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ABSTRACT
Due to the unique properties such as nontoxicity, biodegradability, availability from renewable 
resources, and cost-effectiveness, polysaccharides play a very important part in the science and 
technology field. The various chemically modified derivatives of these offer a wide range of high value- 
added in both food and non-food industries. Among the chemical modification, etherified polysacchar-
ide is one of the most widespread derivatives by introducing an ether group which is commonly stable 
in both acidic and alkaline conditions. Hydroxyalkylation, alkylation, carboxymethylation, cationization, 
and cyanoethylation are some of the modifications commonly employed to prepare polysaccharides 
ethers derivatives. There also has been a growing tendency for creating new types of modification by 
combining the different means of chemical techniques. The correct determination of degree of 
substitution (DS)/molar substitution (MS) is crucially important. The objective of this article is to 
summarize developments in synthetic etherified polysaccharides, involving analytical methods for 
determination of MS/DS, measurement processes, and the associated mechanisms.
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1. Introduction

In recent years, the requirement for polysaccharide deri-
vatives for various uses has increased dramatically. There 
are a great many factors contributing to these increases 
include: (1) There are inexpensive and readily available 
sources of polysaccharides all over the world, especially 
for starch, cellulose, and glycogen; (2) polysaccharides 
have good compatibility with numerous other sub-
stances during production, especially hydrocolloid in 
foods; and (3) polysaccharides are renewable, eco- 
friendly, and biodegradable. Indeed, on a global scale, 
intensive efforts are concentrated to produce different 
kinds of polysaccharide derivatives for different applica-
tions that apply to different industries.

Due to the disadvantages of native polysacchar-
ides that limit their use in both food and non-food 
applications, the modification by chemical or physical 
techniques is necessary [1]. The various modification 
technologies, particularly chemical and physical mod-
ifications, can alter the properties of different poly-
saccharide derivatives and their pastes and gels in 
different ways. Thereinto, the functional properties 
of native polysaccharides can be improved by chemi-
cal modifications, including but not limited to 

esterification [2], etherification [3–5], acylation [6], 
crosslinking [7], oxidization [8], and depolymerization 
by acid [9] or enzymatic hydrolysis [10].

Modifying polysaccharide by etherification significantly 
changes the physicochemical properties, for example, 
hydroxypropylation can effectively inhibit the ordered 
structure of starch paste, retard the retrogradation, 
enhance the fluidity, and improve the clarity [11]; quaterni-
zation acquires higher solubility, better heavy anion- 
exchange capacity and metal ions sorption [12], alkylation 
stimulates the benzo[a]pyrene (BaP) aqueous solubilization, 
and presents high surfactant properties [13]. Furthermore, 
the specific characteristics of the polysaccharides and the 
levels of chemical modification are closely related. [14–16] 
Therefore, it is necessary to determine the extent of ether-
ification as well as the distribution of substituents. 
Moreover, with the increasing industrial importance of 
modified polysaccharides, the interest in methods for its 
analysis is growing.

Normally, there are two parameters which are used to 
represent the amount of derivatization [14–15]. 
Simplistically, for now, we will take starch for example. 
One is degree of substitution (DS), i.e., the average number 
of hydroxyl groups per repeating unit that were replaced by 
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a given substituent, which is defined by the amount of 
hydroxyl groups in the repeating unit that can be chemi-
cally modified. Hence, the maximum DS varies with the 
structures of polysaccharides, which is restricted by the 
total amount of hydroxyl groups that are available within 
the repeating unit. The maximum DS for starch, cellulose, 
and glycogen is 3, however, the maximum DS for agarose 
and xylan is 4 and 2. Some substituents, like hydroxy alkyl 
groups, feature a hydroxyl group themselves that is also 
accessible for chemical modification. In these cases, an 
additional descriptor is required, i.e., molar substitution 
(MS). The MS value describes the average number of sub-
stituents per repeating unit that were introduced. This 
value can exceed the total amount of hydroxyl groups per 
repeating unit. The parameter of MS depends on the synth-
esis conditions of etherified polysaccharide and can vary 
over a wide range. MS is associated with the degree of side 
chain formed; the size of the MS value can be theoretically 
infinite. Among the hydroxyalkylation, hydroxyethyl starch 
(HES), for example, the hydroxyl group of each hydro-
xyethyl group can be hydroxyethylated, even multiple 
etherifications. Thus, the MS is often used to define the 
formed chains of substituent groups and is used hereafter. 
So, the MS is the correct term to use for the formed chains 
of substituent groups and is used hereafter. Meanwhile, the 
convenient and practical methods are essential to the 
determination of DS/MS.

