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Abstract: In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk
fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have
been very limited studies on the structural characterization of the Glyc-blended SF film. In this
study, 13C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR)
was used to monitor the conformational changes in the films by changing the Glyc concentration.
The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF
where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in
Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to
be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the
Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The 1H DQMAS NMR
spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film.
A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of
the Molecular Dynamics (MD) simulation using 1H–1H distance constraints obtained from the 1H
Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra.
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1. Introduction

Silk fibroin (SF) from Bombyx mori (B. mori) is a well-known and highly prized material for
textiles. Recently, SF has also been used as a promising biomaterial because of the combination of
high strength and toughness together with excellent biocompatibility [1–5]. However, in order to
produce effective biomaterials, it is important to improve the shortcomings of SF. For example, SF
film tends to become stiff and brittle in the dry state over time, exhibiting high tensile strength but
low elongation [6]. In addition, although alcohols such as methanol have been widely used for the
treatment of water-soluble SF, methanol induces further stiffness and reduces the biodegradability of
SF [1,3,7]. These shortcomings hinder extensive use of SF in biomaterials.

Glycerin (Glyc), a well-known moisturizing agent and plasticizer, has been used to improve the
SF properties. Kawahara et al. [8] reported an improvement in the properties of SF film by immersing
it in a 10% Glyc aqueous solution. More detailed studies of the improvement of the mechanical
properties of the SF films by blending with Glyc were reported by Lu et al. [9]. They showed that
Glyc-blended SF films were significantly softer in the dry states, and therefore Glyc should be one
of the candidates to overcome the stiffness problem. Pei et al. [10] reported that Glyc induced SF
crystallization in the lyophilization process, thereby providing freeze-dried scaffolds with water

Int. J. Mol. Sci. 2016, 17, 1517; doi:10.3390/ijms17091517 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2016, 17, 1517 2 of 16

stability. Compared with salt-leached and methanol-annealed SF scaffolds, the films became softer and
enhanced the degradation of the SF scaffold.

It is important to characterize the structure of the Glyc-blend SF films in detail in order to facilitate the
widespread use of biomaterials, but only few studies have been reported thus far. Noticeable conformational
changes of SF films caused by mixing with Glyc were observed by Fourier transform infrared
spectroscopy (FTIR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) [9,10].
Nuclear magnetic resonance (NMR) gave detailed pictures of the structure and dynamics of SF
using both solid and solution state measurements [11,12]. The 13C and 1H conformation-dependent
NMR chemical shifts provided information on the local conformations of amino acid residues and the
fraction of each conformation when several conformations were present. Both empirical and quantum
chemical studies were reported to use these conformation-dependent chemical shifts for structural
determination of proteins and protein-ligand interactions [13–19]. Several solid-state NMR techniques
were developed to determine the structure of peptides, polypeptides and proteins, including the SF
structure [11,20–23].

In this paper, the Glyc-induced conformational changes in Glyc-blended SF film were monitored
by 13C Cross Polarization/Magic Angle Spinning (CP/MAS) NMR using conformation-dependent
NMR chemical shifts and peak deconvolution. In addition, 1H Double-Quantum Magic Angle Spinning
(DQMAS) NMR [12,24–32] was used to confirm the appearance of Silk I* in the Glyc-blended SF film.
A structural model of Glyc-SF complex was proposed using Molecular Dynamics (MD) simulation on
the basis of the information obtained from 1H DQMAS NMR on the 1H–1H inter-atomic distances in
the Glyc-SF complex having the Silk I* structure.

2. Results and Discussion

2.1. 13C Cross Polarization/Magic Angle Spinning Nuclear Magnetic Resonance (CP/MAS NMR) Spectra of
Silk Fibroin (SF) and Glycerin (Glyc)-Blended SF Films

Figure 1 shows 13C CP/MAS NMR spectra of pure SF and Glyc-blended SF films with different
Glyc concentrations of 5, 9, 40 wt % and pure SF film treated by methanol. Together with the peaks
of SF, two small peaks assigned to Glyc were observed at 62.9 ppm (CH2) and 72.3 ppm (CH) even
in 5 wt % Glyc-blended SF film. A further assignment of SF peaks to several conformations was
performed with 13C conformation-dependent chemical shifts [13,14,17,20–22,33]. The 13C chemical
shifts of random coil, Silk II and Silk I of Glyc-blended SF films are summarized in Table 1 together
with 1H chemical shift data [32].

