (TME) was deconvolved using several algorithms

such as GSVA, MCPcounter, ESTIMATE, and PCA. The metabolism-relevant

pathways were extracted through ssGSEA. Differential analysis was based on

limma and enrichment analysis was carried out by Enrichr. DNA methylation

and transcriptome expression were integrated via ELMER. Finally, nearest

template or hemotherapeutic sensitivity prediction was conducted using NTP

or pRRophetic.

Results: Three molecular subtypes (CS1, CS2, and CS3) were recognized by

integrating transcriptome, DNA methylation, and driver mutations. CRC

patients in CS3 had the most favorable prognosis. A total of 90 differentially

mutated genes among the three CSs were obtained, and CS3 displayed the

highest tumor mutation burden (TMB), while significant instability across the

entire chromosome was observed in the CS2 group. A total of 30 upregulated

mRNAs served as classifiers were identified and the similar diversity in clinical

outcomes of CS3 was validated in four external datasets. The heterogeneity in

the TME and metabolism-related pathways were also observed in the three
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CSs. Furthermore, we found CS2 tended to loss methylations while CS3 tended

to gain methylations. Univariate and multivariate Cox regression revealed that

the subtypes were independent prognostic factors. For the drug sensitivity

analysis, we found patients in CS2 were more sensitive to ABT.263, NSC.87877,

BIRB.0796, and PAC.1. By Integrating with the DNA mutation and RNA

expression in CS3, we identified that SOX9, a specific marker of CS3, was

higher in the tumor than tumor adjacent by IHC in the in-house cohort and

public cohort.

Conclusion: The molecular subtypes based on integrated multi-omics

uncovered new insights into the prognosis, mechanisms, and clinical

therapeutic targets for CRC.
KEYWORDS
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Introduction

Colorectal cancer (CRC) is the third most common

malignant tumor in the world and the fourth major cause of

cancer death (1). The diagnosis of CRC is often in the middle

and late stages with poor prognosis, and distant metastasis is the

main cause of death in colorectal cancer patients. With the

continuous improvement in medical level, comprehensive

treatment measures such as surgery, radiotherapy, and

chemotherapy, targeted therapy, and immunotherapy have

improved the overall survival (OS) of patients with CRC, but

their overall efficacy is still poor, and the 5-year survival rate of

patients with metastatic CRC is only about 14% (1). Therefore,

how to effectively evaluate the prognosis of different CRC

patients is an urgent problem to be solved.

At present, the most widely used prognostic staging system

for CRC is the TNM (Tumor, Node, and Metastasis) staging

system, which is easy to observe from clinical information and is

the benchmark for the establishment of clinical treatment plans
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for patients. However, the TNM staging system mainly relies on

expert opinions, and the features used are relatively single. The

abnormal phenomenon of the TNM staging system in CRC (the

prognosis of patients at stage IIB/C is significantly worse than

that of patients at stage III A) results in its limited ability of

personalized and accurate clinical decision (2). At the same time,

as a population-based system, the TNM staging system has been

questioned about its application to individual patients (3). The

latest eighth edition of the TNM staging system included

biomarkers as new prognostic factors in some cancer staging

(3). Therefore, it is necessary to introduce new prognostic factors

to the existing TNM staging system in order to more accurately

assess the prognosis of patients and formulate treatment plans.

Cancer is a complex disease with high heterogeneity, even

patients with the same histopathological classification will have

different gene mutations (4). Hence, personalized prevention,

diagnosis, and treatment should be done according to the clinical

and omics characteristics of different patients (5). For CRC,

microsatellite instability (MSI), DNA mismatch repair (MMR),

and the results of molecular tests such as RAS mutation and

BRAF VE6000 are used to determine the prognosis (3, 6). It is

possible to combine clinical and omics information for more

personalized prognostic analysis of cancer, but it is difficult for a

single omics data to fully account for all factors in a complex

disease such as cancer, making it difficult for researchers to

derive data from millions of single-nucleotide variations (SNV)

to find the key gene that actually causes the disease (7). In recent

years, more and more researchers have carried out integrated

analysis of various omics data and obtained certain results (8, 9).

However, most prognostic studies of CRC are limited to one set

of omics, such as gene expression (10) or DNAmethylation (11),

and few studies that consider multiple omics data have failed to

effectively combine multiple omics data with clinical data (12).
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Therefore, how to integrate clinical data and omics data and

apply them to the prognosis of CRC is of great significance.

The Cancer Genome Atlas (TCGA) is a platform that

integrates clinical data, survival information, and multiple

omics data for 33 cancers. Through the integration and

analysis of multiple omics, cancer subtype classification,

biomarker discovery, and survival prognosis analysis can be

carried out (13–15). Herein, using data from TCGA and other

public databases, we developed a classifier based on multi-omics

integration for the prognosis prediction of CRC for the first time.

