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80-211 Gdańsk, Poland; klaudia.antoniak@gumed.edu.pl

2 Department of Physical Therapy, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
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Abstract: The World Health Organization (WHO) has recognised obesity as one of the top ten
threats to human health. Obesity is not only a state of abnormally increased adipose tissue in
the body, but also of an increased release of biologically active metabolites. Moreover, obesity
predisposes the development of metabolic syndrome and increases the incidence of type 2 diabetes
(T2DM), increases the risk of developing insulin resistance, atherosclerosis, ischemic heart disease,
polycystic ovary syndrome, hypertension and cancer. The lymphatic system is a one-directional
network of thin-walled capillaries and larger vessels covered by a continuous layer of endothelial
cells that provides a unidirectional conduit to return filtered arterial and tissue metabolites towards
the venous circulation. Recent studies have shown that obesity can markedly impair lymphatic
function. Conversely, dysfunction in the lymphatic system may also be involved in the pathogenesis
of obesity. This review highlights the important findings regarding obesity related to lymphatic
system dysfunction, including clinical implications and experimental studies. Moreover, we present
the role of biological factors in the pathophysiology of the lymphatic system and we propose the
possibility of a therapy supporting the function of the lymphatic system in the course of obesity.

Keywords: adipose tissue; obesity; biological factors; lymph-angiogenesis; lymphatic contractile and
lymphatic vascular permeability; manual lymphatic drainage

1. Adipose Tissue—Structure and Functions

The 21st century epidemic of obesity has led scientists to pay more attention to adipose
tissue in recent years. Until recently, adipose tissue was considered a place of energy
storage [1]. Currently, it is known that adipose tissue has an insulating function and, located
just under the skin and around larger organs, naturally protects these against mechanical
trauma. Moreover, it is an important energy store, activated at times of increased energy
demand of the body [2].

The main ingredients of adipose tissue are cells called adipocytes, although it also
contains preadipocytes, fibroblasts, leukocytes, monocytes, macrophages, endothelial cells,
and a subpopulation of stem cells called SVF (stromal vascular fraction) cells [3,4].

Adipose tissue can be divided into white, brown, beige and pink tissue [4–6]. From
a physiological point of view, all four types of fat cell have endocrine properties. White
adipocytes form white adipose tissue (WAT), which stores energy. Each adipocyte of white
adipose tissue is filled with one large drop of triglycerides, which is the largest part of their
cell volume [5].

Both the cell organelles and the cytoplasm are located peripherally. White adipose
tissue is less vascularised and contains less extracellular matrix compared to brown adipose
tissue, which results from the different functions of both types of adipose tissue [6]. Brown
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adipocytes are the main type of parenchymal cells found in brown adipose tissue (BAT).
These cells are also called multilocular adipocytes. The brown adipocyte burns lipids to
produce heat: its multilocularity maximises the cytoplasmic–lipid interface, making large
amounts of fatty acids available quickly for mitochondrial uncoupling and consequently
thermogenesis [3,4]. Experimental studies from recent decades have shown that adipose
tissue has the possibility of cooperation between WAT and BAT. The main function of
the adipose organ appears to be the division of energy derived from nutrients into two
different pathways: WAT for metabolism and BAT for thermogenesis [6]. Moreover, each
tissue is able to cooperate and reversibly transform WAT ↔ BAT [3,4]. In fact, during
chronic exposure to cold, WAT differentiates to BAT, and during a chronic positive energy
balance, BAT differentiates to WAT. In studies with R26R double transgenic mice (ROSA26
reporter), white-to-pink adipocyte trans-differentiation (‘pinking’) was demonstrated dur-
ing pregnancy (days 17–18). On the other hand, in the post-lactation period, the mammary
gland changes rapidly, and the pink adipocytes are converted into white [4].

The functions of adipose tissue, present locally within the organs, muscles, epicardium,
and inside the vessels and kidneys, are different according to location. Visceral adipose
tissue (VAT) is responsible for local and generalised inflammation, for insulin resistance
in muscles, for local inflammation and chemotaxis in the epicardium [7,8]. VAT affects
atherosclerosis and arterial hypertension, and increases intravascular pressure within the
kidneys [9]. The above-mentioned functions of VAT are performed by the production
and secretion of numerous cytokines and adipokines, including leptin, adiponectin, re-
sistin, visfatin, apelin, vaspin, chemerin, tumour necrosis factor α (TNF-α), interleukin 6
(IL-6), monocyte chemotactic protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1),
retinol-binding protein (RBP-4), omentin and progranulin [3,5,10]. In the light of contem-
porary research, it is known that adipose tissue functions as an endocrine organ and in
physiological conditions aims to maintain the activity of the immune system as well as
the homeostasis of pro- and anti-inflammatory factors [5,11–18]. In the case of organism
dysregulation, e.g., by excessive growth of adipose tissue, it ceases to fulfil its homeo-
static functions, as well as ceasing to maintain the stability of the internal environment,
which in turn may lead to the development of metabolic diseases and chronic vascular
complications [7–9,12].

2. Adipose Tissue Immune Cells and Biological Factors

Adipose tissue is a complex structure responsible for fat storage, biological factors and
metabolites, with systemic actions [3,5,7]. Expansion of adipose tissue is accompanied by
the infiltration of different types of immune cells (macrophage, neutrophils, lymphocytes,
etc.), which induces a state of low-grade, chronic inflammation and metabolic dysregu-
lation [11–44]. Even though the exact mechanism of this low-grade inflammation is not
fully understood, there is clear evidence that adipose tissue-infiltrating macrophages play
a significant role in the pro-inflammatory state and in dysregulated metabolism adipose
tissue [11–18].

2.1. Macrophages

Macrophages are the most common cells of the immune system, accounting for
40–60% of all immune cells in adipose tissue [11]. It has been shown that the number of
macrophages in adipose tissue increases successively after the first week of using a high-fat
tissue diet. [11,12]. Moreover, in obesity, apart from the increase in the number of adipose
tissue macrophages, their polarization is observed, as M2 anti-inflammatory macrophages
turn into a pro-inflammatory phenotype—M1 macrophages [13]. M1 macrophages are acti-
vated by cytokines produced by type 1 T helper cells (Th1), which release Interferon-γ (IFN-
γ) [14]. Activated M1 macrophages are responsible for the secretion of pro-inflammatory
cytokines such as TNF-α, interleukin 1β (IL-1β) and Interleukin 6 (IL-6), which results in
the activation of induced nitric oxide synthase (iNOS) and nitric oxide (NO) [12,14–16].
Moreover, M1 macrophages produce pro-inflammatory cytokines: interleukin 12 (IL-12)
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and interleukin 23 (IL-23), with a simultaneous decreased synthesis of an anti-inflammatory
cytokine: interleukin 10 (IL-10) [17]. It has been shown that M1 macrophages are the main
source of pro-inflammatory cytokines, which is associated not only with obesity, but also
with the development of insulin resistance (IR) [18].