Along with the rocketing development of carbohydrate 
chemistry in the past several decades, a variety of modifica-
tion strategies and techniques have been discovered and 
successfully applied and the determination of DS/MS has 
become a problem that cannot be ignored. A number of 
review articles concentrated entirely on preparation, char-
acterization of physicochemical properties and application 
of etherified polysaccharide [16–22], and there is almost no 
comprehensive review of this topic in recent years. An ear-
lier extensive review by Morgan in 1946 [23] was directed 
toward the development and improvements of previous 
methods for the determination of ethylene glycol ethers. In 
so doing, his research helped pave the way for many valu-
able explorations in the study of glycol ethers, including 
hydroxyethyl cellulose. Numerous examples of the use and 
modified of Zeisel, spectrophotometric, and other methods 
for the determination of the alkoxyl substituent in polysac-
charide were summarized by Cobbler and Samsel in 1962 
[24]. Mini-reviews of determination of the hydroxypropyl 
(HP) level in modified cellulose and starch were surveyed by 
Ho and Seib, respectively [25,26]. More recently, the meth-
ods of determination of amounts of hydroxypropylation 
were summarized concisely by Fu in 2019 [27], and the 
determination of the DS of starch esters was outlined by 
Shi in the ‘DS determination’ section of Part three of the 
article [1].

Due to insufficient attention paid by the published lit-
erature reviews of the comprehensive determination meth-
ods of the extent of etherification, we decided to 
summarize the analytical methods for determination of 
MS/DS of etherified polysaccharide, including the alkyl 
ethers, hydroxyalkyl ethers, carboxymethyl ethers, cya-
noethyl ethers, cationic ethers, and mixed ethers. 
Throughout the paper, a systematically discussion of mea-
surement processes and associated mechanisms is also 
presented. The objective is to enlighten the researchers to 
identify challenges and opportunities related to this field.

2. Hydroxyalkyl ether

The hydroxyalkylation of polysaccharide involves one or 
more hydroxyl groups on an anhydroglucose unit (AGU) 
reacting with epoxides in alkaline conditions. Hydroxyalkyl 
ethers have (Figure 1) been prepared earlier using ethylene 
oxide (EO), 1,2-propylene oxide (PO), 1,2-butylene oxide 
(BO) [28,29], and other long-chain 1,2-epoxyalkanes [30]. 
Starch hydroxyls attack at the least sterically hindered site 
on the epoxide via a bimolecular nucleophilic (SN2) 
mechanism. Several analytical methods for the determina-
tion of the MS of hydroxyalkyl ethers have been developed 
over the years and is generally mature enough.

2.1. Hydroxyethylation

Hydroxyethylation of polysaccharides was most com-
monly found in hydroxyethyl starch (HES) and hydro-
xyethyl cellulose (HEC). For example, HES, as 
a medically plasma volume expander, the MS and DS 
are the key determining factors of the duration of phar-
macologic action, solubility, and stability in water [31]. 
As we noted earlier, because of multiple substitutions, 
there is some difference between DS and MS [32].

The previously described method for the analysis of 
ethoxy group was determined by chemical titration. The 
measurement of Werner and Mitchell [33] is generally upon 
the chromic acid oxidation of the ether and titration of the 
excess dichromate, which was suitable for monomethyl 
ethers of ethylene glycol. The classical Zeisel method used 
constant-boiling hydroiodic acid to cleavage the hydro-
xyethyl ethers into their corresponding alkyl iodides. 
[34,35] Due to the lack of adequate awareness of another 
product, i.e., ethylene, it failed to give quantitative and 
reproducible results in a very long period of time. Until 

Figure 1. The general formula of some the hydroxyalkyl ethers.
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1946, Morgan [23] devised a modified alkoxyl method and 
apparatus which was suitable for the determination of 
hydroxyethyl cellulose via the titration of ethyl iodide and 
ethylene with silver nitrate and bromine, respectively. In 
consideration of the feasibility of low substituted hydro-
xyethyl starch and the amount of excess hydriodic acid, 
Lortz [36] modified and strengthened the Morgan’s alkoxyl 
apparatus, adjusted the sample size and corresponding 
hydriodic acid to regulate the small amounts of ether sub-
stitution within the scope of 0.005 to 0.20 hydroxyethyl and 
hydroxypropyl group per anhydroglucose unit. However, 
the method is not ideal for alkyl groups of longer chain 
length than propyl, for instance, hydroxybutyl ether. The 
absorption-titration method has been used for a long time 
both here and abroad. In combination with gas chromato-
graphic (GC) technique, several modified Zeisel methods 
for creating increasingly precise determination for alkyl 
cellulose ethers, [24,37] hydroxyethyl starch and derivatives 
[38,39–42] have been published. The analyses of a series of 
ethyIcelIulose specimens [24], HES 130/0.4 [43,44] and HES 
150/0.5 [45] by the gas chromatographic method and the 
method of chemical titration were compared, the techni-
que of Zeisel gas chromatography provides a simple, rapid 
and reproducible quantitative analysis method. The pro-
posed mechanism for the hydriodic acid decomposition 
procedure of HES and HEC is illustrated in Scheme 1. As it 
is mentioned in the mechanism, there are two routes. One 
is acid catalyzed and the direct conversion to iodoethane. 
Another is that the final iodoethane was synthesized via 
ethylene intermediate. Two routes can lead to the produc-
tion of iodoethane.