We evaluated the differences in genomic heterogeneity,

transcriptome biomarkers, TME landscape, metabolism-related

pathways, epigenetic regulation, and chemotherapeutic drug

sensitivity among the molecular subtypes of CRC. Multivariate

Cox regression analysis confirmed the independent prognostic

value of our subtype system. In summary, the molecular

subtypes based on integrated multi-omics uncovered new

insights into the prognosis, mechanisms, and clinical

therapeutic targets for patients with CRC.
Materials and methods

Study population

Molecular data of patients diagnosed with CRC were retrieved

from TCGA (13). Transcriptome expression profiles of the TCGA-

COAD (colon adenocarcinoma) and TCGA-READ (rectum

adenocarcinoma) projects quantified by the number of fragments

per kilobase million (FPKM) were downloaded from the UCSC

Xena (https://xenabrowser.net/), including 616 fresh-frozen

samples with primary malignancy and 51 adjacent normal

samples. The DNA methylation profile quantified by Illumina

HumanMethylation 450K-array platform was downloaded from

the UCSC Xena (https://xenabrowser.net/) under the projects of

TCGA-COAD and TCGA-READ, respectively, including a total of

387 primary colorectal tumour samples and 45 adjacent normal

samples. Somatic mutation data, patients’ clinicopathological

information, and survival data were retrieved from cBioPortal

(http://www.cbioportal.org/datasets) (16). Copy number variation

(CNV) data was collected from FireBrowse (http://firebrowse.org/)

(17). For the purpose of multi-omics integrative clustering, 306

primary colorectal tumour samples with available transcriptome

expression, DNA methylation, and somatic mutation profiles were

identified for this study. Another four independent cohorts

downloaded from GEO, including GSE14333 (18), GSE17538

(19), GSE38832 (20), and GSE39582 (21), comprised of a total of

1,159 CRCs with gene expression matrix and corresponding

clinicopathological information. Of these external validation

cohorts, gene expression matrices were profiled by Affymetrix

Human Genome U133 Plus 2.0 Array. The Robust Multichip

Average (RMA) algorithm was used for background correction

and normalization (22).
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Data pre-processing for gene expression
and DNA methylation profiles

For the FPKM data of high-throughput sequencing from

TCGA, Ensembl IDs for mRNAs were transformed to gene

symbols by GENCODE 22. The FPKM values were transferred

into transcripts per kilobase million (TPM) values, which

showed more similarity to those derived from microarray and

more comparable between samples (23). For microarray data

retrieved from GEO database, we performed RMA

normalization and processing using default settings for

background correction and normalization by R package affy

(24). Affymetrix probe ID was annotated with gene symbols

according to the GPL570 platform. For multiple probes that

mapped to one gene, mean value of expression was considered.

The potential cross-dataset batch effect was removed under an

empirical Bayes framework, namely, ComBat, by the R package

sva (25), and the batch effect was further investigated using

principal component analysis (PCA) for transcriptome profiles.

For DNA methylation, we performed logit transforms b-values
before ComBat adjustment and then computed the reverse logit

transformation following the ComBat adjustment (26).

Subsequently, we used R package ChAMP to comprehensively

filter the methylation matrix. To be specific, probes with

detection P value > 0.01, probes with <3 beads in at least 5%

of samples per probe, all non-CpG probes, all SNP-related

probes, all multi-hit probes, and probes located on sex

chromosomes were removed in the first place (26, 27).
Integrative clustering based on multi-
omics profiles

To perform integrative clustering analysis, we processed the

TCGA multi-omics data sets to form three data matrices with

columns corresponding to the common samples (n = 306) and

rows corresponding to the omics features. The transcriptome

expression profile was first log2 transformed. For the

methylation data, we extracted probes located in promoter

CpG islands, and for genes having more than one probe

mapping to its promoter, the median b value was considered

to identify 10,263 methylated genes. For the mutation matrix, a

gene was considered mutated (entry of 1) if it contained at least

one type of the following nonsynonymous variations: frameshift

deletion/insertion, in-frame deletion/insertion, missense/

nonsense/nonstop mutation, splice site or translation start site

mutation; otherwise, 0 was used to designate wild-type status. To

better fit the model and accelerate the clustering efficiency,

features with flat values were removed. Specifically, we used

the top 1,500 most variable mRNAs, and methylation genes

according to the median absolute deviation. Additionally, 20

genes that were previously identified as driver mutations for
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colorectal carcinoma were selected for cancer subtyping (28). To

find an optimal clustering number, we calculated the clustering

prediction index (CPI) and gap statistics using R package

MOVICS (29). Consequently, integrative clustering of the

TCGA cohort was conducted by R package MOVICS using a

Bayesian latent variable model (29, 30).
Deconvolution of tumour
microenvironment

