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Bone fracture followed by delayed or non-union typically requires bone graft intervention.

Autologous bone grafts remain the clinical “gold standard”. Recently, synthetic

bone grafts such as Medtronic’s Infuse Bone Graft have opened the possibility to

pharmacological and tissue engineering strategies to bone repair following fracture. This

clinically-available strategy uses an absorbable collagen sponge as a carrier material for

recombinant human bone morphogenetic protein 2 (rhBMP-2) and a similar strategy has

been employed by Stryker with BMP-7, also known as osteogenic protein-1 (OP-1). A

key advantage to this approach is its “off-the-shelf” nature, but there are clear drawbacks

to these products such as edema, inflammation, and ectopic bone growth. While there

are clinical challenges associated with a lack of controlled release of rhBMP-2 and

OP-1, these are among the first clinical examples to wed understanding of biological

principles with biochemical production of proteins and pharmacological principles to

promote tissue regeneration (known as regenerative pharmacology). After considering

the clinical challenges with such synthetic bone grafts, this review considers the various

biomaterial carriers under investigation to promote bone regeneration. This is followed

by a survey of the literature where various pharmacological approaches and molecular

targets are considered as future strategies to promote more rapid and mature bone

regeneration. From the review, it should be clear that pharmacological understanding

is a key aspect to developing these strategies.

Keywords: RNA interference, bone morphogenetic protein 2 (BMP-2), collagen, keratin, gelatin, fibrin, chitosan,

regenerative medicine

CLINICAL SIGNIFICANCE AND CURRENT CLINICAL STRATEGIES

Bone tissue is a dynamic system which is continuously being remodeled on a day-to-day basis
(Barrett, 2010). Because of this property, the normal healing process typically restores the biological
and mechanical function of bone following fracture. Unfortunately, the native healing potential
of bone is occasionally insufficient for underlying reasons such as smoking (Patel et al., 2013;
Taormina et al., 2014), malnutrition (Alvear et al., 1986), congenital disease (Shah et al., 2012),
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or large defects resulting from tumor resections (Qu et al.,
2015). In addition, healthy individuals sometimes experience the
inability for bone healing and a return to normal function due
to large defects caused by trauma. Bone defects that surpass
a size that can spontaneously heal during the lifetime of the
individual are known as defects of critical size or critically-sized
defects (Schmitz and Hollinger, 1986; Spicer et al., 2012), and
are a specific type of non-union. These critically-sized defects
frequently lead to secondary complications including morbidity
and functional limitations in patients (Tseng et al., 2008). It
is estimated that 10% of bone fractures in the United States
result in impaired or incomplete healing known as delayed union
and non-union, respectively (BMUS, 2014). Lack of osteogenic
cells, signaling molecules, and osteoconductive matrix as well as
inadequate vascularity all contribute to the inability of bone to
heal in these situations (Harwood et al., 2010).

Clearly, bone defects leading to non-union substantially
impair activities on a daily basis and impair quality of life. In
order for a large defect or other non-union to be functionally
restored, a surgical intervention and placement of a bone graft
at the injury site is required to attempt to bridge the defect
area. Bone grafts are currently the second most common type of
tissue transplant in the United States with an estimated 500,000–
1.5 million bone-grafting procedures performed yearly. As such,
the market in the U.S. alone is ∼$1.6–$2.5 billion (Cutter and
Mehrara, 2006; Bishop and Einhorn, 2007). Thus, from both a
quality of life and an economic perspective, bone grafts that lead
to functional restoration following fracture are beneficial.

According to the American Academy of Orthopedic
Surgeons the “ideal bone graft” should be “biocompatible,
bioresorbable, osteoconductive, osteoinductive, structurally
similar to bone, easy to use, and cost-effective” (Greenwald et al.,
2001). Osteoconductive materials support bone healing through
vascularization, architecture, chemical composition (e.g., calcium
sulfate, calcium phosphate, calcium hydroxyapatite, etc.), and
surface charge (Urist, 1980). Osteoinduction refers to the process
that supports the migration and proliferation of mesenchymal
stem cells as well as promoting differentiation of preosteocytes
(Urist and Strates, 1971). When designing biomaterials for
bone applications a number of factors (i.e., composition,
porosity, mechanical properties) must be considered in order
to recapitulate native bone. Structural and mechanical property
differences between cortical and cancellous bone can be quite
significant and must be considered when applying engineered
bone substitutes to specific locations. For example, cortical
porosity ranges from 5 to 10% while cancellous bone porosity
ranges from 75 to 90%. The pore size of areas of native cortical
and cancellous bone also differ dramatically (10–600 um; Polo-
Corrales et al., 2014); however, it is suggested that the optimal
range lines between 200 and 350 um (Murphy et al., 2010;
Guda et al., 2014). The scaffold pore size and shape has been
shown to significantly modulate osteogenesis (Hulbert et al.,
1970; Sanzana et al., 2014) while a heterogeneous distribution
of pore size enhances osteogenic potential (Woodard et al.,
2007; Di Luca et al., 2016). The mechanical properties of bone
also vary widely over orders of magnitude (Polo-Corrales
et al., 2014). Taken together, researchers must be vigilant

of their scaffold’s design and resulting application in the
body.

The primary approaches to bone grafting include autografts,
allografts, and (more recently) what are referred to as synthetic
bone grafts. Below, we briefly discuss some of the drawbacks
of autografts and allografts that have led to the push for
“off-the-shelf ” synthetic bone grafts and some of the on-
going needs in the development of these constructs. We
then identify existing and promising strategies to improve
bone regeneration via pharmacological approaches, and these
strategies are summarized in Figure 1.