The MS ratio calculation of the HES/HEC is theoretically 
based on the ethylene oxide unit (C2H4O) by the following 
equation 1. [18] The parameters E and m in formula 1 equal 
the weight of iodoethane and sample; WE is the weight % of 

EO in HES; the values 155.97, 162.14, and 44.05 in equation 
equal the molecular weight of iodoethane, AGU, and C2 

H4O. 

WE ¼
44:05� E � 100

155:97�m
; MS ¼

WE

100 � WE
�

162:14
44:05

(1) 

Furthermore, in consideration of the systematic errors of 
the destructive analysis of HES, such as incomplete clea-
vage or chemical side reactions during acid hydrolysis, etc., 
a non-destructive, fast and relatively accurate method to 
estimate MS with minimal and simple sample preparation is 
crucially important. As we all know, the NMR spectroscopic 
method is a powerful tool for analyzing polysaccharide 
structures. In 2015, Moiseev and co-workers [46] reported 
the modified Proton Magnetic Resonance (PMR) spectro-
scopy technique which was used for determining the MS in 
HES. The results suggested that the PMR spectroscopy is 
a sensitive and accurate technique with some advantages 
by correlating the integrated intensities of resonances for 
terminal anomeric protons, substituted branching chains 
and unsubstituted AGU residues in HES. In allusion to the 
identification and quantitative analysis of impurities, it also 
has certain advantages.

On the other side of the coin, for the most natural 
polysaccharides mainly of starch and cellulose, the site 
where the chemical modification occurs, would at its C-2, 
C-3, and C-6 hydroxyl groups of the AGU to generate the 
esters, ethers, carbonates or carbamates, etc. The determi-
nation of DS and regioselectivity of these which are vitally 
important for the characterization of original and techno-
logically advanced materials can often be a complex task 
[47]. For hydroxyethylation, take the HES for example again, 
the DS of HES has been to shown to be an important 
measure for determining the efficacy of different starches 
[32–50]. For the modification of glucose unit, different sub-
stitution degree ratios on O-2, O-3, and O-6 have been 

Scheme 1. HI-decomposition reaction of HES and HEC.

Scheme 2. The hydrolysis and dehydration processes of β-HPS.
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published [51–54]. The substituent distribution of hydro-
xyethyl starch has been determined by capillary GC [52] or 
GLC [55] or GC-MS [41–54] of the silylated hydrolysate with 
the exception of the early joint use of paper and thin-layer 
chromatography and spectrophotometry [51].

2.2. Hydroxypropylation

Hydroxypropylation is a widely used and accepted means 
to modify the structure and properties and promote the 
functionality of polysaccharides such as chitosan [56–58], 
starch [59,60], cellulose [61,62], and others [63,64]. It was 
effective in improving shelf life, freeze-thaw stability, cold 
water swelling, and reconstituting characteristics. Take 
Hydroxypropyl starch (HPS), for example. By reacting with 
PO, the hydroxypropyl groups were introduced into the 
glucose unit of alkali-activated starch. As a result, the retro-
gradation has been prevented, the paste clarity has been 
improved, and the shelf-life, freeze-thaw stability, and cold 
storage stability to starch-based food products have been 
extended. The extent of substitution is a key element which 
influenced the changed physicochemical properties. 
Several methods used to determine DS/MS have been 
proposed. In this section, the classical HPS (Figure 2a) and 
a new-type of HPS (Figure 2b) will be discussed separately 
(Figure 2).