To estimate the cell abundance of TME, we retrieved from

the previous study a compendium of microenvironment genes

related to specific microenvironment cell subsets, which

consisted of 364 genes representing 24 microenvironment cell

types (31, 32). We then used gene set variation analysis (GSVA)

on these gene sets to generate enrichment scores for each cell

using the R package GSVA (33). Additionally, quantification of

the absolute abundance of eight immune and two stromal cell

populations in heterogeneous tissues from transcriptomic data

was conducted by the R package MCPcounter (34). The presence

of infiltrating immune/stromal cells in the tumour tissue was

estimated by the R package ESTIMATE (35). Additionally, the

individual DNA methylation of tumour-infiltrating lymphocyte

(MeTIL) score in the TCGA cohort was calculated using PCA

according to the protocols described in the literature (36).
Single sample enrichment for
metabolism-relevant pathways

The 115 metabolism-relevant gene signatures were achieved

from previously published study (37), and were quantified by

using single-sample GSEA (ssGSEA) approach through R

package GSVA (38). Specifically, we extracted three main

categories of these metabolism-relevant pathways, including

carbohydrate metabolism, amino acid metabolism, and

lipid metabolism.
Differential analysis and functional
enrichment

Differential expression analyses were conducted using the R

package “limma” (39). Gene set enrichment analysis (GSEA) was

performed based on pre-ranked gene list according to the

descending ordered log2FoldChange value derived from

differential expression analysis; we then leveraged R package

clusterProfiler to determine functional enrichment based on

Hallmark gene set background that was retrieved from

Molecular Signatures Database (MSigDB) (40, 41). The
Frontiers in Immunology 04
differentially methylated probes (DMPs) were obtained by R

package ChAMP (26). Specifically, we considered probe to have

significantly gained methylation if its corresponding mean b-
value was greater than 0.3 in the specific subtype but less than 0.2

in the reference subtype with P<0.05 and FDR<0.05; vice versa

for probes that significantly lost methylation. Gene-list based

enrichment analysis was conducted by an integrative and

collaborative website tool (Enrichr; https://maayanlab.cloud/

Enrichr/) (42).
Cancer subtype characterization and
visualization

As previously developed R package MOVICS provides

powerful functions to comprehensively characterize cancer

subtypes and create feature rich customizable visualizations

with minimal effort, we therefore characterized the identified

colorectal subtypes from multiple aspects, including survival

rate, mutational frequency, fraction of copy number-altered

genome (FGA), and clinical characteristics. All parameters

were set to default values (29).
Integrative analysis of DNA methylation
and transcriptome expression

We used R package ELMER to investigate the crosstalk

between DNA methylation and transcriptome expression

under an integrative analytic pipeline (43). For probes that are

located in promoters, we identified putative genes that were

significantly downregulated due to the hypermethylation of

promoter probes. Next, the closest 20 upstream and

downstream genes were collected for each probe, and for each

candidate probe-gene pair, the Mann-Whitney U test was

harnessed to test the null hypothesis that overall gene

expression in the specific group was less than or equal to that

in the reference group. For probes that are located in enhancers

(distal probes that are at least 2Kb away from transcription start site

on human chromosomes), hypomethylated enhancer mode with

overexpressed gene expression pattern was investigated accordingly.
Nearest template prediction

Gene-expression signature-based classification was

conducted using NTP algorithm, which provided a convenient

model-free approach to make category prediction at single-

sample level using only a list of signature genes and a test

dataset, which was flexible and beneficial in external cohort

application (44, 45).
frontiersin.org

https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://doi.org/10.3389/fimmu.2022.983636
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2022.983636
Analysis of regulons

Transcriptional regulatory networks (regulons) were

constructed for 71 candidate regulators associated with

cancerous chromatin remodelling (46). As described in the

previous study (31), potential associations between a regulator

and all possible target genes were revealed by mutual

information and Spearman’s correlation, and associations were

dropped via permutation analysis if the corresponding FDR was

greater than 0.00001. Unstable associations were also eliminated

through bootstrapping (1,000 re-samplings, consensus

bootstrap>95%), and the weakest associations were removed

by data processing inequality (DPI) filtering embedded in the R

package RTN (47). Regulon activity scores for all samples were

calculated by two-tailed GSEA.
Therapeutic response analysis

We employed R package pRRophetic to predict the

chemotherapeutic sensitivity for each colorectal sample using

the parameters by default (48, 49). For immunotherapy, we

retrieved a published data set consisting of 47 patients with

melanoma who responded to anti-CTLA4 or anti-PD1

blockades (50), and then harnessed subclass mapping to

predict the clinical response to immune checkpoint

blockade (51).
Immunohistochemical staining

The 50 pairs of CRC tumor and adjacent normal tissue

Microarray (D216Re01) were purchased from Xi’an bioaitech Co.,

Ltd (Xi’an, China). Immunohistochemical staining was performed

on normal and the paired tumor tissue slides. The slides were

incubated with rabbit polyclonalanti-SOX9 (EPR14335, 1:2000);

antibodies at 4℃ overnight. SOX9 expression was evaluated by

using a system considering the staining intensity (0 means negative

1 means weak; 2 means moderate; and 3 means strong) and the

percentage of positively stained cells (<5%=05% to <25%=1, 25% to

50%=2, >50 to <75%=3, >75%=4). The final score was calculated by

multiplying the extent score by the intensity score.
Statistical analyses

All statistical analyses were performed by R (Version 4.0.2).