Without Glyc, the conformation of regenerated SF film was roughly random coil according to the
Ala Cβ chemical shift of 16.5 ppm, although there was a significant amount of β-sheet structure as
mentioned below. By adding 5 wt % Glyc to SF, sharp Cβ Ala (16.5 ppm) and C=O (177.0 ppm) peaks
were newly observed together with Ser Cβ (60.7 ppm) peak [12,13,33], indicating the partial generation
of Silk I* form. At least 5 wt % Glyc concentration was enough to produce Silk I* form in SF through
the strong interaction between SF and Glyc molecules in the dry state. The sample preparations of the
Glyc-blended SF films and their NMR observations were repeated at least two times and confirmed
the results.

Here, we start from the definition of Silk I* form is different from the Silk I structure; the details
have been reported elsewhere [12,34]. Briefly, Silk I is defined as the solid state structure of SF
stored in the middle silk glands after drying without any external forces. It is a soluble form that
remains stable and non-viscous up to high concentrations without precipitating, this presumably being
essential for the secretion of mature silk fibers [6,35,36]. According to solid state NMR spectra, the
solid state Silk I contains random coil regions, together with regions having a well-defined ordered
structure [13,14,33,34]. These ordered regions are defined as Silk I* [12,34]. Silk I* comes from the
amino acid residues with the sequence (AGSGAG)n. However, it is important to point out that not all
of the (AGSGAG)n residues form Silk I*. A detailed recent analysis of 13C solid state NMR spectra



Int. J. Mol. Sci. 2016, 17, 1517 3 of 16

of 13C selectively labeled SF [34] indicated that only longer (AGSGAG)n regions contribute to Silk I*.
This is entirely consistent with the hypothesis that Silk I* acts as a nucleus for the formation of Silk II
structure during spinning of the silk fiber.
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Figure 1. 13C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR)
spectra of pure silk fibroin (SF) and glycerin (Glyc)-blend SF films with different Glyc concentrations of
5, 9, and 40 wt % and pure SF film treated by methanol. The assignments are given on top of the peaks.
TMS, tetramethylsilane.

Table 1. 13C and 1H chemical shifts (in ppm from tetramethylsilane (TMS)) of silk fibroin (SF) with
different conformations in glycerin (Glyc)-blended SF film. The assignments of the conformations were
performed as shown in the references [13,14,17,20–22,33] for 13C nuclear magnetic resonance (NMR)
and [32] for 1H NMR.

13C Chemical Shift

Conformation Ala Cβ Ala Cα Ala CO Gly Cα Gly CO Ser Cβ

r.c. 16.7 50.0 175.5 42.6 171.1–171.5 -
Silk II 19.6(A), 21.7(B) 49.2 172.6 43.0 169.1 -
Silk I* 16.5 51.4 177.0 43.8 170.7 60.7

1H Chemical Shift

Conformation Ala Hβ
Ala
Hα

Ala HN
Gly

Hα 1©
Gly

Hα 2© Gly HN Ser Hα

r.c. 1.3 4.1 8.1 3.5 4.1 8.1 -
Silk II 1.0 5.0 8.7 3.9 4.6 8.7 -
Silk I* 1.5 4.3 7.6 3.8 3.1 8.8 5.1

r.c.: random coil; Silk I*: Type II β-turn; Gly Hα 1© and Gly Hα 2©: Two protons of Gly CαH2 group with
different chemical shifts in the solid state [32].
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In this work, we aimed to interpret the structure of the Silk I* form in SF. The Silk I* is a repeated
β-turn type II structure which was proposed to give the torsion angles, (φ, ψ) = (−62◦, 125◦) for Ala
residues and (φ, ψ) = (77◦, 10◦) for Gly residues of poly(Ala-Gly) chain, thereby satisfying both solid
state NMR and X-ray diffraction data. (The unit cell was orthorhombic and the space group was
P212121, and the lattice constants were a = 4.65 Å, b = 14.24 Å and c = 8.88 Å, α = β = γ = 90◦) [20,21,32].
The intra- and inter-molecular hydrogen bonding was formed alternatively along the chain. As noted
earlier, the Silk I* form of longer (AGSGAG)n sequences appeared as a result of the interaction between
SF and Glyc molecules. A structural model for the complex of Glyc-SF having Silk I* form will be
shown in Section 3.6.