2.2.1. Classical HPS
There are significant numbers of previous researches on 
hydroxypropylation of starch with PO. In other words, the 
hydroxyl group on C-2 of hydroxypropyl rather than the 
terminal position, namely, β-HPS (Figure 2a). Due to the 
stability of ether groups in acid and alkali circumstance, β- 
HPS is a class of modified starch which is widely used in 
food industry. Meanwhile, the FDA stipulates that all of the 
hydroxypropylated starches fit the maximum permissible 
level limitation in food applications, that is to say, the MS 
should not be more than 0.2 [65]. And for β-HPS, the 
spectrophotometric (colorimetric) method of Johnson 
[66,67] is used to determine the MS of hydroxypropyl 
group and is also an official standard method of the Joint 
FAO/WHO Expert Committee on Food Additives.

The colorimetric method is based on reaction of ninhy-
drin with propanal which is liberated from the HPS during 
an acid digest, that is to say, involving the dehydration of 
1,2-propanediol which is generated from the hydrolysis of 

the 2-hydroxypropyl group, and then to propionaldehyde 
and the enolic tautomer (or form) of propanal, which is an 
isomer of allyl alcohol. As early as 1957, Jones and Riddick 
[68] had been reported that the 1,2-propanediol was dehy-
drated to a mixture of allyl alcohol (2-propen-1-0 l) and the 
enolic form of propionaldehyde by treatment of concen-
trated sulfuric acid (Scheme 2), and the mixture of allyl 
alcohol and propionaldehyde can be measured spectro-
photometrically at 595 nm by reacting with ninhydrin to 
generate a violet-colored complex [69].

A standard curve was made using 1,2-propanediol, and 
native starch was used as a control [66–70]. By using the 
following formula 2, the MS was calculated through the 
spectrophotometer by a conversion constant of 0.7763. The 
parameters P and m in formula 2 equals the weight of the 
measured propylene glycol and sample, and F is dilution 
factor; the values 162.14 and 58.08 in equation equal the 
molecular weight of AGU and C3H6O; 

WP ¼ F �
P
m
� 0:7763; MS ¼

WP

100 � WP
�

162:14
58:08

(2) 

Another method is derived from Zeisel determination. In 
the early stages, the determination of MS of polysaccharide 
derivatives was mostly using the Morgan method [23] 
which had been identified as a standard method for testing 
hydroxyethyl cellulose (HEC) by ASTM [71] in 1976 with 
some modification by Lortz [36]. The apparatus, operating 
conditions, and calculation methods had been improved 
for purpose of making it suitable for the determination of 
hydroxypropyl ethers. Wang [72] and Xiang [73] modified 
the classical Morgan method and improved the reproduci-
bility (RSD<1%). As gas chromatography develops, the new 
improvement in separation and determination of the alkyl 
halides become possible. In 1962, Cobler and Samsel [24] 
investigated the 3-isopropoxy-n-propylamine and hydroxy-
propyl cellulose (HPC) ethers by the modified Zeisel 
method with gas chromatographic analysis which affords 
a 50% time saving. In 1979, an improved Zeisel gas chro-
matographic technique had been reported for the determi-
nation of MS in HPC by Hodges [37]. The experimental and 
calibration of HPC were determined and a proposed 
mechanism for the HI-decomposition procedure of HPC 
was illustrated in Scheme 3.

FTIR spectroscopy was used to detect hydroxypropyla-
tion in modified starches. It can not only characterize the 
structure of the HPS, but also estimate the degree of sub-
stitution by using the derivative difference spectroscopy. In 
the past, IR spectroscopy had been used to estimate the 
degree of substitution of various modified starches (e.g., 
cyanoethyl starch, acetate starch, sulphate starch) [74] and 
pectin [75]. Due to limitations of the instrumentation, FTIR 
spectroscopy was used to detect hydroxypropylation in 
HPS successfully until 1992 [76]. The hydroxypropyl Figure 2. Classical structure (a) and new-type (b)of HPS.
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substitution can be detected in a modified starch by IR. As is 
shown in Figure 3, compared with the other functional 
groups, the methyl group is the only distinctive character-
istic which observed as a peak of asymmetric methyl 
C-H stretching centred at 2974 cm−1. The magnitude of 
the peak varies according to the contents of HP substitution 
in the starch, and the peak is clearly defined. The method 
provides a rapid means of detecting hydroxypropylation by 
using the second derivative difference spectrum of the HP 
group. The area under the peak centered at 2974 cm−1 is 
calculated, and the content of HP group is measured by 
utilizing a calibration curve. The studies demonstrate 
a correlation between the content of HP substitution and 
the spectral property in the mid infra-red region. It would 
be a means of rapid quantitation once there were charac-
teristic peaks and a reliable set of secondary standards.