We used Fisher’s exact test for categorical data, Kruskal–Wallis

one-way analysis of variance for continuous data, a log-rank test

for Kaplan-Meier curve, and Cox regression for hazard ratio. For

all comparisons, a two-sided P < 0.05 was considered

statistically significant.
Frontiers in Immunology 05
Results

Multi-omics integrative molecular
subtype of colorectal cancer

We combined expression profiles of TCGA-COAD and

TCGA-READ, and further removed the potential batch effect

(Figure 1A). We determined the optimal cluster number of three

taking into account two clustering statistics and previous

molecular classifications (Figure 1B). Subsequently, integrative

clustering identified three robust cancer subtypes (CSs), which

were characterized by distinct molecular patterns across

transcriptome mRNA expression, DNA methylation and

colorectal cancerous driver mutations (Figure 1C). Of note,

these classifications were not associated with major clinical

features (all P > 0.05; Supplementary Table S1); our

classification system was tightly associated with overall

survival rate (OS; P = 0.001; Figure 1D) and progression-free

survival rate (PFS; P = 0.009);. Generally, CS3 showed the most

favourable prognosis among three clusters.
Genomic heterogeneity of colorectal
cancer subtype

To investigate the genomic heterogeneity of these molecular

subtypes further, we investigate the differentially mutated genes

among our classifications, leading to a total of 90 genes (FDR <

0.05 and mutational frequency > 10%; Figure 2A). Among these

90 genes, 11 genes were previously identified as driver mutations

in colorectal cancer, including PIK3CA, APC, BRAF, KRAS,

TP53, FBXW7, AMER1, TCF7L2, SOX9, ARID1A, and SMAD4

(Supplementary Table S2). Additionally, we found that CS3

showed a significantly higher tumour mutation burden (TMB,

P = 0.002; Figure 2B) than the other two subtypes. We then

investigated chromosomal instability by calculating the FGA

scores and found that CS2 had significant instability across the

entire chromosome as compared to the other two subtypes with

significantly higher copy number loss or gain (P < 0.001;

Figure 2C). We showed three types distinguishing composite

copy number profiles: gistic score (Figure 2D), and

percentage/frequency.
Identification of transcriptome
biomarkers for colorectal cancer subtype

Given that transcriptome-level data were the most commonly

used molecular profiles in cancer research, we identified 30

mRNAs with uniquely and significantly upregulated expression

as classifiers for each subtype in the TCGA cohort, and a 90-gene

signature was generated (Figure 3F; Supplementary Table S3). To
frontiersin.org
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test the reproducibility of our identified colorectal molecular

subtypes, we combined four external datasets as GEO cohort of

which expression profiles were measured by microarray platform;

batch effect across different datasets were removed (Figures 3A,

B). We then predict the identified molecular subtypes in the GEO

cohort (n = 1,159) using NTP algorithm, which classified each

sample in the GEO cohort as one of the identified CS (Figure 3C).

Of note, a total of 961 cases of GEO cohort were predicted with

confidence (FDR < 0.05) and those cases were used for the

downstream analyses. Likewise, CS3 presented with the most

favourable clinical outcome out of the three subtypes (P = 0.008;

Figures 3D, E).
Delineation of metabolism-related
pathways in colorectal cancer subtype

Oncogenic heatmap with cancer associated mutations in

tcga coadread (Figure 4A). Boxplot for oncogenetic pathways in

iclusters of tcga coadread(Figure 4B). Similarly, GSEA is run for

each subtype based on its corresponding DEA result to identify

subtype-specific functional pathways (Figures 4C, D). Since
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Metabolic pathways regulate colorectal cancer initiation and

progression, we further explored whether distinct subtypes had

different metabolic characteristics in both TCGA and GEO

cohort (Figure 4E). Of note, we found global dysfunction of

metabolism-related pathways among three molecular subtypes,

and generally CS3 showed relatively higher enrichment level of

carbohydrate, amino acid, and lipid metabolism-relevant

pathways, which may suggest that these colorectal cancers

preserved the default metabolic program of normal colon and

rectum, leading to a generally good clinical outcome.
Tumour microenvironment landscape of
colorectal cancer subtype