Autografts, Allografts, and Xenografts
Autologous bone grafts remain the clinical “gold standard” for
bone defects because of their osteoconductive and osteoinductive
properties. Autografts are most often harvested form the
iliac crest or other bone (Greenwald et al., 2001). Even
though autograft transplantation does not lead to immunogenic
response, it has a limited supply, donor site morbidity, and
up to 30% failure rate (Schoelles et al., 2005). One solution
to overcoming limited supply and donor site morbidity of
autologous bone grafts is to use allogeneic or xenogeneic bone
sources.

Xenografts are primarily harvested from bovine origins
and are osteoinductive/conductive. Research stemming from
clinical trials has determined xenografts, primarily from bovine
origins, to be unsuitable due to increased risk of infection,
immunogenicity, and host rejection (Trice, 2009; Mehta et al.,
2012).

Allografts harvested from cadaveric sources have the
advantage of being osteoconductive and osteoinductive while
being available through regional tissue banks in a variety
of sizes and shapes. Again there can be limited supply, and
allograft treatments are associated with risk of rejection and
transmission of infectious disease (Grover et al., 2011). While
tissue processing and sterilization through freezing or 25 kGy
gamma irradiation virtually eliminates the possibility of disease
transmission, irradiation causes a number of adverse effects on
tissue properties such as weakening (Nguyen et al., 2007).

Demineralized bone matrix (DBM) products derived from
allogeneic sources once comprised ∼50% of the bone graft
market (Cutter and Mehrara, 2006) but since the emergence of
a number of FDA-approved synthetic bone grafts (see below),
DBM now accounts for ∼20% of the grafting market (Gruskin
et al., 2012). The osteogenic potential of commercial DMB,
however, is highly variable due differences in the amounts of
osteogenic molecules (e.g., BMP-2 and BMP-7; Bae et al., 2010)
likely due to variability between donors, sterilization techniques,
and storage methods (Wang et al., 2007). Non-standardized
production and lack of precise control conditions needed for
storage to maintain bioactivity has resulted in inconsistent results
with different products as well as product lot numbers (Wang
et al., 2007; Gruskin et al., 2012). In essence, although the
constituents are known, DBM is an undefined material. For this
reason, the use of synthetic bone grafts as a tissue engineering
approach has become an important consideration for clinical
treatment of bone defects and other orthopedic applications.
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FIGURE 1 | Overview of targets and delivery strategies for growth factors and therapeutic agents in tissue engineering approaches to bone regeneration.

Biomedical Materials as Bone Fillers
In the next section, the use of what are referred to as synthetic
bone grafts are discussed. As used in the literature, “synthetic
bone graft” is a bit of a misnomer. A synthetic bone graft need not
be synthetic. More specifically, collagen is the most commonly
used material component. Synthetic bone grafts also rely on the
use of osteogenic molecules to promote bone growth.

Here, however, we briefly discuss some biomedical materials
that have been used as bone grafts, and in this context they are
often referred to as bone fillers. Common advantages to the use
of such materials are that they, like synthetic bone grafts, are
off-the-shelf products that can be manufactured in a repeatable
manner and in sufficient quantities. These materials may or may
not be osteoconductive and while they can promote bone tissue
formation, they do not have the same degree of osteoinductive
or osteogenic behavior as molecules such as bone morphogenetic
protein 2 (BMP-2). A common feature, though, among these
materials is they are traditional biomedical devices that do not
achieve their primary function through chemical action (i.e., they
are not drugs).

Ceramics
Examples of ceramic bone fillers include Bioglass, calcium
phosphate, calcium sulfate, and hydroxyapatite. In general, an
advantage of ceramic materials is their similar material and
mechanical properties to the mineral composition of bone.
Indeed, hydroxyapatite is the main inorganic constituent of bone,
so its use as a biomedical material is logical.

More recently, ceramics have been used as composites with
natural polymers in an effort to obtain the beneficial properties
of each material. For example, Bioglass in conjunction with
gelatin led to mechanical strength but with increased pore size
(Aksakal and Demirel, 2017). Likewise, the use of Bioglass with
a tricalcium phosphate/alkylene oxide copolymer or tricalcium

phosphate have been used in a large animal model as a moldable
material for conformation to defect geometry to promote both
intraosseous and intramuscular bone formation (Barbieri et al.,
2017). Ceramic materials can also be used for the delivery of
antibiotics to prevent infection (see further below on synthetic
polymers) (Kanellakopoulou and Giamarellos-Bourboulis, 2000;
Li and Chang, 2005).

Polymeric Materials
One of the most well-known bone filler materials is
poly(methylmethacrylate) or pMMA, also known as bone
cement. pMMA is a non-biodegradable material and can be
considered a bone filler in the truest sense of the word. That is,
a major drawback to the use of pMMA is its non-degradable
nature, which is known to impede bone remodeling (Freeman
et al., 1982; Jensen et al., 1991), likely through an unfavorable
cellular microenvironment (Maloney et al., 1990). Like other
polymers pMMA also suffers from poor mechanical properties
(Saha and Pal, 1984). As noted above for some ceramic materials,
one clinical use for synthetic polymers such as pMMA is for
the delivery of antibiotics to prevent infection. A significant
challenge for fractures requiring open reduction is bacterial
infection (Seekamp et al., 2000). As such, the ability to deliver
gentamicin (Klemm, 1993; Shi et al., 2006), vancomycin (Zelken
et al., 2007; Li et al., 2010), and other antibiotics (Efstathopoulos
et al., 2008; Shi et al., 2010) is often of considerable importance.

Biodegradable natural and synthetic polymers have been
used as bone fillers, but their mechanical properties are not
advantageous. Synthetic biodegradable polymers and natural
polymers are widely used for synthetic bone grafts at the clinical
and pre-clinical level, as discussed in the following section.
However, a growing use for biodegradable polymers such as
poly(glycolic acid) (PGA), poly(lactic acid) (PLA), copolymers
of PGA and PLA (PLGA), polycaprolactone (PCL) as well
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as natural and non-degradable polymers is in 3-D printing
technology (Taboas et al., 2003; Hollister et al., 2005, 2015). 3-D
approaches allow for the presentation of well-defined pore sizes
and organizational structures that can be optimized to promote
favorable cellular response.