Last but not least to mention is that the proton nuclear 
magnetic resonance [1H-NMR] spectroscopy can effectively 
measure the relative contents of HP groups and glucose 
units [77–79]. As with FTIR spectroscopy, it is also utilizing 
the ratio of the respective proton integrals between the 
chemical shifts of the methyl group protons of the HP 
group and the protons of the polysaccharides. The [1] 
H-NMR method is a two-step method, comprising of depo-
lymerization and deuteration. The purpose of the former 
process is to cut down the molecular weight of the poly-
saccharides with the treatment of acid-catalyzed hydrolysis 
[77–80] or α-amylase-catalyzed hydrolysis [26–83]. After the 
former hydrolysis process, all hydroxyl group protons were 
exchanged with deuterium by treatment with a right 
amount of D2O added into the NMR tube (Figure 4).

There are two general approaches in which the HP con-
tents of HPS could be calculated. One approach uses the 
known concentrations of CH3COOH (or CH3COONa) as an 
external standard, so, the integrated intensities of protons 
on the HP methyl group (IHP) and acetyl (IAc) could be 
utilized to determine the MS directly with the following 
equation 3, where m and I, respectively, represent the 

weight and comprehensive peak resonance integrated 
areas of the resonances assigned to the methyl groups of 
HP and acetic acid. 

WP ¼
58:08� IHP �mNaOAc:3H2O � 100

136:08� IAc �mStarch
; MS

¼
WP

100 � WP
�

162:14
58:08

(3) 

The other approach utilizes the comprehensive area of 
the six protons on C-2, C-3, C-4, C-5, and C6 of a glucosyl 
unit other than hydroxyl group protons [80,81] or the 
anomeric proton [78] to calculate MS. With the former, the 
MS can be figured up by using the proportion of the 
integrated intensities of protons on HP substituents and 
oxygenated carbons (HCO) of the AGU, including the 
methylene (C-6) and methine (C-2, C-3, C-4, C-5) protons 
to the integrated intensity of the HP methyl signals without 
regard to the anomeric proton (Equation 4). For the latter, 
the anomeric proton of the AGU of starch was used as an 
internal standard; the MS can be counted up directly from 
equation 5. The symbol IHP in Equations (4) and (5) is the 
integrated intensity of the methyl group (-CH3) on HP 
substituents, and the symbol IHAP is the integrated intensity 
of the anomeric (C-1) proton of the AGU, and IHCO is the 
integrated intensity of all the methylene (C-6) and methine 
(C-2, C-3, C-4, C-5) protons on the AGUs. 

MS ¼
2� IHP

IHCO � IHP
(4) 

Scheme 3. HI-decomposition reaction of HPS/HPC.

Figure 3. Classical structure of the hydroxypropyl group.
Figure 4. The structure of a deuterated AGU substituted with 
one HP group on O-2.
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MS ¼
IHP

3� IHAP
(5) 

As for hydroxyalkyl etherified starch, the incidence of 
reaction is known to occur mainly at the hydroxy group 
on O-2 by reacting with EO and PO in base [26–84]. The 
anomeric region of the AGU in starch and starch hydro-
lysis products have been distinguished previously by 
Gidley through the use of the [1] H-NMR spectra [85]. 
As for the distribution of HP groups on O-2, O-3, and O-6 
of a glucosyl unit, Xu and Seib [26] determined the 
distribution of HP groups of several starch ethers with 
DS values ranging from 0.05 to 0.23 by [1] H-NMR, and 
concluded that the probability of HP substitution was 
67%–78% on O-2, 15%–29% on O-3 and 2%–17% on O-6. 
With increasing the DS, the proportion (%) of O-6 leaned 
to rise slightly; for the O-3, however, tended to decrease 
slightly. Only the O-2 remained essentially unchanged. 
All of the conclusions are consistent with what has been 
found with cellulose and other starch ethers [52–88].

2.2.2. New-type HPS
The HPS described above is β-HPS, i.e., the hydroxyl group 
on C2 of hydroxypropyl rather than the terminal carbon 
atom (Figure 2a). A new type of HPS, γ-hydroxypropyl 
starch (γ-HPS), is prepared by employing 3-chloropropanol 
as the etherifying reagent [89]. The analogous-structured γ- 
HPS involving the hydroxyl group on the terminal C3 posi-
tion of propyl group (Figure 2b) was reported by our group. 
Two independent measurements for the determination of 
MS in γ-HPS were described.

One is colorimetric Method. In order to explore the 
feasibility, the classical spectrophotometric method of 
Johnson was measured. A calibration curve with 1,3-propa-
nediol was prepared, and the wavelength optimum, reac-
tion time and precision determination were investigated. 
Due to the result and the literature [68], an improved 

colorimetric process was presented with a good repeatabil-
ity (RSD = 0.37%) which was appropriate for determination 
of γ-HPS. The proposed mechanisms of two colorimetric 
processes were illustrated in Scheme 4. The MS ratio was 
calculated by the equation (2).