Since cancer immunity plays a critical role in tumour

progression, we suspected that the tumour microenvironment

may vary a lot among these molecular subtypes. Since cancer

immunity plays a critical role in tumour progression, we

suspected that the tumour microenvironment may vary a lot

among these molecular subtypes. Therefore, we investigated the

specific immune cell infiltration status of samples in the TCGA
A B

D

C

FIGURE 1

Multi-omics integrative molecular subtype of colorectal cancer. Principal component analysis to investigate the potential batch effect between
TCGA-COAD and TCGA-READ. (A) before and after Combat. (B) Identification of optimal clustering number by calculating CPI and Gaps-
statistics. (C) Comprehensive heatmap showing the molecular landscape of three cancer subtypes of colorectal carcinoma using integrative
clustering. Kaplan-Meier curves of (D) OS and PFS with log-rank test for 306 patients with colorectal cancer according to the current
molecular classification.
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cohort. To be specific, we quantified the infiltration levels of

several microenvironment cell types using different approach,

and surveyed the colorectal samples for the expression of genes

representing immune checkpoint targets. The analysis of gene

expression signatures suggested that CS1 was highly immune-

infiltrated, CS3 showed relatively higher immunocyte

infiltration, while CS2 was generally immune-depleted

(Figure 5A). This finding may converge to the poor overall

survival of CS2 versus other molecular subtypes. Compared to

the other subtypes, CS1 had relatively higher expression of

severa l genes that represent potent ia l targets for

immunotherapy, including CD274 (PDL1), PDCD1 (PD1),
Frontiers in Immunology 07
CD247 (CD3), PDCD1LG2 (PDL2), CTLA4 (CD152),

TNFRSF9 (CD137), TNFRSF4 (CD134) and TLR9 (Sup_S2).

Interestingly, CS1 enriched for B cell, CD8 T cells but may lack

CD4 memory activated cells (Sup_S2); previous study showed

the ratio of CD4/CD8 may play prognostic role in several cancer

subtypes (52, 53). Additionally, we found that interferon-g
pathway was significantly activated in CS1 (FDR < 0.001;

Figure 5B), which made us hypothesized that CS1 may be

beneficial from immune checkpoint inhibitors. In this manner,

we performed subclass mapping of TCGA cohort and revealed

that only the CS1 showed high transcriptome-level similarity to

a group of patients with melanoma who responded to anti-
A B

D

C

FIGURE 2

Genomic heterogeneity of colorectal cancer subtype. (A) OncoPrint showing the distribution of genes that were differentially mutated between
three cancer subtypes. (B) Distribution of TMB and TiTv (transition to transversion) between two epigenetic phenotypes. (C) Barplot showing the
distribution of FGA and fraction genome gain/loss (FGA/FGG). Bar charts are presented as the mean ± standard error of the mean. (D)three
types distinguishing composite copy number. ****p<0.0001.
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CTLA4 or anti-PD1 blockades (P < 0.05, adjusted P ≤0.25;

Figure 5C), which indicated that the current classification may

be useful to identify ideal candidates of patients with colorectal

cancer for immunotherapy. The tumour microenvironment

landscape was generally validated in GEO cohort. Consistently,

CS1 in GEO cohort significantly activated interferon-g pathway,
and showed higher likelihood of responding to immune

checkpoint inhibitors.
Epigenetic regulation in colorectal
cancer subtype

Given the different transcription profiles among the three

CRC subtypes, we then asked if this could mirror the epigenetic

aspect. To this end, we identified differentially methylated

probes for each subtype, and we found CS2 tended to loss

methylations (n = 240) as compared to other subtypes

(Supplementary Table S4). Notably, these probes losing DNA

methylation were significantly enriched in enhancers compared

to the 450K array background (P<0.001; Figure 6A). As to CS3,
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we found this subtype tended to gain methylations (n=249)

compared to other subtypes (Supplementary Table S5), and

those probes gaining methylation significantly enriched in

promoter CpG islands (P<0.001; Figure 6B). To further

investigate the crosstalk between epigenetic DNA methylation

and transcriptome expression, we performed integrative analysis

combining both gene expression and DNA methylation profiles

using ELMER pipeline. First, for CS2, we identified distal probes

that are 2Kb away from the transcription start site of the human

chromosome, and performed differential methylation analysis at

probe level to identify probes with difference of b-value greater
than 0.1 (FDR<0.05) in CS2 compared to other subtypes, ending

