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ABSTRACT

The success of antibody-based drugs has led to an increased demand for predictive computational tools to assist antibody

engineering efforts surrounding the six hypervariable loop regions making up the antigen binding site. Accurate computa-

tional modeling of isolated protein loop regions can be quite difficult; consequently, modeling an antigen binding site that

includes six loops is particularly challenging. In this work, we present a method for automatic modeling of the FV region of

an immunoglobulin based upon the use of a precompiled antibody x-ray structure database, which serves as a source of

framework and hypervariable region structural templates that are grafted together. We applied this method (on common

desktop hardware) to the Second Antibody Modeling Assessment (AMA-II) target structures as well as an experimental spe-

cialized CDR-H3 loop modeling method. The results of the computational structure predictions will be presented and

discussed.
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INTRODUCTION

The hallmark feature of antibodies is their ability to

bind an almost unlimited collection of target structures

with remarkably high affinity. This high target specificity

combined with modular composition into distinct func-

tional and structural domains makes immunoglobulins

particularly attractive for use as drugs. Antibodies have

been successfully applied in therapeutic contexts for the

last 20 years and there are currently hundreds of

antibody-based drugs in the late stage of clinical trials.1

The focus of engineering efforts revolves around the FV

region of the immunoglobulin, the smallest fragment of

the antibody that retains antigen binding ability. One

particular challenge in modeling an antigen-binding site

is that the regions of interest—the six hypervariable loop

regions—are designed by nature to be diverse, whereas

the region outside the antigen binding loops, the frame-

work region (FR), is structurally characterized by a con-

served beta barrel fold.

Accurate computational modeling of isolated protein
loop regions can be quite difficult; consequently, model-

ing an antigen binding site that includes six loops is par-
ticularly challenging. Fortunately, five of the six
hypervariable “CDR” loops, three of the light chain

(CDR-L1, CDR-L2, and CDR-L3) and two of the heavy

chain (CDR-H1 and CDR-H2) assume a rather small rep-
ertoire of main chain conformations and are therefore
called “canonical” loops2–4 leaving the central challenge
of modeling the CDR-H3 loop. A further complication is
the fact that the antigen-binding site has to be modeled
as a dimer composed of the variable domains of the light
VL and heavy VH chains. Given that the CDR loops bind
to the antigen at the interface of the VL and VH chains,

their relative orientation also affects binding and can cre-
ate an additional source of diversity.

A computational assessment of various antibody mod-

eling programs was held in 2009,5 the First Antibody

Modeling Assessment (AMA-I). Our various submissions

in AMA-I were characterized by the amount of user

intervention necessary to model the target as well as a

control protocol that used no antibody-specific
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knowledge. Our primary fully automated protocol used

in AMA-I, referred to as “autoFv,” has undergone several

modifications since its first implementation and is the

standard for automated antibody homology modeling in

the Molecular Operating Environment6 (MOE) software.

In this work, we report on our contributions to the

Second Antibody Modeling Assessment (AMA-II) that

consisted of two stages: Stage 1 involved full structure

modeling (as in the AMA-I) while Stage 2 focused on H3

modeling. The autoFv protocol (also referred to as

“ccg3” in this work) was used along with other proto-

type protocols to be described below. Our efforts for

AMA-II were directed at rapid automated modeling of

antibodies; that is, running on common desktop hard-

ware without user intervention. We describe our meth-

ods in the Materials and Methods section. In the next

section, the results of AMA-II computational experi-

ments are presented and discussed. Conclusions are

drawn in the final section.

MATERIALS AND METHODS

The MOE antibody modeler is based upon the use of

a precompiled antibody structure database, the “Fab

Database” (see below). This database is used as a source

of framework and hypervariable region structural tem-

plates, which are grafted together (see below). Typically,

the Fab Database will contain Protein Data Bank7,8

(PDB) structures augmented with additional proprietary

structures, if available. In this work, only PDB structures

available as of December 2012 were used, a total of 1,969

structures. Given the VL and VH amino acid sequences as

input, the automated antibody modeling protocol

(autoFv) proceeds as follows:

1. Search the Fab Database sequences for collections of

candidate templates for each of VL, VH, and the FR

FV 5 (VL,VH) as well as individual CDR loops.

2. Build 10 crude models from combinations of the tem-

plate candidates. Each model is built by grafting the

loop templates onto the template VL and VH frame-

work chains. In case of hetero template composition,

the VL and VH grafted templates are transposed via

backbone superposition to FV dimer coordinates of

the highest ranking (see below) FV dimer of the VL 1

VH search results. Side chains are modeled with a

rotamer library and coordinates are refined using

forcefield energy minimization to relieve strained geo-

metries and clashes.