2.2. Neutrophils

Other types of innate immune cells in the visceral and perivascular adipose tissue
include neutrophils, which constitute approximately 2% of the immune cell fraction [19].
In the early stages of obesity, neutrophils penetrate adipose tissue, where they produce
chemokines and cytokines, thus promoting macrophage infiltration [20]. The accumulation
of neutrophils stimulates inflammation in adipose tissue primarily through the production
of TNF-α, MCP-1 and IL-1β [20–22].

2.3. Mast Cells

Studies in mice have shown that another consequence of obesity is the increase in the
number of mast cells in adipose tissue [23]. Mast cells respond to the microenvironment
by releasing preformed content of granules (histamine, heparin, tryptase and chymase)
or by releasing pro-inflammatory cytokines such as interleukin 1 (IL-1), interleukin 3
(IL-3), interleukin 5 (IL-5), (IL-6), interleukin 8 (IL-8) and TNF-α [23,24]. At the same time,
the increased number of mast cells additionally mediates the stimulation of the influx of
M1 macrophages [23]. Mast cells also stimulate the release of cathepsin, which induces
proteolysis of the intercellular substance and angiogenesis, thus causing the reconstruction
of adipose tissue in obese people [25].

2.4. T Lymphocytes

Lymphocytes are the main type of immune cell found in the lymph, which is where
they get their name. Lymphocytes include T cells (for cell-mediated, cytotoxic adaptive
immunity) and B cells (for humoral, antibody-driven adaptive immunity) [26]. So far, the
basis for the classification of T lymphocytes has been the presence of the T-cell receptor
(TCR), class I histocompatibility antigens (MHC I) and differentiation receptors (CD) [26,27].
The current division of T lymphocytes is based not only on surface receptors, but mainly
on the production of substances and their functions, which has led to the differentiation of
several types of T lymphocytes [27–33].

2.4.1. Regulatory T Cells

Regulatory T (Treg) cells show a high expression of an anti-inflammatory cytokine:
IL-10, which inhibits macrophage migration and the change of macrophage phenotype
towards anti-inflammatory M2 type [27]. Both in murine models and in obese patients, a
decrease in the number of Treg cells in visceral adipose tissue was found [28]. It has been
observed that the decrease in the number of Treg cells in mice increases the concentration of
insulin and pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, TNF-α, and macrophage
inflammatory protein-1α (MIP-1α) [27–29]. These data suggest that the increase in the
number of Treg cells may reduce M1 macrophage influx and contribute to the reduction of
adipose tissue inflammation, playing a particular role in improving insulin sensitivity [29].
In adipose tissue, apart from Treg cells, there are also other populations of T cells that
influence the course of inflammation [27,29].

2.4.2. CD4+ T Cells

Naive CD4+ T cells settle in secondary lymphoid organs (such as the spleen and
lymphocytes) and nonlymphoid organs (such as adipose tissue) after developing in the
thymus [27]. CD4+ T cells can be divided into three groups of helper cell: T-helper type 1
(Th1), T-helper type 2 (Th2) and T-helper type 17 (Th17) [27,29,30]. T cells that promote the
development of insulin resistance, atherosclerosis and hypertension mainly include Th1
cells producing IFN-γ, Th17 cells producing TNF-α and interleukin 17 (IL-17) [29]. The
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decrease in the concentration of Th2 cells observed in obesity results in a decrease in the
concentration of anti-inflammatory cytokines, such as interleukin 4 (IL-4), interleukin 5
(IL-5), interleukin 10 (IL-10) and interleukin 13 (IL-13) [31].

2.4.3. Cytotoxic CD8+ T Cells

CD8+ Tc lymphocytes, also referred to as CTL (cytotoxic T lymphocytes), destroy
cells that recognize foreign MHC class I molecules or antigens associated with their own
MHC class I molecules [32]. So far, both experimental and clinical studies have shown
that CD8+ lymphocytes can increase the production of pro-inflammatory factors, e.g.,
TNF-α, interleukin 2 (IL-2), IFN-γ and RANTES chemokines, contributing to inflammation
in the course of obesity [33,34]. In studies in obese mice, an interaction was detected
between CD8+ T cells, macrophages and adipose tissue. It has been shown that infiltration
of adipose tissue by CD8+ T cells is preceded by macrophage accumulation, production
of inflammatory factors, and disclosure of inflammation. Conversely, a reduction in the
number of CD8+ T lymphocytes reduced the influx of macrophages, decreased adipose
tissue inflammation and improved insulin sensitivity [34].

2.5. B Lymphocytes

B lymphocytes can be divided into two classes, B1 and B2 cells [8,35–37]. In murine
models, B2 cells in VAT produce pathogenic IgG, while network B1 cells produce “natural
antibody” IgM with anti-inflammatory properties [8]. The authors found that a high-fat
diet in mice may affect VAT through augmentation of class-switched mature B cells [8].
At the same time, an increase in serum of pro-inflammatory adipose-specific IgG2c has
been reported, while when B cells were transferred into Bnull mice (µ heavy chain knock-
out), there was impaired glucose tolerance and elevated levels of fasting insulin [8]. B
lymphocytes can activate pro-inflammatory CD8+ and CD4+ T cells and induce a change
in the phenotype of M2 macrophages [34]. Preliminary studies have shown that mice fed
a high-fat diet secrete more pro-inflammatory cytokines such as IL-6 and TNF-α than B
cells of mice fed a normal fat diet [35]. On the other hand, in obese patients, B-cell studies
showed an increase in IL-6 production and a decrease in IL-10 production [36,37]. Figure 1
shows possible changes in adipose tissue under the influence of biological factors.
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IL-6 (Interleukin-6); IL-12 (Interleukin-12); IL-23 (Interleukin-23); iNOS (induced nitric oxide syn-
thase); NO (nitric oxide); IL-10 (Interleukin-10); MCP-1 (Monocyte Chemoattractant Protein-1); IL-1
(Interleukin-1); IL-3 (Interleukin-3); IL-5 (Interleukin-5); IL-8 (Interleukin-8); Treg (regulatory T
cells); MIP-1α (macrophage inflammatory protein-1α); Th1 (T-helper-type 1); IFN-γ (Interferon-
γ); Th2 (T-helper-type 2); IL-4(Interleukin-4); IL-13(Interleukin-13); Th17 (T-helper-type 17); IL-17
(Interleukin-17); IL-2(Interleukin-2); plasminogen activator inhibitor-1 (PAI-1).