Another is Zeisel-Gas Chromatography with a feasible 
mechanism for the degradation reaction through an 
assumed 1,3-diiodo intermediate. The process of the clea-
vage reaction could be partially understood by chromato-
graphing the reaction products during the course of the 
experiment. The peak area ratio of 2-iodopropane (A)/ 
1-iodopropane (B) is over 40:1, which illustrated that 2-iodo-
propane is the major hydrolysis product. The actual quan-
tity of final hydrolysis product can be figured up by 
gathering A and B. Calculation of the MS of γ-HPS is theo-
retically based on the propyl oxide unit, C3H6O, by the 
following equation 6. Refer to the HES, the P and m in 
formula 5 equal the weight of iodopropane and the sample 
of γ-HPS; The value of number 58.08, 169.99, and 162.14 
were represented the molar mass of C3H6O, iodopropane, 
and AGU. 

WP ¼
58:08� P� 100

169:99�m
; MS ¼

WP

100 � WP
�

162:14
58:08

(6) 

2.3. Hydroxybutylation

Hydroxybutylation is also an important way to attain poly-
saccharides modification. Currently published literatures on 
hydroxybutyl-modified polysaccharides are more common 
in chemical modification of chitosan [90–93]. For starch, the 
HES and HPS possess many advantages, thus great atten-
tion has been paid to their development and application by 
scholars both at home and abroad in recent years; but there 
is scarce study on the hydroxybutyl starch (HBS) which is 
part of nonionic starch ether [94–96]. Good hydrophilicity 
and stability and favorable thermo-responsive property 

Scheme 4. Proposed mechanism of the butyraldehyde generation from HBS.
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could be obtained by hydroxybutylation. Just like HPS, the 
classical HBS and a new-type of HBS will be stated and 
discussed separately in this section (Figure 5).

2.3.1. Classical HBS
The classical HBS was synthesized by utilizing 1,2-epoxybu-
tane as hydroxylalkylation reagent in aqueous NaOH 
(Figure 5a). The most frequently used method for the 
determination of the MS of HBS was ultraviolet spectro-
photometry which was published by Harry-O’Kuru [97]. This 
whole conversion process contains two parts illustrated 
below in Scheme 4. The first stage in conversion is hydro-
lysis involving the generation of 1,2-butanediol; the inter-
mediate 1,2-butanediol will be turned into n-butyraldehyde 
and the enolic form of butenol by dehydration in 
the second step (Scheme 4). Meanwhile, both of the absor-
bance maximum and standard curves between absor-
bances and concentrations proved the feasibility of the 
method for the determination of the MS of HBS. All of the 
findings of the research provided basis for spectrophoto-
metric procedure for estimating the MS of HBS. The method 
is simple, low cost, high accuracy, and can be used as 
a conventional method in industrial application.

2.3.2. New-type HBS
In recent years, there have been some researches about the 
synthesis and characterization of 2-hydroxybutyl starch, 
however, the new style of δ-hydroxybutyl starch (δ-HBS), 
i.e., the hydroxyl group in the terminal of butyl was rarely 
reported (Figure 5b). Owning to the difference in chemical 
structure and method feasibility [68], the classical spectro-
photometric method was not applicable to δ-HBS. Herein, 
an improved Zeisel gas chromatography for the estimation 
of the MS of δ-HBS was described [98].

Different from the cleavage of HES/HEC or HPS/HPC 
[38–42], the procedure of displacement reaction of δ-HBS 
was a little bit complicated. 1-Iodobutane and 2-iodobu-
tane are the end products of HI-decomposition proce-
dure. A few control reactions were conducted, and the 
latter is the major degradation product. As we stated 
before, the generated diiodide intermediate initially 
could be converted to the final iodobutane through two 
kinds of routes. Either of these routes can lead to the 
production of 2-iodobutane.

3. Alkyl ether

Etherification of native polysaccharides is generally 
obtained by reacting hydroxy or amino groups with alkyl 
halides, acrylonitrile, or epoxy alkanes in the presence of an 
alkaline catalyst. The various functional groups introduced 
with AGU substitution may be either hydrophobic or hydro-
philic and they increase or decrease hydrophilicity of the 
modified polysaccharides. One of the typical hydrophobic 
functional groups is the alkyl or benzyl group, which is 
present in organic ethers of polysaccharides (cellulose 
[99], starch [100,101], chitin [102,103], and pullulan [104] 
under basic conditions. Increasing the substitution level 
with alkyl group markedly increases hydrophobicity of 
alkyl polysaccharide ethers.