3. Build a consensus model from the pool of crude mod-

els. The model with the lowest FV binding energy is

used as the consensus structural core.9 The binding

energy of the FV complex is calculated as E (VL:VH) –

E (VL) – E (VH). Cluster the CDR conformations in

the pool and select the best representative (see below)

for each CDR loop. Graft the selected loops onto the

consensus structural core using the protocol for build-

ing the crude models.

This autoFv procedure is termed “ccg3” for AMA-II;

the “ccg1” and “ccg2” prototype protocols are derivatives

of ccg3 that will be described after the details of the

ccg3/autoFv protocol are described. All three protocols

are summarized in the flow chart of Figure 1.

Fab database compilation

The Fab Database is a collection of antibody structures

determined by x-ray crystallography. It was assembled

using an automated procedure that identifies FV domains

from the PDB (or collection of proprietary structures).

The antibody detection and classification system is based

on a previously published10 collection of VL and VH ref-

erence sequences enriched with antibody sequences sub-

mitted to the PDB with no restrictions concerning type

or species. The reference sequences were aligned using

MOE, followed by single-linkage clustering to extract

antibody clusters of maximum diversity in the frame-

work sequence. The VL reference set is composed of 101

antibody structures with a maximum framework

sequence identity of 85% and the VH set of 85 structures

at a maximum framework identity of 75%.

The entire PDB was then screened for immunoglobu-

lin structures. The sequence of each protein chain is

aligned against the VL and VH reference sets and the

sequence identity is calculated as a percentage of identi-

cal residues within the aligned FV domain as well as

within the respective FRs FR1, FR2, and FR3. Protein

chains are classified as antibody chains if the overall

sequence identity with one chain of the reference collec-

tions exceeds 40%. Classifying an FV chain as either VL

or VH requires a framework sequence identity of at least

60% with one class and <50% with the opposite class.

The cutoffs in the antibody detection as described above

ensured no contamination of other immunoglobulin-like

structures such as T-cell receptor sequences. If detected

as a VL chain, further subclassification into either j or k
subclasses is achieved by aligning to reference germline

sequences originating from the Immunogenetics data-

base.11,12 For structural clustering, the Structural Com-

position of Protein database SCOP13,14 was used as seed

clusters followed augmented with single linkage

clustering.

Template search

Given the VL and VH amino acid sequences of the

antibody to be modeled, the Fab database is searched for

suitable templates. Separate results are collected for VL,

VH, and VL 1 VH as well as the hypervariable loop

regions. A sequence alignment with the BLOSUM6215

substitution matrix is performed. Two different scores

are used for framework and hypervariable loop regions.
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The scores for the FRs are calculated as the identity with

prealigned framework clusters in the Fab Database, fac-

toring gaps into the calculation. The hypervariable loop

scores are calculated as similarity of the query loop com-

pared to the corresponding hypervariable loop sequences

of the same length in the Fab Database.16 Since the tem-

plate search is confined to the content of the Fab

Database, the time required to find suitable templates

takes on average <0.5 s per query. Only the top 10 scor-

ing framework candidates from each of respective result

set are retained. If the sequence identity of a VL 1 VH

result is within 10% of the target sequence then a homo

template (VL and VH belong to the same structure) is

used, otherwise hetero templates (VL and VH from differ-

ent structures) are considered. For the CDRs, only the

top 10 ranking candidates at a minimum sequence

Figure 1
Workflow diagram of the automated antibody homology modeling protocol. The FV consensus model is built based on a collection of either 10
(ccg3) or 5 (ccg2) individual models. The steps that are specific to the ccg2 protocol are outlined in dark blue color; ccg1 is an extension step to

ccg2 or ccg3 in generating additional loop conformation in CDR-H3.
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similarity of 50% are retained. In case the similarity cut-

off in a CDR region is not met, and no templates are

found as a result, the loop will be modeled using the

general loop building procedure of the MOE Homology

Modeler instead of the particular antibody techniques

described here.

Template and model construction

Antibody template structures are built by grafting the

framework and hypervariable backbone geometries

together. The selected CDR template chains are superim-

posed in the backbone atoms (N, Ca, C, and O) onto

the target framework template within three framework

residues on either side of the CDR region followed by

tethered energy minimization to relax strained geome-

tries in the transition. In case of a hetero template com-

position, the templates are transposed via backbone

superposition to FV dimer coordinates of the highest-

ranking FV dimer of the VL 1 VH results of the template

search. The MOE general Homology Modeler was used

to perform sidechain repacking of CDR loop sidechain

rotamers as well as framework residues with van der

Waals clashes (>1.5 kcal/mol) with the grafted loop resi-

dues. For this modeling exercise, all CDR residues were

repacked using the conformations from the MOE

rotamer library exclusively.