To date, bone formation obtained by bone fillers such as
those described above simply do not achieve the levels of bone
formation obtained from autografts. This unmet need has led to
investigation of the use of the synthetic bone grafts that make use
of some of the principles of tissue engineering such as knowledge
of the growth factors responsible for bone formation.

Synthetic Bone Grafts: A Tissue
Engineering Approach to Bone
Regeneration
Tissue engineering can be considered to consist of the
triad of biomaterial scaffolds, cells, and signals (either
chemical/molecular or physical/mechanical; Zerhouni, 2005).
To address the disadvantages of ceramic and polymer-based
bone substitutes, tissue engineering techniques have been
applied to develop a number of growth factor-based products.
These approaches typically consist of a collagen sponge as the
biomaterial and recruit endogenous cells to the defect site. These
strategies also consist of molecular signals in the form of growth
factors/morphogenetic proteins. While bone formation and
regeneration is controlled by a cascade of molecules delivered
at precise locations and times, only two commercially produced
growth factors have been FDA approved for clinical use: bone
morphogenetic protein-2 (BMP-2) and bone morphogenetic
protein-7 (BMP-7), which is also known as osteogenic protein-1
(OP-1).

BMPs primarily act as cytokines mediating the differentiation
of mesenchymal cells into cartilage and bone forming cells (Ebara
and Nakayama, 2002). The functions of various BMP molecules
have been described both in general (Wang et al., 2014) and in
skeletal tissue (Rahman et al., 2015;Wu et al., 2016). In particular,
BMP-2 and -7 (OP-1) have been identified as playing critical
roles in bone formation and healing by their ability to induce
osteoblast differentiation (Spector et al., 2001). The genetic
sequence of BMP was first identified in 1988 which subsequently
allowed for the commercial production of various BMPs through
the use of recombinant gene technology (Wozney et al., 1988).
This marked a notable increase in the use of BMPs in bone tissue
engineering. BMP-2 and BMP-7 are highly osteoinductive growth
factors and their adsorption onto osteoconductive carriers such
as collagen is based on difficulties associated with the efficacy of
solubilized rhBMP-2 such as a short half-life (Yamamoto et al.,
2003) and up-regulation of receptor-binding antagonists (Ebara
and Nakayama, 2002).

Given that collagen is the main organic component of bone,
is osteoconductive, and can support mineralization and cell
ingrowth it is reasonable that DBM (Niederwanger and Urist,
1996) or absorbable collagen sponges (ACS) (Nevins et al., 1996)
were among the first carriers for BMP-2. Absorbable collagen
sponges (ACS) and collagen particles were the first generation
of tissue-engineered products on the market with FDA approval

(McKay et al., 2007). Initial clinical trials conducted with rhBMP
carriers such as collagen for spinal fusion applications were
not only successful but outperformed autologous bone grafts
(Schimandle et al., 1995).

Likemany first-generation products there have been a number
of drawbacks to rhBMP-2 collagen carriers. Positioning of the
ACS is often difficult and secondary displacement of the collagen
sponge has been reported (Schmidmaier et al., 2007). Collagen
is quickly degraded in vivo, causing voids to develop within the
new bone matrix due to the inability of collagen to provide a
structure which lasts long enough for cell migration (Friess et al.,
1999). Perhaps themain issue associated with the ACS is an initial
burst release of rhBMP-2 into the local environment, leading
to heterotrophic ossification (Brown et al., 2011). Another side
effect of this burst release is the activation of osteoclasts in
the surrounding environment at high BMP-2 concentrations
(Okamoto et al., 2006; Suliman et al., 2015), which may lead to
bone resorption. Surrounding mesenchymal lineage progenitor
cells in adjacent musculature also receive rhBMP-2 dosage,
leading to differentiation into osteoblasts and subsequentmineral
deposition in muscle tissue (Katagiri et al., 1994).

This burst release is a cause for concern since the current
clinical modalities use 10- to 1,000-fold higher concentrations
than that of native BMP-2 levels found in the body (Vaibhav et al.,
2007). Therefore, novel methods of delivery and also alternative
molecular targets continue to receive attention at the pre-clinical
level. Below, we discuss several classes and types of alternative
carrier systems being investigated. We then consider therapeutic
strategies beyond the existing rhBMP-2 paradigm.

ALTERNATIVE BIOMATERIAL CARRIERS
FOR MOLECULES PROMOTE BONE
REGENERATION

Great effort has been placed on developing biomimetic scaffolds
which provide a three-dimensional matrix for cell migration and
proliferation. Although modern biomaterials lack the temporal
and spatial complexity to fully mimic the native extracellular
matrix (ECM) (Daley et al., 2008), they capture many of the
essential elements. Through their mechanical, material, and
chemical cues, biomaterials are able to influence a number
of cellular functions (e.g., cell-matrix interactions) including
proliferation, differentiation, apoptosis, and signaling (Daley
et al., 2008). Ideally, these biomaterials should not only be
non-toxic but also biodegradable so that the artificial matrix
will degrade over time and give way to new tissue being
formed at the site where the material was implanted. The
degradation/resorption of the scaffold should be tailored to the
rate of bone turnover and healing rates of the injured bone.
For example, spinal fusion cases can require 9 months whereas
craniofacial application are of a shorter (3–6 months) duration
(Bose et al., 2012). For this reason, we focus here on engineered
degradable polymers which are capable of degradation rates
ranging from weeks to months.