According to different etherification substrates, several 
methods used to determine DS/MS have been proposed. 
For alkylation of chitosan, the DS per glucosamine unit was 
often determined by titration [105,106], C/N ratio of ele-
mental analysis and NMR analysis [103].

With the first approach, the extent of reaction and DS 
determination are derived by analyzing the change of 
bromide ions, that is to say, the generation rate of bro-
mide ions is the conversion rate of etherification, and the 
DS of ethers can be calculated by the equation 7 further 
[106], where M is molar mass of the alkyl group; c is the 
concentration of silver nitrate standard solution (mol/L); 
V is the volume of consuming silver nitrate standard 
solution (mL); m is the weight of ethers. 

DS ¼
162:14� c� V
m � M� c� V

(7) 

The second method is specific to particular chitosan and its 
derivatives. The DS was calculated from the C/N ratio of 
elemental analysis, on account of a particular element nitro-
gen [102–[107–110]. And finally, the method of NMR ana-
lysis is suitable for nearly all the polysaccharides and 
derivatives with introduction of groups which have specific 
characteristic peak. For instance, the methyl and methylene 
of the propyl group from propyl-etherified amylose [101], 
the methylene of the allyl group from allyl chitosan deriva-
tives [103], the methylene of the cyanoethyl group from 
cyanoethyl chitosan [111]. DS was calculated from the peak 
area of the NMR spectrum by measuring and comparing 
the integral areas of proton signals in structural fragments. 
Reference is also made to the ‘2.2.1’ section in this article.

4. Other ether

Polysaccharides are typically the natural products. After 
a series of complicated chemical reactions, involving 
carbon-capture process, photosynthesis and more com-
plex biosynthetic modifications, carbohydrates are Figure 5. Classical structures (a) and new-type (b) of HBS.
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formed. Therefore, different forms of modifications are 
applied to optimize the structural and functional proper-
ties of polysaccharides to achieve the targeted applica-
tions. So, different methods used to modify starch 
characteristics include enzymatic, physical, or chemical 
modification. Etherification is one of the most important 
means for the modifications of polysaccharides. Besides 
the above-mentioned ethers, we also emphasize other 
polysaccharide ethers in this section.

4.1. Carboxymethyl ether

Modification is commonly done to improve the struc-
tural composition, molecular weight, linkage pattern 
and ionic character of polysaccharides. Carboxy 
methylation, which can endow macromolecule with out-
standing physical and chemical properties, is an impor-
tant way to introduce carboxyl groups into biopolymers. 
For example, carboxycelluloses are important derivatives 
of natural cellulose polymers, and they have been widely 
used in many biomedical, agricultural, and wastewater 
treatment field applications [112,113]. It is well known 
that the properties (viscosity of solution, film forming, 
interaction with cations, and the formation of supramo-
lecular aggregates, etc.) are mainly determined by the 
total DS, i.e., the average number of carboxymethyl 
groups in the polymer [107].

There are many kinds of methods to measure the DS of 
carboxymethyl polymers in direct or indirect way, including 
the ashing method [108,109], acid washing method [110– 
117], spectrophotometry [118], complexometry [119], NMR 
method [120,121], Zeisel-LC [122], etc [123–127]. In industry 
the DS is usually determined by titrimetric methods [128]. 
All of first four methods belong to this. Over the years, 
aiming at the problem of time-consuming, poor stability 
and testing effectiveness in classical complexometry, many 
other improvements have been made by Huang [129], 
including the replacement for murexide indicator with 
PAN indicator (1-(2-pyridinylazo)-2-naphthalenol) and 
adjusting the original pH (7.5–8.0) to slightly acidic (6.0– 
7.0) for inhibition of precipitation of Cu(OH)2. Like acid– 
base back titration, this is also one of most popular ways of 
determining the DS of carboxymethyl ethers. Moreover, the 
substitution degrees of carboxymethyl groups were further 
calculated and obtained from their respective [1]H NMR 
spectra. Due to the protons of the methylene on the car-
boxymethyl group, a new proton signal appeared in the 
NMR spectra of all carboxymethyl ethers. Besides, the peak 
area of the aforementioned new appeared NMR signal 
turns larger and larger with increasing amount of mono-
chloroacetic acid fed in the preparation process. The con-
tents of carboxymethyl group were calculated on the basis 

of the integrated areas of the corresponding characteristic 
peaks in the [1]H NMR spectra (equation 8). Where A is peak 
areas; N is the number of protons; Signal is assigned to the 
methene (-CH2COOH); AGU is the proton of single hydro-
gen of an anhydroglucose unit. In addition, the extent of 
functionalization (degree of substitution) in chitosan deri-
vatives was quantitatively assessed using the elemental 
analyses of burnable. The degrees of substitution (DS) of 
carboxymethyl chitosan derivatives were calculated on the 
basis of the percentages of carbon and nitrogen [130]. 