For the consensus model, single-linkage clustering is

applied to determine the conformational spread within

the respective CDR loops of the models in the pool built

above. The near neighbor cutoff for the CDR conforma-

tion clusters is set to 0.4 Å for the canonical loops L1,

L2, L3, and H1, 0.6 Å for the H2 and 1.5 Å for H3. The

loop candidate with the highest structure score within

the most frequent CDR conformation was selected as

input for the consensus core structure. The structure

score, S, is a geometric mean with S 5 (t3 g2ob)1/7 where

t, g, o, and b are values between 0 and 1 as follows; t

assesses backbone topology, bond lengths, angles etc.; g is

the Ramachandran phi/psi probability; o assesses crystal-

lographic occupancies; b assesses temperature factors.

Each of t, g, o, and b were calibrated by setting 0 to cor-

respond to the lower range of outliers and 1 the upper

range of outliers as measured from PDB statistics. Values

of S are interpreted as 0 meaning completely unsuitable

for modeling purposes and 1 meaning ideal. Only struc-

tures with S > 0.65 were used in this work.

For the canonical CDR loops, the loop conformations

of the crude models are used as input for conformational

analysis in each CDR loop category, recruiting the most

common conformation as input for the consensus

model. The conformational analysis helps filter CDR

loop conformations that fit particularly well within a dis-

tinct modeling environment, shifting the selection pro-

cess away from general sequence criteria to structurally

more specific ones. Consequently, CDR loops with lower

sequence identity (but higher structure scores) may be

selected for assembly in the consensus model. In addi-

tion, the crude models serve as a pool to address com-

plex structural issues such as the VL:VH dimer

orientation and the variability in CDR loop conforma-

tions that are challenging to predict based on sequence

alone.

Protocol ccg2

The ccg2 protocol is a variation of the autoFv/ccg3

protocol described above. First, only five crude models

are built (instead of the usual 10), which reduces the

overall modeling time significantly. Second, the canonical

CDR loops templates are selected based on position-

based profile scores of the respective CDR loop clusters

in a special canonical loop database (see below) that

match the length of the CDR query; only the top five

most sequence-similar candidates are retained. For H3,

only the top five template candidates based on sequence

similarity calculations are retained.

The canonical CDR loop templates of the ccg2 proto-

col are selected from a dedicated loop database. All

canonical CDR loops extracted from the Fab Database

were grouped by CDR type and loop length. Templates

with structural issues in the protein backbone and/or low

phi/psi scores were discarded. The remainder were clus-

tered based on backbone RMSDs at a resolution of 0.3 Å

employing a single-linkage clustering algorithm followed

by a sequence profile calculation that determined the fre-

quencies of unique residues in each cluster column. The

resulting values were normalized and used as weights for

compiling a position score for each residue in the cluster

and used when matching the template queries to the

sequence profiles of each cluster. A similar approach

using Hidden Markov models has been previously

reported.17 In this way, residues that are more preserved

(and thus more relevant for determining the actual con-

formation) within a cluster have a stronger impact on

the selection.

The selection of framework candidates is based on

position-based profile scores with residues shown to be

involved in FV dimer interactions. The orientation

between VL and VH is a particular challenge in modeling

an antigen-binding site.18,19 Narayanan et al. (2009)

used the Ca RMSD in the FR of VL when superposed on

the VH framework as a metric to quantify the relative

changes in the VL:VH orientation and also demonstrated

that the native VL:VH orientations correspond with the

energy minima measured as FV complex interaction

energies. We make use of this observation along with the

residues identified by Abhinandan and Martin20 in the

framework (L38, L40, L41, L44, L46, L87, H33, H42,

H45, H60, H62, H91, H105, and Chothia numbering)

for the profile scores. With this distinct and reduced set

of residues in place that are (intended to be)
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determinants of the FV dimer orientation, the framework

template candidates were identified based on the number

of identical residues within this distinct set between the

templates. The overall framework sequence identity was

used as a secondary metric to determine the final FR

template selection.