3. Saturated Fatty Acids

Previous studies have shown that saturated fatty acids (SFA) may play different roles
in obesity and type 2 diabetes (T2D), as well as cardiovascular diseases [18,35]. In the Euro-
pean Prospective Investigation into Cancer and Nutrition Study (EPIC) and the Norfolk
Prospective Study it has been seen that, even-chain saturated fatty acid concentrations
were associated with an increased risk of coronary heart disease and T2D, whereas odd-
chain saturated fatty acid concentrations were associated with a decreased risk [38]. In a
cross-sectional study of 484 Japanese participants, of men with an average age 44.6 years,
and women with an average age of 43.1 years, the authors examined the association of
saturated fatty acids in serum phospholipids with circulating levels of adipokines [39].
Higher levels of even-chain saturated fatty acids (14:0 myristic, 16:0 palmitic and 18:0
stearic acids) were associated with higher levels of resistin and lower levels of adiponectin.
By contrast, odd-chain saturated fatty acids (15:0 pentadecanoic and 17:0 heptadecanoic
acids) showed inverse associations with leptin and PAI-1. Visfatin was positively associated
with both even- and odd-chain saturated fatty acids. In conclusion, the authors suggest
that odd-chain saturated fatty acids are associated with a favourable adipokine profile,
whereas even-chain saturated fatty acids are associated with an unfavourable profile [39].

Saturated fatty acids promote the inflammatory activation of macrophages, also
activating the pathways of nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) i c-Jun N-terminal kinases (JNK) [40,41]. After these pathways are stimulated, an
increase in the secretion of chemokines such as MCP-1 and TNF-α takes place, which, when
released from adipocytes, cause inflammatory macrophage infiltration [40]. Additionally,
in obesity, adipose tissue increases its volume in response to excessive energy supply
by increasing the number of fat cells (hyperplasia) and increasing the size of fat cells
(hypertrophy) [42]. Increased adipocyte size is characterised by a higher adipocyte death
rate and macrophage recruitment [42,43]. On the other hand, overgrown adipocytes show
altered secretion of chemo-attractants and immune proteins, which may also favour pro-
inflammatory macrophage infiltration [44]. A summary of the role of adipose tissue is
presented in Table 1.

Table 1. Adipose tissue in obesity—selected metabolic effects.

Cell Type Synthesis of Factors Metabolic Effects Source

↑Macrophages
Polarization of M2
macrophages towards M1
inflammatory macrophages

↑ TNF-α, IL-1β, IL-6, IL-12, IL-23
↑ iNOS activation and ↑ NO
↓ IL-10

↑ inflammation

[13–17,20]
↑ insulin resistance
↑ risk of atherosclerosis development
↑ risk of hypertension development

↑ Neutrophils ↑ TNF-α, MCP-1, IL-1β
↑macrophage infiltration

[20–22]↑ insulin resistance

↑Mast cells
↑ IL-1, IL-3, IL-5, IL-6 IL-8, TNF-α,
histamines, heparins,
tryptases, chymases

↑macrophage infiltration
remodeling of adipose tissue [23,24]

↓ Treg ↓ IL-1β, IL-6, IL-8, TNF-α, MIP-1α

↑ inflammation

[27–29]
↑ insulin resistance
↑M1 macrophage infiltration
↓ glucose tolerance
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Table 1. Cont.

Cell Type Synthesis of Factors Metabolic Effects Source

↑ CD4+ Th1 ↑ IFN-γ

↑ insulin resistance

[27,29,30]
↑ risk of atherosclerosis development
↑ risk of hypertension development
change in phenotype of M2 macrophages
towards M1 macrophages

↓ CD4+ Th2 ↓ IL-4, IL-5, IL-13, IL-10 ↓ glucose tolerance [32–34]

↑ CD4+ Th17 ↑ TNF-α and IL-17

↑ insulin resistance

[32–34]
↑ risk of atherosclerosis development
↑ risk of hypertension development
change in phenotype of M2 macrophages
towards M1 macrophages

↑ T CD8+ ↑ TNF- α, IL-2, IFN- γ and
RANTES chemokines ↑ insulin resistance [32–34]

↓ B Cells
↑ IL-6 activation of pro-inflammatory CD4+ and

CD8+ lymphocytes [34–37]

↓ IL-10 change in phenotype of M2 macrophages
towards M1 macrophages

↑ Saturated Fatty Acids—as
a metabolites
odd-chain saturated
fatty acids
even-chain saturated
fatty acids

↑MCP-1 and TNF-α change in phenotype of M2 macrophages
towards M1 macrophages [40]

↑ resistin
odd-chain saturated fatty acids are
associated with a favorable adipokine
profile, whereas even-chain saturated
fatty acids are associated with an
unfavorable profile.

[39]↓ adiponectin
↑ visfatin
↓ leptin and PAI-1

Abbreviations: ↑— increase, ↓— decrease, TNF-α (tumor necrosis factor-α); IL-1β (Interleukin-1β); IL-6 (Interleukin-6); IL-12 (Interleukin-
12); IL-23 (Interleukin-23); iNOS (induced nitric oxide synthase); NO (nitric oxide); IL-10 (Interleukin-10); MCP-1 (Monocyte Chemoat-
tractant Protein-1); IL-1(Interleukin-1); IL-3(Interleukin-3); IL-5 (Interleukin-5); IL-8 (Interleukin-8); Treg (regulatory T cells); MIP-1α
(macrophage inflammatory protein-1α); Th1 (T-helper type 1); IFN-γ (Interferon-γ); Th2 (T-helper type 2); IL-4 (Interleukin-4); IL-
13(Interleukin-13); Th17 (T-helper type 17); IL-17 (Interleukin-17); IL-2(Interleukin-2); plasminogen activator inhibitor-1 (PAI-1).

4. Adipose Tissue, Obesity and the Autonomic Nervous System

An important system involved in the regulation of adipose tissue functions and
obesity-related processes is the autonomic nervous system (ANS) [45–49]. The sympathetic
system is commonly known as “fight or flight” and the parasympathetic part as “rest and
digest” [45,48]. Therefore, an imbalance of the sympathetic (SNS) and parasympathetic
(PNS) systems of the autonomic nervous system may contribute to the dysfunction of
systems (including the lymphatic system), organs, e.g., heart, pancreas, and consequently
the development of many diseases [45–52]. Over recent decades, evidence has accumulated
that the ANS plays a key role in inflammation [46], obesity pathogenesis, diabetes and
chronic vascular complications [46–53].