In addition to their role in mimicking the structural aspects
of the ECM, biomaterial carriers can also be used to promote

Frontiers in Pharmacology | www.frontiersin.org 4 May 2018 | Volume 9 | Article 513

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Kowalczewski and Saul Drug Delivery Strategies for Bone Regeneration

the controlled release of therapeutic agents. Bioactive molecules
and therapeutics can be incorporated or physically entrapped
within the polymer network. One important design parameter
to regulate carrier degradation as well as rhBMP-2 release is
to modify the mesh size of the polymer network through
the crosslink density. When the overall crosslink density of a
hydrogel network is increased, it decreases themolecular distance
between crosslinks, resulting in a smaller hydrogel mesh size
(Lowman and Peppas, 1999). This in turn lowers the diffusivity
of the therapeutic agent, allowing tunable rates of release to be
achieved by varying the crosslink density of a hydrogel (Saltzman,
2001). This is one approach used in many hydrogel systems since
it is the simplest method for successful encapsulation of rhBMP-
2. The use of electrospinning nanofibers in which the growth
factor is embedded within the fibers employs a similar strategy
(Li et al., 2006). A burst release is often observed (Huang and
Brazel, 2001) followed by release of the therapeutic agent via
some combination of diffusion andmaterial degradation. In cases
where there is minimal interaction between the therapeutic agent
and the carrier, first order release is common (Saltzman, 2001).

While hydrophobic, van der Waals, and electrostatic
interactions between the material and growth factor as well
as entrapment in the polymer network are inherently present,
additional molecules can be introduced into the biomaterial
to retard the rate of release. Examples of these immobilization
methods include affinity binding such as heparin-binding (Yang
et al., 2010, 2012; Jeon et al., 2011; Wang et al., 2013), ionic
interactions such as those provided by chondroitin sulfate (Wang
Y. et al., 2010; Bae et al., 2012), cyclodexterins (Del Rosario et al.,
2015), protease degradable tethers (Tokatlian et al., 2010),
succinylation (Tsujigiwa et al., 2006), alkylation (Tachibana et al.,
2006; Han et al., 2015), and even covalent conjugation (Shen
et al., 2009; Zhang et al., 2010).

In addition to direct modification of the material, rhBMP-2
can be encapsulated via micro, macro, and nanoparticles alone
(White et al., 2013) or within these particles embedded within
a scaffold (Park et al., 2009). In this way, rhBMP-2 release is
regulated by the rate of particle degradation. When rhBMP-2
microspheres are entrapped in a hydrogel network they retain
rhBMP-2 for significantly longer periods of time (compared to
adsorption) resulting in prolonged bioactivity (Kempen et al.,
2008). Synthetic polymers are commonly used for this purpose
due to their predictable rates of degradation and release (Brown
et al., 2011; Hernandez et al., 2012). Natural polymers such
as chitosan (Niu et al., 2009; Hou et al., 2012; Cao et al.,
2014), alginate (Abbah et al., 2013), and gelatin (Patel et al.,
2008) are being increasingly used for rhBMP-2 microsphere
encapsulation. In summary, examination of key parameters
noted above (material network properties, material modification,
and encapsulation) associated with rhBMP-2 release has allowed
for the development of systems that approach zero-order release
in some cases (Pillay et al., 2005).

Synthetic Materials for Bone Regeneration
Synthetic polymers have the advantage of being able to be
manufactured in large quantities and customizable to show a
wide range of material properties. A number of biodegradable

synthetic polymers are already FDA-approved for use in humans.
Poly(a-hydroxy acids); poly(lactic acid) (PLA), poly(glycolic
acid) (PGA), and poly(lactic-co-glycolide) (PLGA) (Sokolsky-
Papkov et al., 2007) have been used for decades in orthopedic
applications (Puska et al., 2011; Razak et al., 2012). These
polymers undergo bulk degradation by hydrolysis of which
the rate of degradation can be tailored to the demands
of the tissue. Their degradation products, lactic acid and
glycolic acid, can be processed and excreted from the body.
Unfortunately, these components can decrease the pH of the
local environment (Suganuma and Alexander, 1993). Synthetic
polymers have been reported to cause immunogenicity and
toxicity due to chemical crosslinkers and polymerizers used in
their production (Athanasiou et al., 1996; Williams et al., 2005).
Many of these polymers, especially the FDA-approved polymers,
are hydrophobic and lack cell-binding domains such as the
arginine:glycine:aspartic acid (RGD) sequence, thus hindering
cell attachment (Pierschbacher and Ruoslahti, 1984; Lieb et al.,
2003).

Fortunately, RGD and other cell-binding domains can
be incorporated into synthetic materials by incorporation of
chemically labile groups in the polymer (Hersel et al., 2003).
Synthetics can also be tuned for their rates of degradation
(Ifkovits et al., 2009; Qiu et al., 2011), release of therapeutic agents
(Ashley et al., 2013), and mechanical properties (Chiou et al.,
1996; Martello et al., 2014). These materials can also be mixed
with calcium phosphates (e.g., hydroxyapatite) (Pathi et al.,
2010) or natural polymers (e.g., collagen) (Ochi et al., 2003; Niu
et al., 2011) to enhance cell attachment and osteoconductivity.
For synthetic polymers to achieve both osteoconductive and
osteoinductive properties they must be a combination product
composed of the synthetic polymer, calcium phosphate, a natural
polymer or cell binding motif, and osteogenic growth factor (Niu
et al., 2009; Lu et al., 2012).