DS ¼
ASignal=NSignal

AAGU=NAGU
(8) 

4.2. Cyanoethyl ether

Cyanoethylation of biopolymers such as chitosan [111– 
132], guaran [133], starch [134–136], bagasse [137], cotton 
[138], cellulose [139,140] and others [141–143] can be per-
formed by reacting starch with acrylonitrile using Michael 
addition. The introduction of cyano group into the poly-
saccharides has for long been used to improve properties of 
polymers. Take starch, for example, this treatment gives the 
starch a resistance to biodegradation, a good water solubi-
lity, a thick paste in water and adhesive properties [144]. 
Similarly, the DS has an effect on physicochemical proper-
ties of cyanoethyl polysaccharides [111–143]. The extent of 
cyanoethylation was determined by using the Kjeldahl 
method of nitrogen determination [136]. The degree of 
substitution (DS) was calculated by C/N ratio of elemental 
analysis [145–147]. Due to the methylene linked to nitrile 
group from cyanoethyl polysaccharides, [1]H-NMR could be 
employed for further confirmation of the DS [111–148].

4.3. Cationic ether

Cationic polysaccharides are generally synthesized by the 
reaction of polysaccharides and cationic reaction reagents 
such as tertiary amine compounds, quaternary amine com-
pounds, and imine compounds. Take the starch for 
instance. Tertiary amine ether starch and quaternary 
ammonium ether starch are the main commodities starch. 
They are non-toxic and easily biodegradable. Introducing 
a cationic group to the starch gives good mineral binding 
properties; they are widely used in the paper industry, 
where they are mainly used as a flocculation, dispersion 
and ink fixing agent [149]. Thus, the DS is an important 
parameter [150]. The degree of substitution (DS) was calcu-
lated from the nitrogen content which was estimated by 
the micro Kjeldahl method after purification (equation 9) 
[116–129,132–151]. Where N% is the content of nitrogen 
measured by Kjeldahl; the values 14, 162.14 and M in 
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equation equal the molecular weight of Nitrogen element, 
AGU and cationic ether. There are significant parallels with 
chitosan, cyanoethyl ether, and other nitrogenous 
compounds. 

DS ¼
162:14� N%

14 � M� N%
(9) 

5. Mixed ethers

Over recent years, for the purpose of better performance 
and more widespread application, considerable attention 
has been focused upon the treatment and disposal of the 
modification of polysaccharides. However, it is difficult to 
meet the market demand by using a single modification 
process. There has been a trend to combine different kinds 
of chemical treatments to create new kinds of modifica-
tions. For the moment, more and more often, the polysac-
charides modification processes are complex, i.e., combine 
two reagents or two methods. The physicochemical proper-
ties of chemically modified polysaccharides depend on 
various factors, primarily on the type of modifying agent, 
the conditions of reaction, and the kind of polysaccharides, 
as well as the value of DS/MS. To evaluate on the DS/MS, of 
course, calculate separately on each of the substituent 
groups. For example, acetylated oxidised starch is one 
obtained by dual chemical modification [152]. Assessment 
of the effectiveness of oxidation and acetylation was based 
on the increase in the contents of carboxyl groups and 
carbonyl groups [153] and acetyl groups [154] in starch. 
Beyond that, there are several composite modified poly-
saccharides, such as acetylation in hydroxypropyl chitosan 
[155], hydroxypropyl methylcellulose [156–160].

6. Conclusions

Polysaccharides are generally undergoing the modification 
with the aim of satisfying their physicochemical properties 
to the requirements of the technological processes in which 
they will be utilized as additives only to ensure the appro-
priate structural performance and storage stability of the 
final product. The increasing industrial importance of poly-
saccharides ethers has aroused interest in methods for their 
analysis. The value of DS/MS markedly affects the properties 
of these compounds and the suitable methods for their 
determination are of great necessity. In conjunction with 
the research mentioned previously, the aim of this article is 
to summarize the chemical modification of polysaccharides 
with etherification, and the measurement processes of DS/ 
MS and associated mechanisms are involved. We look for-
ward to seeing that this review could give a summarization 
and prospect on analytical method of DS/MS for etherified 

polysaccharide derivatives and wishing to help encourage 
further research on new methods of analysis and 
modification.
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