Overweight and obesity are associated with increased SNS activity and decreased PNS
function [54,55]. Many experimental and clinical studies have shown that SNS hyperactivity
is a characteristic of obesity and may possibly increase the risk of developing metabolic
syndrome [56]. This is confirmed by previous findings indicating an increase in serum
norepinephrine indices, as well as renal and cardiac indices, noradrenaline spill-over rate
(NA-SR), sympathetic nerve activity (SNA) and heart rate variability (HRV) in people
with abnormal body weight [57,58]. The first reports indicate that SNS hyperactivity is a
compensatory response aimed at increasing resting energy expenditure in order to reduce
body weight [59]. This hypothesis was revised in later studies, indicating chronic SNS
activity as a factor causing weight gain caused by decreased beta-adrenoceptor activity [60].
Chronic SNS hyperactivity occurs primarily in central obesity [61]. Recent studies show
increased sympathetic activity in obese patients, especially in the vascular system of
muscles and kidneys, which may contribute to an increased cardiovascular risk [62].
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Increased sympathetic activity may also reduce insulin sensitivity, determining the vicious
cycle responsible for hypertension and the development of metabolic syndrome [47,63].

Moreover, the ANS has been shown to play a major role in the regulation of food
intake, including satiety signals and energy expenditure [50–52]. Additionally, afferent
vagal pathways, as part of the ANS, are indicated as the most important link between
the intestines and the brain and as a factor interacting with intestinal hormones [53].
Conversely, obesity may induce changes in the sympathetic regulation of the functions
of the cardiovascular system, thus promoting the development of complications and
increasing the risk of cardiovascular sequelae [64]. The autonomic nervous system plays a
special role in energy homeostasis [65]. Under physiological conditions, SNS activation
increases energy expenditure as a result of the breakdown of glycogen and the oxidation of
glucose and fatty acids [66]. It has also been shown that ANS, thanks to the sympathetic
innervation of white and brown adipose tissue, leads to the local release of norepinephrine,
which promotes lipolysis in white adipose tissue and thermogenesis in brown adipose
tissue [67].

Moreover, the SNS is responsible for the activation of the α2 adrenergic receptor in
pancreatic β-cells and leads to the inhibition of insulin secretion [68]. Increased SNS activity
may be induced by leptin in order to increase the metabolic activity of the liver and skeletal
muscles, which should result in increased energy expenditure [57]. Hyper-insulinemia,
low levels of ghrelin, and reduced sensitivity to adiponectin and leptin are indicated as
potential mechanisms underlying excessive activation in obesity [69]. Moreover, cytokines
such as TNF-α and IL-6, non-esterified free fatty acids (NEFA), neuropeptide Y, and
melano-cortins have also been suggested as potential mediators of sympathetic activation
in obesity [56,70]. On the other hand, stimulation of the vagus nerve, as a representative of
the PNS, reduces the heart rate, stimulating intestinal peristalsis and the absorption of food
from the gastrointestinal tract [71,72]. Studies on rats have shown that the efferent fibres of
the vagus nerve have synapses on fat cells, and its activation improves insulin sensitivity
and increases the uptake of energy substrates into adipose tissue [73,74]. Vagal afferent
fibres have also been found to contribute to the regulation of satiety [75] and the release of
intestinal hormones responsible for digestion [76]. Figure 2 shows a possible imbalance of
the sympathetic and parasympathetic branches of the autonomic nervous system, which
may contribute to the dysfunction of the lymphatic system in the course of obesity.

In several studies it has been shown that lymphatic vessels can be innervated by
the autonomic nervous system [48,77,78]. In the work of Mignini et al., the presence
of autonomic innervation of collectors and lymphatic vessels from the cervical, mesen-
teric and femoral areas in young and old people was examined. Both sympathetic and
parasympathetic fibres were found in the lymphatic vessels. In addition, a reduction in the
innervation of lymphatic vessels was observed in the elderly. The authors draw attention
to the possible impairment of the lymphatic system function with age [77]. In a recent
study, Cleypool et al., attempts to comprehensively locate sympathetic nerves in human
lymph nodes [78]. A total number of 15 inguinal lymph nodes were resected from six
donated human cadavers. The authors showed that all lymph nodes contained sympathetic
nerves, both as para-vascular and discrete structures. In 15/15 lymph nodes, nerves were
observed in their capsule, medulla and hilum, whereas only 13/15 lymph nodes contained
nerves in their cortex. Human lymph nodes contain sympathetic nerves in their capsule,
trabeculae, cortex, medulla and hilum, both as para-vascular and as discrete structures. The
presence of discrete structures suggests neural regulation of structures other than blood
vessels, which was further supported by the presence of varicosities in a portion of these
nerves [78].
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5. Lymphatic System—Physiology and Functions