Lu et al. [9] claimed the appearance of α-helix conformation in SF induced by the interaction
between Glyc and SF molecules on the basis of Infrared spectroscopy (IR) analysis. However, from
the results of NMR work mentioned above, it is clear that the newly appeared conformation was
the Silk I* form, not α-helix. Many researchers other than Lu et al. in the field of SF research also
reported the appearance of α-helix in SF from IR or Raman data of SF using automated analysis
carried out with commercial software (for example, Opus 6.5 software, Bruker Optics Corp., Billerica,
MA, USA). If there are poly(Ala) sequences in B. mori SF (as in the case of a wild-type silkworm,
Samia cynthia ricini [11,35]), the sequences are expected to form α-helix. However, there are no
poly(Ala) sequences in B. mori SF [37]. If the Ala residue forms the α-helical structure together
with other amino acid residues, the Ala Cβ peak should appear at 15 ppm in the 13C NMR spectrum.
(It is known from the 13C conformation-dependent chemical shifts empirically and theoretically that
the 13C chemical shifts of the amino acid residues reflect the secondary structure in the vicinity of the
residues [11,20–23]). However, Ala Cβ peak in this case appeared at 16.5 ppm for Silk I* form and
not at 15 ppm. In addition, α-helix was clearly absent by comparing the observed 2D spin-diffusion
NMR spectral patterns of (AG)6A[1-13C]G14[1-13C]A15G(AG)7 and (AG)7[1-13C]A15[1-13C]G16(AG)7

for the determinations of the torsion angles Ala15(φ, ψ) and Gly14(φ, ψ) in (AG)15, respectively, with
the calculated patterns assuming the α-helix structure [21]. Indeed, Percot et al. had pointed out that
discrimination between regular (α) and disordered (β-turn) helical conformations would be difficult
from the Raman data [38,39]. In addition, the circular dichroism (CD) study of the concentrated SF
in the middle silk gland of B. mori silkworm also gave α-helix-like structure [40,41]. We believe this
confusion comes from the “special” structure of the Silk I* form. In our view, a theoretical approach
involving IR, Raman and CD spectral patterns in view of the atomic coordinates of poly(Ala-Gly) with
the repeated type II β-turn structure should give a solution to this problem.

As shown in Figure 1, at 9 wt % Glyc concentration the fraction of Silk I* increased slightly as
evidenced by the intensity increase of the C=O (177.0 ppm) carbon peak. With further increase of Glyc
concentration, the spectral change was very small as shown in the 13C CP/MAS NMR spectrum of
Glyc(40 wt %)-blended SF film. These spectral patterns were quite different from the 13C CP/MAS
NMR spectrum of SF film treated by methanol, which showed a typical Silk II form [13,14,30,31].

2.2. Quantitative Conformational Analysis of SF and Glyc-Blended SF from the Ala Cβ Peaks of the 13C
CP/MAS NMR Spectra

In order to determine the fraction of different conformations of SF and Glyc-blended SF films,
deconvolution of the 13C Ala Cβ peaks was performed as a function of Glyc concentration by assuming
Gaussian line-shapes (Figure 2). Without Glyc, there were three components in the deconvoluted
spectrum, i.e., random coil and two kinds of β-sheets, A and B. The β-sheet A and B were reported
previously by us [12,22]. The torsion angles of both structures are the same (−140◦, 140◦) for both Ala
and Gly residues. The β-sheet A and B have similar inter-molecular packing of the β-strands in the
unit cell (a = 9.38 Å, b = 9.49 Å, c = 6.98 Å, and space group P21) as reported by Takahashi et al. [42].
A key difference between β-sheet A and B is that the Ala methyl groups are positioned differently.
In the β-sheet A, the methyl groups of the top sheet that point down to the central sheet are positioned
roughly towards the Gly Hα, in the spaces between the pairs of inter-strand Gly···Ala hydrogen bonds.
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In contrast, in the β-sheet B the methyl groups point to the center of the pair of inter-strand Gly···Ala
hydrogen bonds and are thus shifted along the strand by one residue. In fact, the β-sheet A entailed
slightly lower energy than the β-sheet B according to two structural models of (Ala-Gly)15 [22]. In the
observed NMR spectrum of SF film alone, the β-sheet A was the main structure found on the basis of
the chemical shifts.

Int. J. Mol. Sci. 2016, 17, 1517 5 of 16 

 

one residue. In fact, the β-sheet A entailed slightly lower energy than the β-sheet B according to two 
structural models of (Ala-Gly)15 [22]. In the observed NMR spectrum of SF film alone, the β-sheet A 
was the main structure found on the basis of the chemical shifts. 