up with a total of 3,683 distal probes/enhancers (Supplementary

Table S6). Next, ELMER searched for the nearby 20 genes

corresponding to these probes, and further predicted

enhancer-gene linkages using associations between DNA

methylation at enhancers and expression of 20 nearby genes of

the CpG sites; such analysis identified a total of 2,533 pairs

corresponding to 1,003 genes (Figure 6C; Supplementary Table

S7). To understand the biologic relevance of these genes that

were epigenetically activated, we harnessed Enrichr and found
A

B D
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FIGURE 3

Identification of transcriptome biomarkers for colorectal cancer subtype. Principal component analysis to investigate the potential batch effect
among four GEO datasets (A) before and (B) after Combat. (C) Heatmap showing the transcriptome expression pattern of the 120-gene
signature in nearest template predicted cancer subtype of GEO cohort. (D) Kaplan-Meier curves of OS with log-rank test for 961 patients with
colorectal cancer according to the eligible predicted classification. (E) KM of os using ntp in GEO (F) Heatmap showing the transcriptome
expression pattern of the 90-gene signature (30 uniquely significantly upregulated genes in each cancer subtype) in TCGA cohort.
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that these genes were significantly enriched in MYC Hallmark

pathways (P =0.006, FDR=0.24; Supplementary Table S8).

Previous study demonstrated that MYC oncogene was

associated the suppression in tumour immunity (54), which

suggest that the downregulation of MYC oncogenic pathway

may contribute shaping the immune-depleted tumour

microenvironment of CS2. Using the similar strategy, we

investigated CS3, but we searched for promoter-gene pairs that

showed epigenetically silencing mode. In this manner, ELMER

identified a total of 1,063 promoters that gained methylation in

CS3 versus other subtypes (Supplementary Table S9), and a total
Frontiers in Immunology 09
of 3,212 promoter-gene pairs were identified to be epigenetically

silenced in CS3 (Figure 6D; Supplementary Table S10). Enrichr

revealed that these genes are significantly enriched in epithelia-

mesenchymal transition (EMT) hallmark pathway (P<0.001,

FDR<0.001; Supplementary Table S11). Down-regulation of

EMT may decrease tumour-initiating and metastatic potential

of cancer cells (55), which lead to good prognosis of CS3. In

addition, activity profiles of regulons associated with chromatin

remodelling highlighted additional potential regulatory

differences among three colorectal cancer subtypes, indicating

that epigenetically driven transcriptional networks might be
A B
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FIGURE 4

Delineation of metabolism-related pathways in colorectal cancer subtype. (A) Oncogenic heatmap with cancer associated mutations in tcga
coadread. (B) Boxplot for oncogenetic pathways in iclusters of tcga coadread. (C) Upregulated hallmark pathway heatmap in
tcga_using_upregulated_pathways. (D) Upregulated hallmark pathway heatmap in geo_using_upregulated_pathways. (E) Heatmap showing
transcriptome enrichment score of three metabolic categories in TCGA and GEO cohorts. **p < 0.01; ***p < 0.001.
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important differentiators of these molecular subtypes

(Figures 6E, F).
Independent prognostic value of
colorectal cancer subtype

We then surveyed that whether the current classification was

an independent prognostic factor in colorectal cancers from

TCGA cohort. As the generally favourable prognosis of CS3, we

therefore considered the CS3 as the non-aggressive subtype

while patients belonged to CS1 or CS2 were aggressive in

clinical setting. In this manner, univariate Cox regression

model was first conducted to filter out prognostic clinical

characterizations concerning OS and PFS; multivariate Cox

regression was subsequently performed based on those

prognosis-relevant features. Using such strategy, we found that

the current classification remained the independent prognostic
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factor after adjusting clinical prognostic features with respect to

OS (P = 0.026) and PFS (P = 0.032) (Figures 7A, B).
Potential therapeutic strategy for
colorectal cancer subtype

Considering the significantly poor clinical outcome of CS2 in

colorectal cancer, we decided to infer potential anticancer agents

that may show clinical efficiency for patients belonging to CS2

through an in-sillico drug screening approach. To this end, we

constructed ridge regression model between cell lines and

corresponding drug sensitivity and applied the predictive model

to each of the colorectal cases in both TCGA and GEO cohorts

(Supplementary Tables 12, 13). A total of four drugs were

discovered to be potentially effective in treating patients with

CS2 phenotype as compared to other cases, including ABT.263,

NSC.87877, BIRB.0796, and PAC.1 (all, P < 0.01; Figures 7C, D).
A

B C

FIGURE 5

Tumour microenvironment landscape of colorectal cancer subtype. (A) Heatmap showing the immune profile in the TCGA and GEO cohort,
with the top panel showing the expression of genes involved in immune checkpoint targets, the middle panel showing the enrichment level of
10 microenvironment cell types using MCPcounter approach, and the bottom panel showing the 24 microenvironment cells using GSVA
approach; DNA methylation of tumour-infiltrating lymphocytes (MeTILs) were annotated at the top of the heatmap. The immune enrichment
score and stromal enrichment score were annotated at the top of the heatmap. (B) GSEA plot showing activation of interferon-g hallmark
pathway. (C) Subclass analysis manifested that CS1 subtypes could be more sensitive to the immune checkpoint inhibitors.
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Identified a biomarker for multi-omics
molecular subtype