The lymphatic system is distributed throughout the body and consists of lymphoid
organs and lymphatic vessels [79,80]. Contrary to the circulatory system, it constitutes a
one-way transport route from the extracellular space to the veins. In the lymphatic system,
lymphoid organs have been classified as primary lymphoid organs and secondary lym-
phoid organs [80]. The primary lymphoid organs, including the thymus and bone marrow,
are responsible for the production, maturation and selection of immune cells. From the pri-
mary lymphoid organs, lymphocytes enter the secondary lymphoid organs, or the spleen,
lymph nodes, mucosa-associated lymphoid tissue (MALT), bronchus-associated lymphoid
tissue (BALT) and gut-associated lymphoid tissue (GALT), where the cells of the immune
system proliferate and mature [80,81]. On the other hand, the lymphatic vessel system is
a unidirectional network which, based on the function as well as the size of the vessels,
is divided into four parts [82,83]. Lymphatic capillaries, as the initial vessels, consist of a
single LEC layer, connected directly to the interstitial tissue by “anchoring” in the surround-
ing connective tissue by means of fine filaments made of emilin and fibrillin [84,85]. The
“anchoring” of the lymphatic vessel wall to the surrounding connective tissue is important
in the presence of inflammation as well as lymphoedema [84]. In inflammation or lym-
phoedema, the taut filaments move the cells of the vessel wall apart, which allows passive
opening of the intercellular junction and the flow of fluid into the lumen of the vessel [86].
In addition, LECs interlock with their protrusions, creating a typical intercellular junction:
closure plates. In response to pressure differences, closure plates can open and close to
regulate fluid reabsorption as well as the uptake of macromolecules and immune cells
from the extracellular space into the lymphatic vessel [87,88]. Subsequently, the lymphatic
capillaries converge into pre-collectors, vessels of larger diameter, located between the
lymphatic capillaries and the collectors. As a result of their location, the function of the
pre-collectors is partially similar to capillaries, and they are partially responsible for the re-
sorption of the extracellular fluid. Other sections are responsible for the transport of lymph
to the collectors [79]. Another part of the lymphatic vessel system are the collectors, which
are proper transport vessels and, similarly to veins, have valves [89]. The distance between
two valves is called a lymphangion, and the contraction of this section moves the lymph
forward [79,90]. From the collectors, lymph is transferred to the main lymphatic vessels
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called lymphatic trunks [79]. The central lymphatic system is connected to the subclavian
veins via the thoracic duct and right lymph duct, transporting interstitial fluid filtered
by lymph nodes back to the circulatory system [87,91]. Lymph flow is conditioned by a
combination of two factors: an active internal cycle of lymphangion contraction/relaxation
and passive external compressive forces [92]. At rest, approximately one third of lymph
transport in the lower extremities occurs as a result of external factors, while two thirds
result from internal factors of the lymphatic vessel network [93]. In lymph transport, the
internal factor is the mechanism of the contraction of the muscle layer, dependent mainly
on the strength of the pressure gradient inside the lymphatic vessel [94]. External factors
include skeletal muscle contractions, respiratory movements, changes in central venous
pressure, pulsations of nearby arteries, and gravitational force [87,92,95–98]. Although
lymphatic vessels were described almost 400 years ago [99], the molecular and cellular
studies of the lymphatic system have mostly occurred the last two decades [100–102]. In
recent years, the discovery of specific markers for the lymphatic system, such as vascular
endothelial growth factor receptor 3 (VEGFR-3), podoplanin (gp38), Lymphatic Vessel
Endothelial Receptor 1 (LYVE-1), and the lymphatic system-specific transcription factor
Prospero Homeobox 1 (Prox-1) [84,102] allowed for the unequivocal identification of lymph
vessels and isolation of LEC for in vitro analyses [103]. The role of the lymphatic system in
controlling the flow of proteins, peptides, hormones, cytokines and other macromolecules
to cells in all tissues has been described [79,81,104]. Moreover, it has been demonstrated
that the proper functioning of the lymphatic system affects not only the balance of intersti-
tial fluids and transport of immune cells [95,105], but also other aspects of homeostasis,
such as fat absorption [106] and reverse cholesterol transport [107].

5.1. Lymphatic System—Fat Absorption and Cholesterol Transport

The intestinal lymphatic vessels are known as central vessels of the intestinal villi
(lacteal vessels) [79]. Food fats are converted by enterocytes into chylomicrons—lipoproteins
rich in triglycerides surrounded by proteins and cholesterol. Radiologic studies have
shown that the central vessels of the intestinal villi have a spontaneous ability to contract,
actively absorbing and transporting lipids processed by enterocytes into the systemic cir-
culation [79,108]. Vasoconstriction occurs with the contraction of adjacent smooth muscle
cells and is controlled by the ANS [109]. It has been shown that the central vessels of the
intestinal villi control the absorption of lipids from food, which in turn may affect body
weight [79,80].

Moreover, in peripheral tissues, the lymphatic system is considered to be the only
way for lipoprotein to return to blood circulation [110]. The removal of cholesterol from
the interstitial fluid by the lymphatic route is known as reverse cholesterol transport [111].
This is based on the transfer of cholesterol produced or accumulated in peripheral tissues
to the liver or other tissues and organs. Reverse cholesterol transport is carried out by the
HDL cholesterol fraction. The HDL particle in the form of preβ-HDL binds via its Apo-A1
receptor to the ABCA1 transporter present on the macrophage cell membrane [111]. As
a result of this interaction, the cholesterol molecule is transported to the HDL particle,
where it is esterified and transferred to the HDL core. The particle formed in this way
is transferred to the liver through the lymphatic and blood vessels. In the liver, HDL is
captured by SR-B1 receptors, and as a result of this process cholesterol esters are transferred
to the hepatocyte cell without penetration of the HDL particle. Thus, the cycle of reverse
cholesterol transport is completed [107,111]. So far, most of the research has been done
on mice [107,112,113]. For example, in the studies by Martel et al. the authors measured
reverse cholesterol transport by injection of [3H]-cholesterol-loaded macrophages into the
peripheral tissues of mice to follow the mobilization of [3H]-cholesterol into plasma, liver
and faeces [107]. Other studies show that the lymphatic system plays a special role in the
transport and metabolism of cholesterol from peripheral tissues to the blood plasma, and
that its impaired functioning leads to the accumulation of cholesterol in the tissues [112,113].
Moreover, due to the location of lymph capillaries in the outer membrane of atheromatous
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plaque, a key role of the presence of lymph capillaries in the drainage of local inflammatory
cells and cytokines, and in protection against the development of atherosclerosis, has been
suggested [107,114].

Moreover, transmission electron microscopy enabled the identification of lipid droplets
in lymphatic endothelial cells, different reticulum cells, and macrophages, and the lipid
droplet sizes, as well as their numbers and intercellular distances, increased after 10 weeks
of high-fat diet feeding mice [115]. The results indicate that changes in the microarchitecture
and increased accumulation of lipid droplets in stromal cells and macrophages influence
the immunological function of the microarchitecture of the mesenteric lymph node [115].

5.2. Lymphatic System—Role in Regulating the Immune Response

The lymphatic system is not considered part of the immune system, but is critical to
immunity [116–125]. The lymphatic system regulates the immune response by the transport
of bacteria, foreign antigens, particulates, exosomes and immune cells to regional lymph
nodes and lymphoid structures [118]. Non-specific immune cells, including dendritic cells
(DCs), neutrophils, monocytes, and adaptive immune leukocytes such as T and B cells, use
lymphatic vessels to migrate from tissues to lymph nodes [116–122].

Until recently, it was believed that the lymphatic system plays a passive role in
regulating the immune response by transporting antigen-presenting cells and antigens to
regional lymph nodes [123].

However, new findings suggest that the lymphatic system can control the immune
response in a number of ways [116,117,122]. LECs have been shown to directly regulate the
immune response by modulating the penetration of immune cells into lymph capillaries,
presenting major histocompatibility complex antigens and modulating antigen presenting
cells [120,121]. Moreover, it has been shown that the control of the immune response is
possible through the presentation of the antigen in the lymph nodes mediated by LECs and
lymph node stromal cells, as well as through the direct exit of lymphocytes from the lymph
nodes [117]. In addition to the direct presentation of antigens, LECs can mediate molecular
and cell transport or produce factors that have a large impact on the local environment [124].
As a result of this process, lymph vessels participate in the immune response in two ways;
directly by controlling antigen/DCs transport to the draining lymph node, or indirectly by
shaping the microenvironment of the lymph nodes [86,104]. Most of the lymphocytes and
DC precursors migrate from the blood to the lymph nodes through separate post capillary
venules called superior endothelial venules [125]. An alternative route for immune cells
is provided by the lymphatic vessels, which do not transport from the blood, but directly
from the interstitial fluid in adjacent tissues [104].