Natural Materials for Bone Regeneration
Interest in natural polymers has been increasing due to a
number of beneficial properties such as low cytotoxicity,
favorable degradation byproducts, low immunogenicity, and
similarity to the ECM. Living organisms synthesize a number
of macromolecular components which a biological environment
can recognize and degrade hydrolytically or metabolically (Mano
et al., 2007). Polysaccharides (e.g., alginate, chitosan) and
proteins (e.g., collagen, silk, fibrin, and keratin) are extracted
from renewable plant (Plowman et al., 2010), algae (Percival,
1979), animal (Zhang et al., 2006; Plowman et al., 2010), or
human (Mosesson and Sherry, 1966; Reichl, 2009) resources.
Here, we briefly discuss several promising carrier systems for
rhBMP-2 or other molecular therapeutics as discussed below.

Fibrinogen/Fibrin
Fibrin is a fibrous protein involved in hemostasis when soluble
fibrinogen (340 kDa molecular weight) is polymerized in the
presence of the enzyme thrombin activated in response to injury.
Orthopedic surgeons have long appreciated the significantly
positive effect blood clots (which include fibrin) have on bone
regeneration. Even though fibrin is not a regular component of
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the uninjured ECM, it serves as a temporary matrix for wounded
tissue until remodeling can replace it with tissue-specific ECM
(Clark et al., 1982). Not only does fibrin provide structure,
but the material alone has been reported to induce osteogenic
differentiation (Martino et al., 2009) and angiogenesis (Feng
et al., 2013). Thrombin-mediated release of fibrinopeptides A and
B (Profumo et al., 2003) attracts inflammatory cell migration to
the site of injury (Senior et al., 1986) and induces cell proliferation
(Sporn et al., 1995). Fibrin has numerous binding sites for not
only cells, but for growth factors and other ECM components
as well. Fibrin sequesters a multitude of growth factors which
are essential for bone regeneration including FGF, VEGF, PDGF,
IGF, and the TGF-β superfamily including BMP-2 (Martino and
Hubbell, 2010). Thus, fibrin ultimately also provides a repository
of signaling cues to direct cell behavior (Brown and Barker, 2014).

Fibrin is degraded (via fibrinolysis) into nontoxic components
by the serine protease plasmin, which is initiated by the
coagulation cascade. The rate of degradation depends on the
fibrin fiber thickness and density; a fibrin network comprised of
dense thin fibers degrades much more slowly than a network of
thick loose fibers (Weisel, 2007). Fiber thickness has also been
shown to play a large role in cell-specific signaling molecule
expression (Shats et al., 1997). Fibrin material properties can be
altered through polymerization by adjusting the concentrations
of fibrinogen, thrombin, and Ca2+/salt concentrations (Cox
et al., 2004). In general, increasing fibrinogen concentration
leads to increasingly dense plug formation. However, care must
be taken not to make the hydrogel too dense or else it will
inhibit cell migration (Karp et al., 2004). Decreasing thrombin
concentration leads to increased material modulus, ultimate
tensile strength, and increasing fibrin fiber diameters (Rowe et al.,
2007). Sodium chloride concentration has an effect on hydrogel
compressive modulus and fiber diameter, which in turn affects
MSC differentiation and alkaline phosphatase expression (Davis
et al., 2011). With all of these factors in mind, fibrin biomaterials
have been used for decades for cell and biomolecule delivery
(Rajangam and An, 2013).

Fibrin is FDA approved as a wound sealant, and clinically,
fibrin sealants have been mixed with hydroxyapatite for
craniofacial applications (Le Guehennec et al., 2004). Isoelectric
points of fibrinogen (pH 5.5) and fibrin (pH 5.6) (Oka, 1981)
would cause fibrin to have negative surface charge at the
neutral pH, which would allow for rhBMP-2 “entrapment” and
adsorption of nucleic acid complexes (Saul et al., 2007).

Keratin
Keratins are intermediate filament proteins and intermediate
filament-associated proteins, which are widely found in nature
and are best known as being the structural proteins referred to as
hard or soft keratins. Wool and human hair are commonly used
as sources for biomaterials due to their availability, renewable
source, low toxicity, ease of sterilization, and ability to be
hydrolytically degraded. Keratins can be processed into a number
of biomaterials such as electrospun fibers, (Xing et al., 2010),
scaffolds (Tachibana et al., 2002; Srinivasan et al., 2010), and
films (Yamauchi et al., 2003). One salient feature of keratins is
the high number of cysteine residues, which can form disulfide

bonds. This allows for control over the number of disulfide
crosslinks within the material and thus the material properties
and rates of degradation (Crewther et al., 1965). One approach
is the chemical modification of cysteine residues via alkylation
on keratin extracted by reductive means (known as kerateine)
(Tachibana et al., 2006; Han et al., 2015). Alternatively, different
chemical forms of the keratin resulting from oxidative (keratose)
or reductive (kerateine) extraction can be mixed to tune the
properties of the materials in a similar fashion to alkylation (Ham
et al., 2015).

Keratin can be used as a traditional sponge (Tachibana et al.,
2002; Katoh et al., 2004) or injectable gel (Aboushwareb et al.,
2009; Saul et al., 2011; Kowalczewski et al., 2014) which allows for
minimally invasive administration able to contour to any defect
shape. A number of studies have already shown keratin’s ability
to achieve healing in injured bone as a carrier for hydroxyapatite
(Tachibana et al., 2005; Dias et al., 2010a,b). Other studies have
demonstrated healing in long bone (de Guzman et al., 2013) and
mandible (Kowalczewski et al., 2014)models when keratin is used
as a carrier for rhBMP-2.