To apply the molecular subtype better in the clinic, we

identified a biomarker for our molecular subtype which most

based on the DNA mutation and RNA expression among

different subtypes. By using the Chi-square test for DNA

mutation and fold change with adjust FDR value for RNA

expression, then, we detected SOX9 was a significant gene in

the CS3 subtype. Through the IHC experiment, we found

SOX9 was higher in the 50 tumor tissue than the 50 tumor

adjacent tissue. IHC showed the represent sample in adjacent

and tumor samples (Figures 8A, B). TCGA-COAD public

cohort also confirmed that SOX9 was higher in tumor tissue

than that in adjacent tissue (Figures 8C, D). SOX9 mainly

located in the nucleoplasm of cell in A-431, U-2 OS and

U-251 MG multi cell lines by immunofluorescence with

HPA001758 antibody in the Human Protein Atlas

(HPA) (Figure 8E).
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Discussion

The high incidence and mortality of CRC have brought a

huge burden on patients. How to effectively judge the prognosis

of CRC patients and correctly evaluate the severity of the disease

of CRC patients are the main objectives of the study on the

prognosis of CRC. The prognosis of patients based on traditional

tumor typing is often very different. Molecular typing of tumors

can better reflect the differences in internal molecular

characteristics of tumors, which is the basis for the realization

of precision medicine. Accurate identification of patients’

molecular subtypes will help to accurately predict patient

prognosis and develop personalized treatment plans.

Currently, tumor molecular subtype studies are mainly

based on single omics data, such as transcriptomics,

proteomics, genomics, etc (56–61). Bhattacharjee et al. divided

lung adenocarcinoma into 4 subtypes by analyzing gene

expression profile data from lung adenocarcinoma patients,

and found that abnormal expression profile can be used to
A
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FIGURE 6

Epigenetic regulation in colorectal cancer subtype. Heatmap showing activity of regulon relevant to potential regulators associated with
chromatin remodelling in both (A) TCGA and (B) GEO cohorts. Heatmap showing the association between DNA methylation and gene
expression, presenting with (C) an epigenetic activation pattern in CS2 and (D) an epigenetically silencing pattern in CS3 of TCGA cohort.
Barplots showing the region-specific distribution of DMPs comparing to the Illumina 450karray background for the (E) CS2 and (F) CS3
molecular classification in TCGA cohort.
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distinguish primary and metastatic adenocarcinoma of lung

(58). Based on genomic CNV data, Shibata et al. divided lung

adenocarcinoma into three subtypes by unsupervised clustering

analysis, and found that patients with EGFR mutations had

shorter disease-free survival times (60). As for CRC, Roepman

et al. conducted unsupervised classification of genome-wide data

of CRC patients based on EMT, microsatellite instability caused

by mismatch repair gene defects, and high mutation frequency

associated with cell proliferation (62). Meanwhile, Lai et al.

proposed the co-ordinate immune response cluster (CIRC),

and identified four patient groups by this method (63). Zhang

et al. identified two molecular subtypes, C1 and C2, based on cell

cycle-related genes. PIK3CA, RYR2 and FBXW7 mutations were

more frequent in C1, and the clinical characteristics and

prognosis of patients were relatively poor (64). In addition to

the above genotyping based on gene mutations and cytogenetic

changes in the genome (10, 21, 65–68), CRC was also classified

based on differences in gene expression profiles and proteomic
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(69–72)biomarkers. Therefore, molecular typing based on omics

data can effectively identify clinically relevant tumor subtypes,

which plays a very important role in judging patient prognosis

and guiding clinical treatment.

Nevertheless, any single omics data can only reflect the

intrinsic molecular characteristics of tumors from a single

perspective, and the contribution of single-omics analysis to

tumor typing is one-sided. Therefore, the integration of multi-

omics information can simultaneously capture the heterogeneity

of tumors in different omics and integrate the information from

multiple perspectives to identify more accurate tumor molecular

typing. As the high heterogeneity of tumors is determined by

multiple omics, such as genome, epigenome, transcriptome, and

proteome, the analysis of data from different omics sources is

expected to better reveal the mechanism of tumor genesis and

development. For the first time, Matan Hofree et al. integrated

genomic mutations and protein interaction networks for

molecular typing of tumors to identify subtypes significantly
A
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FIGURE 7

Identification of transcriptome biomarkers for colorectal cancer subtype. (A) KM of os using movics agreesiveness in coadread of tcga.
(B) Forest plot showing the hazard ratio (95% CI) in univariate and multivariate Cox regressions with the corresponding P values. (C, D) Boxplot
showing the distribution of estimated IC50 among three cancer subtypes based on GDSC database, (C) TCGA, (D) GEO.
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associated with clinical features (73). Ronglai Shen et al.

integrated genomic mutations, CNV and transcriptome

expression profiles to obtain tumor classification based on

iCluster (74). Herein, using transcriptome, DNA methylation,

and driver mutations of CRC, we developed a classifier based on

multi-omics integration for the prognosis prediction of CRC for

the first time. At present, many studies have proved that CRC is

the result of accumulation of multiple gene mutations and

epigenetic modifications, and DNA hypermethylation or

hypomethylation can be used as epigenetic biomarkers to

predict the occurrence and prognostic effects of CRC (75–77).