 
Figure 2. Deconvolution of Ala Cβ peaks (marked by red (random coil), light blue (Silk I*), dark blue 
(β-sheet B) and green (β-sheet A) lines) in the 13C CP/MAS NMR spectra of SF and Glyc-blended SF 
films as a function of Glyc concentration by assuming Gaussian line shape. TMS, tetramethylsilane. 

During the preparation of the regenerated SF films (including the drying process), partial 
conformational change from random coil to β-sheet occurred, especially in the crystalline domain, 
which consisted of repeated AGSGAG sequences as reported previously [34]. By adding a small 
amount of Glyc (only 5 wt %) to SF, a remarkable change in the spectrum occurred. In particular, Silk 
I* form appeared partly as marked by light blue curve (Figure 2), viz. the peak with the narrower 
linewidth but the same chemical shifts as that of broad random coil peak. Thus, the Silk I* structure 
has a narrower chemical shift distribution than that of the random coil. In addition, β-sheet A in the 
spectrum of the SF sample without Glyc decreased considerably in intensity. 

The proportion of each conformation was determined by assuming the presence of only four 
conformations: Silk I*, random coil and β-sheets A and B. The change in the fraction of different 
conformations of SF and Glyc-blended SF films as a function of Glyc concentration is shown in 
Figure 3. The numerical values of the fractions are listed in Table S1. As Glyc concentration increased 
from 5 to 9 wt %, the change in the spectrum was not large compared with the spectral change from 
Glyc 0 to 5 wt %, but the fraction of Silk I* increased and that of random coil decreased. With further 
increase of Glyc content, the changes were relatively small. Thus, the fraction of Silk I* increased 
linearly up to 25%, then to 30% where it stayed almost constant. This was the same value (30%) of 
Ala residues in all Ala residues in SF sample present in B. mori mature silkworm. Thus, the fraction 
of 30% was considered to be the maximum content for Silk I* because only longer (AGSGAG)n 
sequence could generate Silk I* form as discussed in our previous paper [34]. Thus, the minimum 
amount of Glyc to fully produce the Silk I* form was 9 wt %, and further Glyc addition did not 

Figure 2. Deconvolution of Ala Cβ peaks (marked by red (random coil), light blue (Silk I*), dark blue
(β-sheet B) and green (β-sheet A) lines) in the 13C CP/MAS NMR spectra of SF and Glyc-blended SF
films as a function of Glyc concentration by assuming Gaussian line shape. TMS, tetramethylsilane.

During the preparation of the regenerated SF films (including the drying process), partial
conformational change from random coil to β-sheet occurred, especially in the crystalline domain,
which consisted of repeated AGSGAG sequences as reported previously [34]. By adding a small
amount of Glyc (only 5 wt %) to SF, a remarkable change in the spectrum occurred. In particular, Silk
I* form appeared partly as marked by light blue curve (Figure 2), viz. the peak with the narrower
linewidth but the same chemical shifts as that of broad random coil peak. Thus, the Silk I* structure
has a narrower chemical shift distribution than that of the random coil. In addition, β-sheet A in the
spectrum of the SF sample without Glyc decreased considerably in intensity.

The proportion of each conformation was determined by assuming the presence of only four
conformations: Silk I*, random coil and β-sheets A and B. The change in the fraction of different
conformations of SF and Glyc-blended SF films as a function of Glyc concentration is shown in Figure 3.
The numerical values of the fractions are listed in Table S1. As Glyc concentration increased from 5 to
9 wt %, the change in the spectrum was not large compared with the spectral change from Glyc 0 to
5 wt %, but the fraction of Silk I* increased and that of random coil decreased. With further increase
of Glyc content, the changes were relatively small. Thus, the fraction of Silk I* increased linearly up
to 25%, then to 30% where it stayed almost constant. This was the same value (30%) of Ala residues
in all Ala residues in SF sample present in B. mori mature silkworm. Thus, the fraction of 30% was
considered to be the maximum content for Silk I* because only longer (AGSGAG)n sequence could
generate Silk I* form as discussed in our previous paper [34]. Thus, the minimum amount of Glyc to
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fully produce the Silk I* form was 9 wt %, and further Glyc addition did not generate more Silk I*
structure in SF. With further increase of Glyc from 9 wt %, the fraction of random coil decreased and
both β-sheets, A and B, increased gradually. Note that the amount of β-sheet A was larger than that of
B over the whole range of Glyc concentrations.
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2.3. 1H Solution NMR Spectra of Regenerated SF Aqueous Solution as a Function of Glyc Concentration