6. The Lymphatic System and Obesity

Recent studies have shown that obesity can significantly affect structural and func-
tional changes in the lymphatic system [88,123]. Pathological lesions in the lymphatic
system caused by obesity are partly a result of the accumulation of inflammatory cells
around the lymphatic vessels [126,127]. In the course of obesity, decreased lymphatic vessel
density, decreased lymphatic endothelial cell (LEC) proliferation, increased lymphatic
permeability, and reduced lymphatic contractility are observed [85,122,126–128]. In the
study by Greene et al., particular attention was paid to the disturbance of the transport
function of the lymphatic system, and thus the presence of lymphatic stasis [129]. The
impaired removal of excess macromolecules such as lipids and proteins from the interstitial
space, and the impaired transport of immune complexes, T cells or Langerhans cells have
been shown. Additionally, the research pointed to the possible malfunction of antigen-
presenting cells and the possible occurrence of abnormalities in the structure of the lymph
nodes [100,129]. In a study by Nitti et al., a mouse model of diet-induced obesity was used
to identify putative cellular mechanisms of obesity-induced lymphatic dysfunction and
determine whether there is a correlation between these deleterious effects and increasing
weight gain [91]. The authors showed a positive relationship between weight gain and
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declining function of the lymphatic system, also characterized by reduced lymphatic vessel
density and reduced lymphatic vessel pumping frequency [91].

In other studies, a decreased flow of dendritic cells from the tissues to the lymph
nodes was demonstrated [122,130]. In addition, the characterization of lymphatic vascular
development and our understanding of this vasculature’s role in pathophysiological condi-
tions has greatly improved in recent years, changing conventional views about the roles of
the lymphatic vasculature in health and disease [131].

Conversely dysfunction in the lymphatic system may also be involved in the patho-
genesis of obesity [87,90,128,132,133]. Data linking lymphatic dysfunction with obesity
were initially provided by mouse models with lymphatic defect [90,128,132]. For example,
Chy mice, a mouse model of lymphedema due to heterozygous inactivating mutations
in VEGFR-3, exhibit abnormal subcutaneous fat deposition predominantly in the ede-
matous subcutaneous adipose layer adjacent to the dysfunctional hypoplastic lymphatic
vessels [90]. In another study in Prox1+/−mice, compromised lymphatic vascular integrity
caused subtle leakage of lymph [128]. Free fatty acids containing lymph accumulated in the
nearby tissues, particularly in the visceral area, where it induced de novo differentiation of
fat cell precursors, fat cell hypertrophy and eventually adipocyte proliferation. With age,
Prox1+/− mice became progressively obese [128]. The results of the experimental research
are supported by clinical reports that documented the spontaneous development of lym-
phedema in obese patients [87,101]. In patients with secondary lymphoedema caused by
a disorder of the lymphatic system, clear adipose tissue hypertrophy and accompanying
tissue oedema and fibrosis were observed [87]. In turn, Varaliova et al. made an attempt
to assess the relationship between lymphatic flow and the regulation of adipose tissue
metabolism in women with gynoid obesity [101]. It has been shown that reduced lymphatic
flow can change the composition of the interstitial fluid, thereby affecting the adipocyte
environment. In addition, women with reduced lymphatic flow showed a lower lipolysis
index and a reduced response to adrenergic stimuli of the femoral adipose tissue. The
above observations may indicate that disorders of the lymphatic system function may be
the reason for the reduction of adipose tissue loss in gynoid obesity [101]. Other reports
indicate that any minor damage to the lymphatic system activates adipose tissue differenti-
ation genes and leads to adipose tissue hypertrophy and proliferation [133]. These studies
suggest lymphatic dysfunction causes the activation of adipocytes and the accumulation of
adipose tissue, and thus may promote obesity [128,132,133].

7. Dysfunction of the Lymphatic System: Pro- and Anti-Lymphangiogenic Factors
in Obesity

The lymphatic system plays a key role in regulating the inflammatory response,
influencing the drainage of extravasated fluid, the transport of inflammatory mediators
and immune cells [82]. It is now well known that lymphatic vessels are highly dynamic
structures that undergo both morphological and functional changes under pathological
conditions [131,134–139].

Inflammation can lead to an increase in microvascular permeability and in the vol-
ume of interstitial fluid [134]. Increasing this volume causes stretching of the lymphatic
vessel wall, which contributes to increasing the frequency and/or force of lymphangion
contractions [134–136]. The inflammatory environment induces changes of gene expres-
sion in LECs and leads to profound proliferative expansion of the lymphatic network
in both inflamed tissue and lymph nodes [137,140–146]. Research results indicate that
inflammation in lymphangio-genesis is regulated by the expression of both pro- and anti-
lymphangiogenic factors, which are produced by various immune cells, depending on the
inflammatory stimulus [123,147–149]. In inflamed tissue on transgenic mice, lymphangio-
genesis has been shown to be mediated by macrophage influx caused by the expression
of vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth fac-
tor C (VEGF-C) [149]. In the studies of Wada et al., VEGF-A levels detected in human
subjects were significantly and more strongly correlated with the body mass index (BMI)
and waist circumference than VEGF-C [150]. Conversely, VEGF-C levels were signifi-
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cantly and more closely correlated with metabolic (e.g., fasting plasma glucose, HbA1c,
insulin, and the homeostasis model assessment of insulin resistance) and lipid parameters
(e.g., triglycerides, total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-C), and
non-high-density-lipoprotein cholesterol (non-HDL-C) than VEGF-A. Stepwise regression
analyses revealed that independent determinants of VEGF-A were BMI and age, whereas
strong independent determinants of VEGF-C were age, triglycerides, and non-HDL-C. The
authors in the applications state that that circulating levels of VEGF-C are closely associated
with dyslipidemia and atherosclerosis. However, endogenous VEGF-C in human, and its
relationships with cardiovascular lymphangiogenic activity, are unclear [150].