Silk
Silks are proteins well-known for the high number of beta sheets
in their secondary structure. Silk contains integrin bindingmotifs
and is an appealing biomaterial for bone applications due to
its very high tensile strength, osteoconductive nature (Meinel
et al., 2005), and predictable rate of degradation (Altman et al.,
2003). The two primary sources of silk are spider or silkworm
(Arntzen and Ritter, 1994), and these can also be modified (e.g.,
by crosslinking tyrosine residues) to provide a more tunable
carrier platform (Partlow et al., 2014). Silks can also be processed
into a number of forms including films (Dutta et al., 2013),
fibers (Mandal et al., 2012; Panda et al., 2015), hydrogels (McGill
et al., 2017), scaffolds (Marolt et al., 2006; Zhu et al., 2014),
and are compatible for fabrication of composites with ceramic
(Jin et al., 2015) or synthetic polymers. Furthermore, these
materials have been used as carriers for rhBMP-2 (Karageorgiou
et al., 2006; Ma et al., 2016) and promoted bridging in a
critically-sized rat femur defect model (Kirker-Head et al.,
2007). Interestingly, domestication of silkworms (i.e., diet and
environmental conditions) has resulted in higher silk yields
compared to wild silkworms (Normile, 2009); however, it has
resulted in alterations in silk properties (Holland et al., 2012;
Fang et al., 2015). In particular, silk from silkworms fed non-
mulberry diet have shown to be superior in applications for bone
regeneration (Naskar et al., 2014; Sahu et al., 2015; Midha et al.,
2016).

Alginate, Chitosan, and Other Polysaccharides
Each of the materials noted above (keratin, fibrin, silk) are
protein-based materials. Polysaccharide-based materials have
also been investigated as a potential carrier system.One drawback
to many polysaccharides is that they do not bear the amino
acid sequences typically associated with cell attachment via
integrin binding domains. Cell attachment and osteoconductivity
in polysaccharides are often enhanced by methods that include
mixing with osteoconductive materials such as hydroxyapatite
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(Danilchenko et al., 2011), chemical surface modifications (Luna
et al., 2011), or incorporating cell adhesion proteins such as
collagen (Lawson et al., 2004) or fibronectin (Kirchhof andGroth,
2008) or integrin binding sequences such as arginine-glycine-
aspartic acid (RGD) (Ho et al., 2017). Although peripheral to
this review, it is noteworthy that alginate has long been used for
cell encapsulation techniques (e.g., for xenogeneic or allogeneic
islet cell implantation for production of insulin for Type I
diabetes; Lim and Sun, 1980). The ability to encapsulate cells and
control matrix stiffness to mediate (stem) cell response makes
such materials particularly interesting for cell-based approaches
to bone repair (Darnell et al., 2017). A potential advantage
of polysaccharide materials, when used alone or as part of a
composite material, is their suitability for controlled release of
small molecule drugs (Nafee et al., 2017), growth factors (Cao
et al., 2017), and nucleic acids (Li et al., 2017) with or without
cells.

MOLECULAR TARGETS TO PROMOTE
BONE REGENERATION

Molecular Promoters of Bone
Regeneration
TGF-β Superfamily and BMPs
In considering potential therapeutics to promote bone
regeneration, it is informative to consider the molecular
nature of the bone healing process. Molecular cues expressed
during healing can be divided into three broad categories: (1)
pro-inflammatory cytokines, (2) angiogenic factors, and (3) the
transforming growth factor beta (TGF-β) superfamily and other
growth factors (Ai-Aql et al., 2008).

Of the endogenous growth factors involved in bone healing,
possibly none are as important as the transforming growth
factor-beta (TGF-β) superfamily which acts upon a broad range
of cells, influencing cellular activity, growth, differentiation,
and extracellular matrix production. After initial blood clot
formation, platelets release TGF-β to stimulate the proliferation
of periosteal cells. Even though TGF-β plays a role in the
production of extracellular proteins for callus formation, its
osteoinductive potential is limited and does not have an effect on
mineralization (Lind et al., 1993). TGF-β’s most important roles
may lay in initiating the production of BMPs in osteoprogenitor
cells while inhibiting osteoclast activation (Dimitriou et al., 2005).

The most important members of the TGF-β superfamily,
in terms of bone regeneration, are likely the BMPs. BMPs
are pleiotropic regulators of growth (Friedrichs et al., 2011),
differentiation (Pera et al., 2004), and apoptosis (Hyzy et al.,
2012) of a variety of cell types. One property of BMPs is
their ability to be osteoinductive by themselves (especially
BMP-2,-6,-7, and -9; Termaat et al., 2005), which makes them
attractive therapeutically for tissue engineering products. They
are strong promoters of differentiation of osteoprogenitor cells
into osteoblasts. BMPs are expressed at various points along
the phases of bone healing. BMP-2, -6, and -9 have been
found to be the most potent inducers of pluripotent MSCs to
differentiate into osteoblasts. Most other BMPs act more to

support the terminal differentiation andmaturation of osteocytes
(Cheng et al., 2003). As previously discussed, to-date only
BMP-2 and BMP-7 have been approved for clinical use in the
United States for bone substitutes. While BMP-2, in particular,
has achieved clinical and commercial success, its side effects due
to supraphysiological dosage suggest that other molecular targets
might be used to reduce the dosages required to achieve bone
healing.

One approach to this end is the use of peptide sequences
or low molecular weight drugs sequences. Peptide sequences
which consist of small components of BMP-2, can used to
promote bone healing while minimizing negative side effects
(Saito et al., 2004; Li et al., 2011). The concept here is to identify
the components responsible for promoting bone healing while
minimizing negative side effects. Another approach is to use
small molecules to facilitate the action of BMP-2 at lower doses.
For example, the SVAK-12 compound interacts with the Smad
binding site of Smurf-1 to prevent degradation of Smad, which
play a role in the BMP/TGF-β signaling pathway (Kato et al.,
2011). Other drugs such as simvastatin (Qi et al., 2013) and
lovastatin (Yoshii et al., 2014) also work on the BMP/Smad
pathway while bisphosphonates (Stadelmann et al., 2008), for
example, work on alternative pathways. A particularly intriguing
approach is the modification of known growth factors with so-
called superaffinity domains, which allows these growth factors
to achieve effects at a lower effective dose through better binding
affinity to their carrier material or ECM proteins (Martino et al.,
2014).