Driver mutations in the genome can be viewed as responsible for

molecular changes associated with CRC progression, so

targeting such genes for the elimination of multiple CRC gene

dependencies could significantly improve efficacy (78). In

conclusion, CRC can be comprehensively understood from

multiple omics based on transcriptome, DNA methylation,

and driver mutation levels to predict prognosis and guide

clinical medication.

In the medical field, prognostic models need to undergo

extensive and rigorous validation before they can be used in

practice, and they also need to be continuously evaluated by

feedback. At present, due to the different data standards and

coding systems used by different sources, the output platforms
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and schemes of omics data also have certain heterogeneity.

Therefore, the current integrated prognostic models are often

internally verified by resampling or cross-validation. The few

externally validated integrated prognostic models often involve

only one type of omics data and have been externally validated in

only a few open data sets, making it difficult for the current

integrated prognostic models to be applied in clinical practice. In

order to verify the reproducibility of the colorectal molecular

subtypes we identified, we combined four external datasets from

GEO cohort. We removed batch effects across different datasets

and predicted the identified molecular subtypes in the GEO

cohort using NTP algorithm. CS3 presented with the most

favourable clinical outcome out of the three subtypes,

indicating the accuracy of the subtype system.

Beyond that, there are several new findings and notable

advantages to our study. TME and tumor cells interact and co-

evolve to drive tumor growth and progression, and also play an

important role in regulating tumor sensitivity to treatment (79).

The results showed that CS1 was highly immune-infiltrated, CS3

showed relatively higher immunocyte infiltration, while CS2 was

generally immune-depleted, explaining the difference in

prognosis. Immunotherapy is an important treatment for

CRC. We compared the responses of the three subtypes to

immune checkpoint inhibitors. Abnormal metabolism is
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FIGURE 8

Molecular subtype biomarkers validated by wet experiment. (A) SOX9 protein expression of the represent sample in adjacent and tumor samples
by IHC. (B) Pair-test for SOX9 protein expression between 50 tumor tissue and 50 tumor adjacent tissue by IHC. (C) and (D) SOX9 gene
expression between tumor tissue and adjacent tissue in TCGA-COAD public cohort. (E) The location of SOX9 in A-431, U-2 OS and U-251 MG
in the Human Protein Atlas(HPA). ***p<0.001.
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closely related to the occurrence, development, recurrence,

metastasis, and prognosis of CRC. We found that the

enrichment level of carbohydrate, amino acid, and lipid

metabolism-relevant pathways in CS3 was higher. Our results

showed that CS2 tended to loss methylations while CS3 tended

to gain methylations. ABT.263 is a small molecule Bcl-2

inhibitor that can induce cell apoptosis (80). BIRB.0796 is one

of the most potent compounds of (81) p38 inhibitors. PAC.1

(Caspase activator) is an effective procaspase-3 activator, which

acts on primary cancer cells and induces apoptosis (82). Our

findings showed that ABT.263, NSC.87877, BIRB.0796, and

PAC.1 were discovered to be potentially effective in treating

patients with CS2 phenotype.

Nonetheless, some limitations of the current study should

not be ignored. Hence, the cases of CRC patients were relatively

small; more cases are needed to confirm our conclusions. The

molecular subtypes of CRC were based on retrospective cohorts.

Therefore, prospective studies are needed in the future. Even

though we developed molecular subtypes based on integrated

multi-omics, the metabolomics and proteomics data were

missing because the relevant omics information was not

available in the TCGA database. With the development of

information technology and genetic testing technology, more

and more clinical data in the form of accessible electronic

medical records and shared omics data are available. The rapid

development of artificial intelligence technology can further

mine the correlation and interaction between different scales

of data and more effectively use different scales of data for

information complementarity to achieve a more accurate

prediction model. Therefore, it is of great significance to

further improve and optimize the multi-omics analysis based

on this study, realize the multi-center collaborative multi-omics

integrated analysis, and apply it to the prognostic analysis

of CRC.
Conclusion

Taken together, we carried out multi-omics analysis of

transcriptome mRNA expression, DNA methylation, and

colorectal cancerous driver mutations. Three molecular

subtypes were constructed and clinical significances, such as

prognosis, mechanisms, and clinical therapeutic targets were
Frontiers in Immunology 14
observed among them. Besides, the subtypes were independent

prognostic factors.
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