Other studies have shown that IL-17 induces VEGF-D expression, thereby triggering
an indirect induction of lymphangio-genesis [151] and IL-8 promotes lymphangio-genesis
in animal models of lymphoedema [152]. On the other hand, both in vitro and in vivo
studies [153–155] have shown that interferon-γ (IFN-γ), TGF-β, IL-4 and IL-13, as well
as higher levels of adiponectin are factors that inhibit lymphangio-genesis. For example,
Savetsky et al., in studies on human skin lymphatic endothelial cells (hLEC) and adult male
C57/BL6 mice (10–12) weeks, showed that IL-4 and IL-13 administration in physiologic
doses have profound anti-lymphangiogenic effects and potently impair LEC survival,
proliferation, migration, and tubule vessel formation [153].

In turn, Avraham et al., demonstrated that TGF-β1 expression is increased in the
lymphoedematous limbs of patients as compared with matched biopsy specimens from
their unaffected extremity. Using a mouse tail model, they demonstrated that systemic or
local inhibition of TGF-β1 markedly improves lymphangio-genesis during wound repair,
is associated with decreased expression of IL-4 and IL-13, and significantly decreases
chronic inflammation and tissue fibrosis [155]. Other researchers in experimental studies in
mice have demonstrated the effect of adiponectin in inhibiting lymphangio-genesis [156].
A mouse model of lymphedema was created via ablation of the tail surface lymphatic
network. Adiponectin-knockout mice showed the greater diameter of the injured tail
compared with wild-type mice, which was associated with lower numbers of lymphatic
endothelial cells (LECs). Systemic delivery of adiponectin reduced the thickness of the
injured tail and enhanced LEC formation in wild-type and adiponectin-knockout mice.
Adiponectin administration also improved the oedema of injured tails in obese KKAy
mice [156]. Figure 3 shows the influence of pro- and anti-lymphangiogenic factors in the
dysfunction of the lymphatic system in the course of obesity.

7.1. Lymphatic System Dysfunctions—Permeability of Lymphatic Vessels

Inflammation can lead to increased permeability of lymphatic vessels and increase
the volume of interstitial fluid [157–160]. Increasing its volume causes stretching of the
lymphatic vessel wall, which contributes to increasing the frequency and/or force of
lymphangion contractions and to the increase the lymphangio-motoric activity to prevent
oedema development [134,135]. In an in vitro study (endothelial cells were obtained
from mesenteric collecting lymphatics of Sprague-Dawley rats), the authors evaluated the
integrity of the lymphatic barrier in response to inflammatory stimuli commonly associated
with increased blood endothelial permeability [157]. They utilized in vitro assays of the
lymphatic endothelial cell (LEC) monolayer barrier function after treatment with different
inflammatory cytokines and signalling molecules including TNF-α, IL-6, IL-1β, IFN-γ
and LPS. Moderate increases in an index of monolayer barrier dysfunction were noted
with all treatments (20–60% increase) except IFN-γ, which caused a greater than 2.5-fold
increase [157]. In addition, researchers indicate that excessive permeability of lymphatic
vessels is undesirable in maintaining fluid and macromolecule homeostasis, leading to
potential tissue injury [157].
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In a study by Ciffarelli et al., an attempt was made to assess the relationship between
the level of lymphatic permeability and the time of lipid transport in the intestinal lactic
vessels [159]. For this purpose, male and female mice divided into two groups were
included in the study. The test group consisted of mice with an induced deletion of CD36
(fatty acid transporter) in the LEC (Cd36∆LEC), the control group consisted of wild-type
(WT) mice. In both groups, a high-fat diet was used for 12 weeks, body weight was
determined, an oral glucose load test was performed, and the function of lymphatic vessels
was analysed. It has been shown that, along with the increased permeability of the intestinal
lactic vessels (Cd36∆LEC mice), slower transport of absorbed lipids is observed, and in
addition increased VAT accumulation, increased inflammation and decreased glucose
tolerance were observed [159].

Dysfunction of permeability of lymphatic vessels caused by histamine and thrombin
was presented too in a study on micro-lymphatic endothelial cells of skin origin [160].
However, only a few studies concern in vivo assessment of permeability of lymphatic
vessels. The results of these studies indicate the role of VEGF-A as an important factor
increasing vascular permeability, while overexpression of VEGF-A is observed both in
cancer patients and in patients with chronic inflammation [161].

7.2. Lymphatic System Dysfunctions—Lymphatic Contractility

Similar to the smooth muscle activity of blood vessels, the contractile activity of the
muscles of lymphatic vessels shows basic muscle tone, the muscle’s response to pressure
changes [161], and is also modulated by various biological, neuro-modulatory, vasomotor
and mechanical factors [95]. Additionally, ample evidence suggests that lymphatic contrac-
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tility is dependent on the autonomic nervous system [48,162,163]. Research indicates that
ANS cholinergic and adrenergic activity may alter the frequency and strength of lymphatic
contractions [162].

It has been shown that physiological production of nitric oxide in lymphatic vessels
can support LEC barrier integrity, promote LEC proliferation and regulate lymphangio-
motoric activity [164]. However, in inflammation, the level of NO is elevated due to a
higher expression of inducible nitric oxide synthase, which is associated with a limitation of
the LEC barrier function and a decrease in contractility of lymphatic vessels, thus reducing
their lymphangio-motoric activity [165]. In addition, in the study by Muthuchamy et al., a
reduction in mesenteric lymphatic vessel lymphangio-motoric activity under the influence
of TNF-α and IFN-γ, which are potent stimulators of NO secretion, was observed [166].

Studies have shown that inflammatory mediators such as prostaglandins and his-
tamine are among the biological factors inhibiting lymphangio-motoric activity [166]. On
the other hand, the activity enhancing it is primarily attributed to VEGF-C [166–168]. In-
terestingly, the results of the research show that the lymphatic system is also influenced
by known standard therapies used in the treatment of inflammatory diseases, including
rheumatoid arthritis, where TNF-α blocking contributes to increased lymphangio-genesis
in inflamed tissues [169,170]. It is also important that cytokines, chemokines and growth
factors often have pleiotropic effects, making it difficult to distinguish between direct and
indirect mechanisms [133,158]. The wide range of inflammatory mediators as well as their
ambiguous effects on the lymphatic system result in a very complex network of signals
that is still not fully understood [103,133,168].

8. Manual Lymphatic Drainage as a New Therapeutic Option Supporting the
Functions of the Lymphatic System in the Course of Obesity

Manual lymphatic drainage (MLD) is one of the physiotherapeutic methods that was
first described in the 1930s by Emil Vodder [171]. Manual lymphatic drainage is widely
used in the treatment of lymphoedema, venous oedema, and lipoedema [172–177]. The
aim of MLD is primarily to increase lymph flow, as well as restore the balance between the
load on the lymphatic system and its transport capacity [176,178].