While each of the above approaches has advantages, there are
several continuing challenges. One is that the potency of these
molecules seems to be lower than BMP-2 with, for example, the
P24 peptide having a dose three orders of magnitude greater than
rhBMP-2 (Wu et al., 2008; Li et al., 2011), and thus requiring a
larger overall mass to be delivered. Secondly, due to their smaller
size, these molecules are susceptible to more rapid diffusion from
their carriers, potentially shortening their activity.

Angiogenesis
An issue that has long been known but is yet to be fully solved
for tissue engineering strategies is the need for vascularization
of newly formed tissue (Nerem, 2006). In injured bone the
initial hypoxic conditions during fracture healing stimulate
angiogenesis, which is crucial for successful bone healing (Rowe
et al., 1999). Platelet-derived growth factor (PDGF) is released
from platelets entrapped within the hematoma in the early stages
of bone healing and up-regulates vascular endothelial growth
factor (VEGF) (Hankenson et al., 2011). The expression of VEGF
(Deckers et al., 2002) and PDGF (Xie et al., 2014) by pre-
osteogenic cells has been shown to be a crucial component in
regulating the rate of neo-angiogenesis to correlate with the
rate of bone formation (Gerstenfeld et al., 2003). In addition
PDGF acts as a potent mitogen of inflammatory cells and
mesenchymal stem cells (MSCs) (Dimitriou et al., 2005). Vascular
ingrowth is also regulated by fibroblast growth factor (FGF)
secreted bymacrophages, mesenchymal stem cells, chondrocytes,
and osteoblasts. FGF-1 and FGF-2, being the most commonly
expressed growth factors in bone regeneration, partake by
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increasing callus formation and osteoblast activity (Nakamura
et al., 1998). Although angiogenic factors are crucial for effective
bone healing, alone they are not osteoinductive. It might
be expected that the combination of angio-genic factors in
combination with BMP-2 might promote formation of more
rapid healing or higher quality bone. However, combinatorial
approaches have yielded minimal improvements (Patel et al.,
2008), highlighting the need for highly tuned temporal control
of delivery in such strategies (Young et al., 2009).

Cytokines and Other Growth Factors
Pro-inflammatory cytokines interleukin-1 (IL-1), interleukin6
(IL-6), and tumor necrosis factor alpha (TNF-α) are secreted
within the first 24 h of bone damage by macrophages which
causes the initiation of the repair phase of bone regeneration.
These cytokines initiate the downstream responses that, in-turn,
initiate the induction of both angiogenic factors and growth
factors. TNF-α activates osteoclast activity for the removal of
bone debris and promotes recruitment of mesenchymal stem
cells. The expression of these pro-inflammatory cytokines is
highest during the first 24 h of bone healing and the cytokines
are subsequently expressed in smaller quantities during repair
and remodeling phase (Kalfas, 2001). The ability to direct
inflammatory response is therefore a potentially potent mediator
of bone healing.

Insulin-like growth factors (IGF) play critical roles in skeletal
development as well as fracture healing by promoting bone
matrix formation such as collagen type 1 (Tsiridis et al., 2007).
IGF-1 is the most potent in the IGF family and is localized
in healing fractures (Andrew et al., 1993). IGF-1 stimulates
chemotaxis and activity of osteoblasts, and has the greatest effect
on bone formation when it is used in combination with TGF-β
(Schmidmaier et al., 2003). One advantage of BMP-2 strategies
is that this molecule is sufficient and necessary in the natural
regeneration process, which has allowed it to be used alone to
promote bone regeneration. Strategies that employ other and
multiple growth factors may require improved understanding
of the underlying biology and strategies to precisely time the
delivery of these molecules. Although beyond the focus of this
review, the advancement of small molecules and osteogenic drugs
in bone regeneration can serve as alternatives to exogenous
growth factors and cytokines (Han et al., 2013; Laurencin et al.,
2014; Balmayor, 2015). A number of small molecules have been
used alone (Papadimitriou et al., 2015) or in combination with
growth factors such as rhBMP-2 (Cho et al., 2017) with success in
bone regeneration. However, due to non-specific cellular uptake,
adverse effects due to unwanted signaling cascades, and lack of
efficient local sustained delivery (Brouwers et al., 2011; Laurencin
et al., 2014) are limiting factors in the current progress of small-
molecules.

Molecular Inhibitors of Bone Regeneration
Molecular control over fracture healing follows developmental
osteogenesis very closely (Gilbert, 2000). Patterning and
maintenance of tissue is overseen not only through molecular
promoters, such as those discussed above, but is also by
molecular inhibitors. Recent interest, as noted above for
the SVAK-12 compound, has focused on bone regeneration

inhibitors in particular due to their mechanistic role in
which negative feedback and crosstalk decrease the cellular
exposure of the molecular promoters of bone regeneration.
The effectiveness of these signaling regulators and how they
can have significant negative impact on BMP efficacy can be
appreciated when considering the therapeutic dose of BMPs
in bone substitutes. One reason that BMP carriers are loaded
with supraphysiological concentrations is likely related to the
need to overcome the regulating factors of BMP inhibitors in
order to achieve a therapeutic response. These inhibitors are
present within the BMP signaling cascade at (1) intracellular
locations, (2) as pseudo-receptors, and (3) in extracellular
locations.

Intracellular inhibitors of BMP signaling include inhibitory
SMADs which are dormant in the nucleus until BMP stimulation
at which time they are released into the cytoplasm. After BMP
binds to its receptor, SMADs inhibit the signal transduction by
interacting with the BMP receptor. SMAD-6 specifically acts to
inhibit BMP signaling while SMAD-7 targets the general TGF-β
superfamily (Ishisaki et al., 1999). Another intracellular regulator
is SMAD ubiquitin regulatory factor (SMURF), which controls
intracellular BMP signal transduction by binding and degrading
various positive signaling molecules or by degrading the BMP
receptor (Murakami et al., 2003).