The 1H solution NMR spectra of regenerated SF aqueous solutions containing Glyc were observed
as a function of Glyc concentration to study the interaction between SF and Glyc in aqueous solution
(Figure 4). The NMR spectra were easily assigned by reference to a previous paper [36]. Other than
SF peaks, the peaks assigned to Glyc were observed. However, with increasing Glyc concentration,
there was no significant change. Thus, in aqueous solution, SF molecules were hydrated sufficiently
and surrounded by water molecules. Similarly, Glyc molecules were also surrounded by sufficient
amounts of water molecules. Therefore, there was essentially no direct interaction between SF and
Glyc molecules. This indicated that the direct interaction between SF and Glyc occurred during the
drying process because of the shortage of water. Thus only solid state NMR is useful for the purpose
of structural characterization of SF and change in the structure as a function of Glyc concentration.
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2.4. 1H Solid State NMR Spectra of SF and Glyc (29 wt %)-Blended SF Films

1H single pulse NMR spectra of SF and Glyc-blended SF films (Glyc 29 wt % concentration) were
observed in the solid state (Figure 5). The Glyc (29 wt %)-blend SF film was selected because the
fraction of Silk I* was fixed to be about 30%. There was a large difference in the spectrum between Glyc
0 wt % and Glyc 29 wt %. This was mainly due to the presence of Glyc peaks observed at 3.4 ppm (CH2

and CH) and 4.4 ppm (OH plus H2O) in the latter spectrum. In addition, there was a difference in the
lower field (NH region) of the spectra. However, because of low resolution, the detailed assignments
and related analysis was difficult, and further analysis was done from the 1H DQMAS NMR spectra
(vide infra).
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of the 1H NMR peaks are summarized in Table 1 (1H chemical shift).

2.5. 1H Double-Quantum Magic Angle Spinning (DQMAS) NMR Spectrum of SF Film

The 1H DQMAS NMR spectrum of SF without Glyc is given in Figure 6. The fractions of
random coil and β-sheet were determined to be 61.6% and 38.4%, respectively, from the simulation
of the 13C CP/MAS NMR spectrum (Table S1). Thus, we need to consider the presence of these
two conformations. In our previous paper [22], we reported 1H DQMAS NMR spectra of (AG)15 with
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Silk II form, which can serve as a reference spectrum for Silk II in the analysis of Figure 6. In our
first attempt to assign the 1H DQMAS NMR spectrum, we compared the spectra of random coil with
those of Silk II. Although differences in the chemical shifts between β-sheet A and B appeared in the
13C CP/MAS NMR spectra [22], it was difficult to distinguish the 1H peaks from the β-sheet A and B
in the whole SF spectrum observed here. Therefore, we assume the chemical shift values of Silk II in
Figure 6 correspond to the β-sheet A of (Ala-Gly)15.
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The 1H chemical shifts of random coil and Silk II forms were determined as listed in Table 1.
The most interesting points are the HN chemical shifts which reflect the distance of direct hydrogen
bonding of NH···OC pairs in the solid state [30] as well as the solution state [19]. The HN chemical
shifts of Ala and Gly residues with random coil were the same (8.1 ppm), but it was smaller than
that of Silk II (8.7 ppm). The larger NH chemical shift indicated stronger inter-molecular hydrogen
bond formation, and therefore the inter-molecular hydrogen bonding in Silk II was stronger than
in random coil; this observation seemed to be reasonable. Ala Hβ chemical shift of random coil
was larger than that of Silk II, and Ala Hα chemical shift of Silk II was larger than that of random
coil. This showed the same trend as 1H conformation-dependent chemical shifts of proteins [18,19].
As reported previously [22,27,32], the 1H DQMAS NMR spectrum gave information on the 1H–1H
distances in the SF sample as observable cross peaks connecting two 1H nuclei within distances of
about 4 Å. A set of six 1H–1H correlation signals (broken lines) was indicated in Figure 6 for SF with
random coil form, while eight 1H–1H correlation signals for Silk II was found. The 1H–1H correlation
data were summarized in Table 2. In view of the 1H–1H correlation data, both random coil and Silk
II structure appeared present, although it was difficult to determine the fraction as in the case of 13C
CP/MAS NMR as mentioned above.
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Table 2. Sets of 1H–1H correlation signals in the 1H DQMAS NMR spectra of SF and Glyc
(29 wt %)-blended SF films. These 1H–1H correlation signals are shown as broken lines in Figures 6–8.