The transport capacity of the lymphatic system was assessed in the study of de Godoy
et al. [174]. Six patients with lymphoedema in the lower extremity were enrolled in the
study. The aim of the study was to evaluate the transport of radiotracers in lymphatic col-
lectors using lymphoscintigraphy before, during and after MLD therapy. The study proved
that MLD therapy improves the transport of radiotracers in lymphatic collectors [174].

In addition, an exploratory pilot study was conducted to determine the possibility of
assessing the effectiveness of MLD using the fluorescence lymphography method. The
study involved 12 healthy subjects and 10 patients with lymphoedema. Subjects were given
one MLD therapy, and the contractility and transport capacity of the lymphatic vessels
were assessed by fluorescence lymphography before and after MLD therapy. The study
showed increased contractility of lymphatic vessels in a group of healthy subjects as well
as in a group of patients with lymphoedema [175].

Similar results were obtained in the study performed by Belgrado et al., in which
30 healthy participants underwent a 15-min MLD therapy of the upper extremity. Fluo-
rescence lymphography was used to assess the contractility and transport capacity of the
lymphatic vessels in real time. The study also showed an increase in lymph transport in
lymphatic vessels during MLD therapy [179].

There are also reports suggesting a positive effect of MLD on the treatment of women
with infertility [180], as well as people with rosacea accompanied by chronic lymphoedema
of the face [181]. The search for therapeutic interventions aimed at supporting the treatment
of obesity, including the reduction of comorbid chronic inflammation, has been the subject
of the work only of a few researchers, including our team [101,182–185]. For example, a
study by Arngrim et al., investigated subcutaneous adipose tissue lymphatic drainage of
macromolecules in lean and obese subjects and, furthermore, evaluated whether adipose
tissue lymphatic drainage may change in parallel with adipose tissue blood flow [182].
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Twelve patients were examined, including six slim healthy men, BMI = 22.3 ± 1.2 and
6 obese, BMI = 35.7 ± 4.5, but otherwise healthy men with normal glucose tolerance (de-
termined by an oral glucose tolerance test). Whole body adipose tissue was determined
by dual energy X-ray absorptiometry, and the thickness of the periarticular adipose tissue
of the skin was measured with the Harpenden Skinfold Caliper. It has been shown that
a significant increase in lymphatic drainage was seen after the glucose load in the lean
subjects. In the obese subjects, lymphatic drainage remained constant throughout the
study and was significantly lower compared to the lean subjects. The authors suggest
that the obtained results indicate a reduced ability to remove macromolecules from the
interstitial space through the lymphatic system in obese subjects. This may cause a high
local production of pro-inflammatory cytokines and as a consequence the development
of obesity-related inflammation in hypertrophic adipose tissue [182]. Bertelli et al., in-
vestigated the effect of postural drainage and manual lymphatic drainage techniques on
lower limb oedema in extremely obese women undergoing bariatric surgery. The authors
suggest that both techniques could be used to help reduce lower limb oedema among this
population. Nevertheless, the best results were obtained with MLD [183]. Our initial re-
search indicated the potential benefits of the application of MLD in improving biochemical
parameters, including a reduction in the inflammation and improvement in the quality of
life in patients with overweight and obesity class 2 [184,185]. However, further studies on a
larger number of patients, both overweight and obese, are needed to thoroughly investigate
the effectiveness of manual lymphatic drainage in the course of obesity. Perhaps manual
lymphatic drainage will be recognized as a non-invasive and effective method supporting
the treatment of obesity, which may lead to the prevention of many diseases.

9. Conclusions

In recent years, it has been proven that adipose tissue, the excess of which is present
in obesity, is an important endocrine organ that synthesizes and secretes many biologically
active substances. As previously shown, there are various types of cell in adipose tissue,
both adipocytes and fibroblasts, macrophages and lymphocytes, which to a greater or
lesser extent participate in the secretory function of WAT. Moreover, both types of WAT,
subcutaneous and visceral, differ in metabolic activity and the ability to secrete adipokines.
They act within adipose tissue and distant organs and tissues, and their overproduction
may lead to low-grade inflammation in various disease entities, including obesity. More-
over, considering the closely related localization and mutual communication between
adipose tissue, and the lymphatic system, it is likely that chronic inflammation affects the
dysfunction of the lymphatic system in the course of obesity. Therefore, it is important to
seek therapeutic interventions to support the treatment of obesity, including the reduction
of the comorbid chronic inflammation. Manual lymphatic drainage may be one of the
promising forms of therapy improving the function of the lymphatic system in patients
with abnormal body weight.
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Abbreviations

WHO World Health Organization
ANS autonomic nervous system
BALT Bronchus-associated lymphoid tissue
BAT Brown adipose tissue
BMI body mass index
CGRP calcitonin gene-related peptide
DCs dendritic cells
EEG electroencephalogram
GALT Gut-associated lymphoid tissue
gp38 podoplanin
HRV heart rate variability
IFN-γ Interferon-γ
IL-1 Interleukin-1
IL-10 Interleukin-10
IL-12 Interleukin-12
IL-13 Interleukin-13
IL-17 Interleukin-17
IL-1β Interleukin-1β
IL-2 Interleukin-2
IL-23 Interleukin-23
IL-3 Interleukin-3
IL-4 Interleukin-4
IL-5 Interleukin-5
IL-8 Interleukin-8
iNOS induced nitric oxide synthase
IR insulin resistance
JNK c-Jun N-terminal kinases
LEC lymphatic endothelial cell
LYVE-1 Lymphatic Vessel Endothelial Receptor 1
MALT mucosa-associated lymphoid tissue
MIP-1α macrophage inflammatory protein-1α
MLD manual lymphatic drainage
NA-SR noradrenaline spillover rate
NEFA Non-esterified free fatty acids
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NK natural killers
NO nitric oxide
PAI-1 plasminogen activator inhibitor-1
PNS parasympathetic nervous system
Prox-1 Prospero Homeobox 1
RBP-4 retinol-binding protein
SNA sympathetic nerve activity
SNS sympathetic nervous system
SP substance P
SVF Stromal vascular fraction
T2DM Type 2 diabetes
TGF-β Transforming growth factor-β
Th1 T-helper-type 1
Th17 T-helper-type 17
Th2 T-helper-type 2
TNF-α Tumor necrosis factor-α
IL-6 Interleukin-6
MCP-1 Monocyte Chemoattractant Protein-1
Treg regulatory T cells
VAT Visceral adipose tissue
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VEGF-A vascular endothelial growth factor A
VEGF-C vascular endothelial growth factor C
VEGF-D vascular endothelial growth factor D
VEGFR-3 vascular endothelial growth factor receptor 3
VIP vasoactive intestinal peptide
WAT White adipose tissue
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