BMP and activin membrane bound inhibitor (BAMBI) is a
pseudo-receptor which presents an extracellular domain similar
to a BMP receptor domain; the difference is that BAMBI lacks the
intracellular domain. Therefore, when BMPs bind to a pseudo-
receptor it cannot form an active receptor complex in order to
propagate the signal (Tsiridis et al., 2007).

Extracellular inhibitors, mainly produced by osteoblasts, are
secreted proteins that act as BMP binding antagonists which
prevent BMP from binding with its receptors. An increase
in extracellular inhibitor expression is directly correlated with
an increase in local BMP levels. The majority of the binding
antagonists focus on BMPs with the strongest osteoinductive
potential (BMP-2,-6, and -9; Termaat et al., 2005). Even though
BMPs are mainly associated with being molecular promoters
of bone regeneration, BMP-3 is an antagonist of osteogenic
BMPs. Ironically, it is the most abundantly expressed BMP in
adult bone (Tsiridis et al., 2007). The differential screening-
selected gene aberrative in neuroblastoma (DAN) family proteins
include gremlin and sclerostin. Gremlin binds and blocks BMP-
2,-4, and -7. Gremlin is responsible for inhibiting osteoblast
differentiation and reducing bone remodeling (Dimitriou et al.,
2006). Sclerostin is produced by osteoclasts and directly competes
with BMP-2,-4,-6, and -7 in binding to their receptors to inhibit
osteoblast differentiation and bone remodeling. Sclerostin not
only decreases MSC differentiation and osteoblast activity but
also induces apoptosis in bone cells. Follistatin neutralizes BMP-
2,-4,-15, and joins with high affinity to BMP-7 by forming a
trimeric complex between itself, BMP, and the receptor (Abe
et al., 2004). In embryogenesis, follistatin is known to inhibit
all aspects of BMP activity (Iemura et al., 1998), but its role in
adult bone healing is yet to be completely understood. Chordin
binds BMP-2,-4, and -7 and blocks their ability to bind to BMP
receptors and acts similarly to gremlin (Canalis et al., 2003).
Noggin has the ability to bind to the greatest number ofmolecular
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promoters of bone regeneration: BMP-2,-4,-5,-6, and -7 and
prevents them from binding to BMP receptors. Noggin works in
a complementary fashion with gremlin to develop a local zone
which is devoid of BMP (Stafford et al., 2011).

Interfering RNA Approaches to Removing

Inhibitors/Antagonists
Although each of the molecules discussed above play inhibitory
or antagonistic roles in response to BMPs, they also play
important roles in the homeostasis of healthy bone. As such,
approaches to temporarily (not permanently) remove these
molecules are important.

Small interfering RNA (siRNA) is a gene-silencingmechanism
by which post-transcriptional gene silencing can occur (Cheema
et al., 2007). Delivery of siRNA alone is not successful due to its
susceptibility to degradation and overall negative charge, which
prevents siRNA from passing through the cell membrane (Wang
J. et al., 2010). To overcome these challenges and allow siRNA
to be effective in the cytoplasm of targeted cells, siRNA can be
packaged into viral or non-viral vectors.

Of particular interest in tissue engineering approaches is the
ability to easily incorporate these constructs into biomaterial
scaffolds. Krebs et al. were among the first to demonstrate
the ability of a three dimensional hydrogel to achieve delivery
of siRNA in a sustainable fashion (Krebs et al., 2009). Local
delivery strategies now involve layer-by-layer (Hossfeld et al.,
2013), nanoparticle embedding (Mittnacht et al., 2010), and
direct incorporation into a cationic hydrogel (Ma et al., 2014).

In terms of promoting bone regeneration, focus has been
on co-delivery of inductive molecules such as BMP-2 and
siRNA targeting suppressive molecules. Targeting intracellular
regulators of BMP-2, such as Smurf1 (Rodriguez-Evora et al.,
2014), resulted in improved osteogenic activity of MSCs. “Pre-
treatment” with noggin siRNA has also led to significantly
increased expression of osteogenic markers in in vitro, and of
bone regeneration in vivo (Wan et al., 2007). Substrate-mediated
siRNA delivery for bone application has just begun to make
an impact on the scientific community. The use of chitosan
hydrogels as a reservoir for siRNA delivery has shown successful
down regulation of osteoclast activity in vitro (Ma et al., 2014).
Substrate-mediated delivery of noggin siRNA from a synthetic
polymer has successfully enhanced osteogenic activity in vitro
(Nguyen et al., 2014) and we recently achieved delivery of noggin

siRNA from the surface of fibrin hydrogel films (Kowalczewski
and Saul, 2015).

CONCLUSIONS

In order to address the challenges and drawbacks of current
augmentation strategies for critically-sized bone defects,
tissue engineered bone substitutes have been designed to be
both osteoconductive (collagen carrier) and osteoinductive
(rhBMP-2). Like many first-generation products, there have
been a number of drawbacks to rhBMP-2 collagen carriers
such as edema and ectopic bone growth. In order to develop
the next generation of bone substitutes it is important to
understand the biological action and temporal expression during
the healing cascade. Currently the focus has been placed on
only incorporating molecules which promote bone regeneration
(BMPs) without acknowledging the innate molecular controls
achieved with inhibitory molecules (e.g., Noggin, Gremlin). In
order to successfully decrease the therapeutic concentration of
BMPs, novel carrier systems that maintain or enhance rhBMP-2
bioactivity must be designed and the negative feedback signaling
caused by BMP antagonists must be addressed.
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