SF Film

r.c. Silk II

Ala Hβ—Ala Hα/Gly Hα 2© Ala Hβ—Gly Hα 2©
Ala Hβ—Gly Hα 1© Ala Hβ—Ala Hα

Ala Hβ—Ala HN/Gly HN Gly Hα 1©—Gly Hα 2©
Gly Hα 1©—Ala Hα/Gly Hα 2© Gly Hα 1©—Ala Hα

Gly Hα 1©—Ala HN/Gly HN Gly Hα 1©—Gly HN/Ala HN
Ala Hα/Gly Hα 2©—Ala HN/Gly HN Ala Hα—Gly Hα 2©

- Gly Hα 2©–Gly HN/Ala HN
- Ala Hα—Gly HN/Ala HN

Glyc-Blend SF Film

r.c. Silk I* Glyc—Silk I*

Ala Hβ—Ala Hα/Gly Hα 2© Ala Hβ—Gly Hα 2© Glyc (CH2)—Ala Hβ

Ala Hβ—Gly Hα 1© Ala Hβ—Gly Hα 1© Glyc (CH2)—Gly Hα 1©
Gly Hα 1©—Ala Hα/Gly Hα 2© Ala Hβ—Ala Hα Glyc (CH2)—Ser Hα

Ala Hα—Ala HN/Gly HN Ala Hβ—Ala HN Glyc (OH)—Gly Hα 1©
- Gly Hα 2©—Ala Hα Glyc (OH)—Ser Hα

- Gly Hα 2©—Ala HN Glyc (OH)—Ala HN
- Gly Hα 2©—Gly HN Glyc (OH)—Gly HN
- Gly Hα 1©—Ala Hα -
- Gly Hα 1©—Ala HN -
- Gly Hα 1©—Gly HN -
- Ser Hα—Gly HN -
- Ala Hα—Gly HN -

2.6. 1H DQMAS NMR Spectrum of Glyc (29 wt %)-Blended SF Film

Figure 7 shows the 1H DQMAS NMR spectrum of SF with Glyc (29 wt %). The percentages of
random coil, Silk I* and β-sheet were determined to be 53.6%, 29.9% and 17.5%, respectively, for Glyc
(29 wt %)-blended SF. The remarkable spectral change from Figure 6 was due to the appearance of
Silk I* form in SF. The Ser Hα peak of SF with Silk I* form was clearly observed in the 1H DQMAS
NMR spectrum as well as the Ser Cα peak of SF with Silk I* form observed in the 13C CP/MAS NMR
spectra of Glyc-blend SF films (Figure 1). In addition, the NH peaks of Ala and Gly residues were
separated clearly with chemical shift difference of more than 1 ppm due to the appearance of Silk I*
form [32]. In the Silk I* conformation, the Gly NH contributed to intra-molecular hydrogen bonding
formation parallel to the SF chain, while Ala NH contributed to inter-molecular hydrogen bonding
formation perpendicular to the SF chain [20,21]. The latter inter-molecular hydrogen bonding was
weaker than the intra-molecular hydrogen bonding judging from the NH chemical shifts; thus, the
NH chemical shifts of Ala HN proton was 7.6 ppm and that of Gly HN proton 8.8 ppm. Therefore, the
inter-molecular hydrogen bonding was easy to break down by interaction with Glyc for the Silk I*
form. A set of twelve 1H–1H correlation signals (broken lines) was observed for Silk I* form together
with that of three 1H–1H correlation signals (broken lines) of random coil, as summarized in Table 2
although those of Silk II could not be detected because of low probability.
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2.7. Structural Model of Glyc-SF Complex Having Silk I* Form

The six 1H–1H correlation signals (broken lines) between the OH or CH2 groups of Glyc and SF
were selected from Figure 8 and listed in Table 2. Thus, 1H atomic distances of Glyc (CH2)-Ala Hβ, Glyc
(CH2)-Gly Hα 1©, Glyc (CH2)-Ser Hα, Glyc (OH)-Ser Hα, Glyc (OH)-Ala HN and Glyc (OH)-Gly HN

were assumed to be within 4 Å. Here the Glyc peaks were observed at 3.4 ppm (CH2) and 4.4 ppm (OH
plus H2O). The observed signals reflecting the distance constraints can be used to prepare a structural
model for the Glyc-SF complex. As described in the section on Materials and Method, four complex
models were obtained after MD simulation as shown in Figure S1. Figure 9A shows one example of
the models, and the yellow highlighted area is expanded in Figure 9B to visualize the 1H–1H distances.
The Glyc molecules are also hydrogen bonded with each other after the MD simulation. All the green
lines in Figure 9B are within 4 Å, which satisfies the observed 1H–1H distance constraints in Glyc
(29 wt %) -blended SF film. Among the four models in Figure S1, it is difficult to select one best model.
Therefore, it seems reasonable to consider all these models to have similar probabilities. The complex
between Glyc and SF with Silk I* form is very stable because the Silk I* form in Glyc-blended SF
film does not decrease in concentration after immersion of the Glyc-blended SF film in methanol
(data not shown).
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Figure 9. (A) A complex model of Glyc-SF model peptide, Acetyl-(Ala-Gly-Ala-Gly-Ser-Gly)2-NHCH3

with Silk I* form after 500 ps of Molecular Dynamics (MD) simulation. Details of the calculation are
described in Materials and Method. The model satisfies the observed 1H–1H distance information.
Four models including this model are shown in Figure S1; (B) the calculated distances between 1H
atoms in Glyc and 1H atoms in SF in the area surrounded by square (yellow) in Figure 9A are shown
as an example. All of the calculated 1H atomic distances between Glyc (CH2) and Ala Hβ, Glyc (CH2)
and Gly Hα 1©, Glyc (CH2) and Ser Hα, Glyc (OH) and Ser Hα, Glyc (OH) and AlaHN, and Glyc (OH)
and Gly HN are within 4 Å which satisfies the corresponding observed distances in Figure 8.
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3. Materials and Methods

3.1. Preparation of Glyc-Blended SF Films

The 25 cocoons from B. mori were degummed in a mixture of sodium carbonate (0.25% w/v)
and Marseille soap (0.25% w/v) solution at 85 ◦C for 15 min in order to remove silk sericin [43].
Following this step, the degummed SF fiber was obtained. The SF fiber was then dissolved in 9 M LiBr
aqueous solution at 40 ◦C. The 4% regenerated SF solution was prepared by dialysis of the 9 M LiBr
aqueous solution against distilled water, followed by centrifugation at 10,000 rpm. The SF aqueous
solution after mixing with a certain amounts of Glyc was cast on Teflon plates at 20 ◦C to prepare the
Glyc-blend SF film [44]. The Glyc concentration in SF-Glyc mixture was changed from 0 to 67 wt %.
There is no significant difference visually in the appearance and through Scanning Electron Microscopy
(SEM) observations among the Glyc-blended SF films with different Glyc concentrations.

3.2. 13C CP/MAS NMR of Glyc-Blended SF Films

13C CP/MAS NMR spectra of Glyc-blended SF films were acquired on a Bruker DSX-400 AVANCE
spectrometer (Bruker Co., Billerica, MA, USA) at room temperature operating at 100.4 MHz, with
a CP contact time of 1 ms, two pulse phase modulation (TPPM) decoupling, and magic angle spinning
at 7 kHz. A total of 8192 scans was collected over a spectral width of 60 kHz, with a recycle delay
of 3 s. The 13C NMR chemical shifts were calibrated indirectly through the methylene peak of
adamantane observed at 28.8 ppm relative to tetramethylsilane (TMS) at 0 ppm. The 13C CP/MAS
NMR observations were repeated at least two times for newly prepared Glyc-blended SF films with
different Glyc concentrations and the reproducibility of the experimental results was confirmed.

3.3. Deconvolution Analysis of 13C CP/MAS NMR Spectra

The Ala Cβ peak in the 13C CP/MAS NMR spectra of SF films was used for the deconvolution
analysis to determine the fraction of each conformation. In our previous papers [22,45,46], the Ala
Cβ peak was deconvoluted by assuming the presence of five peaks. The Ala Cβ peak in the 13C
CP/MAS NMR spectrum of the precipitated crystalline fraction of SF after chymotrypsin cleavage
(Cp fraction (56% of total SF)) was independently observed and deconvoluted to three peaks at
21.7 ppm (β-sheet B), 19.6 ppm (β-sheet A) and 16.5 ppm (distorted β-turn/random coil) [22,46].
The Ala Cβ peak in the 13C CP/MAS NMR spectrum of the other soluble fraction (44%) was assigned
to the non-crystalline fraction [46]. However, it was difficult to monitor the structural change as
a function of Glyc concentration because the structural change was expected to occur at both crystalline
and non-crystalline regions of SF film simultaneously. Therefore in this paper, we determined the
fraction of the conformation of Glyc-blended SF films by assuming the presence of four conformations:
Silk I* (16.5 ppm), random coil (16.5 ppm), β-sheet A (19.6 ppm) and β-sheet B (21.7 ppm) from
the Ala Cβ peaks in the 13C CP/MAS NMR spectra. Since the Ala Cβ chemical shifts were the
same between random coil and Silk I*, the large difference in the half-height-widths between them
(Random coil: ~300 Hz and Silk I*: ~100 Hz) was used to determine each fraction in the peak
deconvolution. In addition, the appearance of Silk I* could be confirmed by the appearance of
sharp peak at 177 ppm in the Ala carbonyl carbon region as reported previously [33,34]. All the
deconvolution analyses were performed by assuming Gaussian line shapes [34,47].

3.4. Solid State DQMAS 1H NMR

DQMAS 1H NMR spectra were observed at 920 MHz using a JEOL JNM-ECA920 spectrometer
in Okazaki, Japan [48]. The 1H–X double resonance and ultra-high speed MAS probe are attached.
The sample spinning speed was stabilized such that the spinning fluctuations were less than ±10 Hz
at a spinning rate of 70 kHz. The temperature of the samples was estimated to be around 333 K at
70 kHz MAS. The 1H rf field strength of π/2 pulse (1.29 µs) was 194 kHz. The 1H chemical shift
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was referenced to the peak of silicon rubber and set to 0.12 ppm from TMS. The 2τ delay was 0.3 ms.
The DQMAS spectra were obtained every 32 scans at each period in the DQ domain, and the recycle
delay was 2 s. For the 1H DQMAS measurement, a Dipolar Homonuclear Homogeneous Hamiltonian
Double-Quantum/Single-Quantum correlation experiment (DH3DQ-SQ) was employed [49].

3.5. 1H Solution NMR of Regenerated SF Aqueous Solution

1H solution NMR spectra of regenerated SF aqueous solution were observed as a function of Glyc
concentration at room temperature by JEOL ECX-400 spectrometer (JEOL Co., Tokyo, Japan).

3.6. Model Building of Glyc-SF with Silk I* Form by Molecular Dynamics (MD) Simulation

The MD simulation was performed for the complex model between Glyc and SF with Silk I* form
by using the “Discover” module in Materials Studio 4.1 (Accelrys Inc. Tokyo, Japan). A crystal which
consisted of 24 SF molecules (with the arrangement such that 6 molecules were located within the
sheet and 4 molecules placed inter-sheet) with the formula Acetyl-(Ala-Gly-Ala-Gly-Ser-Gly)2-NHCH3

with Silk I* form [32] was built for the MD simulation. Five hundred Glyc molecules were generated
around the crystal. All of the MD simulations were performed using a pcff force field in vacuo, and
temperature was controlled at 298 K. The MD simulations were performed by 500,000 steps up to
500 ps. After the simulation, 16 Glyc-SF complex models where several Glyc molecules attached
to each SF molecule located at the surface of the crystal were obtained at 500 ps. Moreover, the
energy minimization was performed again for the complex models using MOPAC (Molecular Orbital
PACkage, Colorado Springs, CO, USA). The models were selected if all of the observed 6 1H–1H
distances between 1H atoms of Glyc and SF were within 4 A. Finally, four complex models were
obtained as shown in the Supplementary Materials.

4. Conclusions

The Glyc-induced structural characterization of SF was performed with 13C CP/MAS NMR and
1H DQMAS NMR. The presence of only 5 wt % Glyc in the film induced a significant conformational
change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further
increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then
tended to be almost constant (30%). The appearance of Silk I* form was confirmed by the 1H DQMAS
NMR spectrum of Glyc-blended SF film. The 1H–1H distance constraints among 1H atoms of Glyc and
1H atoms of SF were obtained from the 1H DQMAS NMR and used to build a structural model of the
complex between Glyc and SF having Silk I* form by MD simulation.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/9/1517/s1.
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