Protocol ccg1

The ccg1 is a derivative of the ccg2 protocol in which

the CDR-H3 loop diversification step is applied using the

Fab Database described above. The database was first

searched for H3 loops identical in length with the query

CDR-H3. Single-linkage clustering was applied based on

backbone RMSD at a resolution of 0.5 Å to determine

distinct sets of CDR-H3 loop conformations. The candi-

date with the best structure score within each conforma-

tion cluster was used as input for template assembly into

the VH chain of the consensus model or native structure.

A model based on each cluster was built in the manner

described above. For each resulting model, VL:VH bind-

ing energies and conformational energies were calculated.

Models with more than 10 clashes >0.5 kcal/mol or pos-

itive conformation energies were discarded. The three

models with the lowest binding energies were output.

Manual modeling of target MA2-1 in AMA-II
Stage 1

The lack of suitable structure templates for CDR L1,

L3, and H3 combined with low sequence identity in the

FR across species precluded a fully automated modeling

approach for target MA2-1. Instead, this target was mod-

eled using the interactive MOE Antibody Modeler appli-

cation using the default settings. This application

suggested PDB:2VUO—one of the few rabbit immuno-

globulins in the PDB—as the only suitable structure

template. The top 3 ranking models based on geometry

assessments in the protein backbone and overall energy

scores of 100 coarse models were used for CDR confor-

mation diversification in CDR-L1, CDR-L3, and CDR-H3

using LowModeMD.21 The backbone atoms N, Ca, C,

and O of the CDR loops L2, H1, and H2 as well as

the framework atoms were kept fixed, allowing only

the sidechain atoms to move and thus accommodating

novel conformations. The procedure was stopped after

300 distinct conformations were generated. The candi-

dates with the lowest energies were selected and sub-

jected to a final structure refinement procedure as

described above.

CDR-H3 modeling in AMA-II Stage 2

Stage 2 focused on modeling CDR-H3 when given x-

ray crystal structures (with H3 removed) provided by

the organizers of the modeling assessment. Our efforts

involved the use of a dedicated CDR-H3 loop database.

This database was searched to find H3 loops (of match-

ing length) that superposed to an RMSD of 0.25 Å to

the surrounding three framework backbone atoms. Side-

chains were repacked as described above and the coor-

dinates were refined using a tethered protocol. During

refinement, all heavy atoms of the input x-ray structure

were held fixed allowing only the H3 loop atoms to

move within the antigen-binding complex. The minimi-

zation procedure was repeated five times, gradually

releasing the tethers on the backbone atoms of H3.

Finally, models with unresolvable clashing energies >2.5

kcal/mol were discarded and the best scoring (see

below) conformation was selected. On average, the

processing time of one conformation consumed �1

CPU minute.

For the compilation of the CDR-H3 loop database, all

H3 loops were extracted from the Fab Database and clus-

tered according to length and backbone RMSD. Single-

linkage clustering applied based on a backbone RMSD

cutoff of 0.4 Å to determine distinct sets of CDR-H3

loop conformations. Structures with positive forcefield

energies, poor (<85%) Ramachandran map probability,

or a clash count of >5 were discarded. The cluster mem-

ber with the highest score (see below) was used as the

representative. The antibody dimer structures of these

CDR-H3 representatives were then extracted from the

Fab Database for further diversification of the loop con-

formation space by subjecting them to conformational

search using LowModeMD. All residue atoms beyond a

perimeter of 5.5 Å of CDR-H3 loop atoms were kept

fixed, as well as the backbone atoms of non-H3 residues

within the perimeter. This left the H3 loop atoms,

including three flanking framework residues and all side-

chain atoms within the perimeter, free. LowModeMD

was terminated after 100 attempts to generate a novel

conformation up to a maximum or when 50 unique

structures were generated. The structural scores of the

newly generated H3 conformations were calculated dis-

carding conformations with inappropriate structure/

clashing scores. The remainders were clustered at a reso-

lution of 0.4 Å and the conformation representatives

were merged with the corresponding conformation pool

extracted from the Fab Database.

As a control alternative to energy-based scores used

for ranking output models in Stage 1, a scoring func-

tion was developed factoring in H3-specific properties

like accessible surface area, psi/phi values and interac-

tion energies of CDR-H3 to the FV dimer complex.

The prepared representative FV dimer structures

extracted above from the Fab Database were used as

raw data. For each loop length category (ranging from

4 to 14 residues), the respective components were cal-

culated, normalized, and the frequency data was fitted

to a Gaussian distribution. The final CDR-H3 loop

score was calculated as the geometric mean of the

three individual loop scores.

Antibody Homology Modeling
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Hardware and software

All calculations (and validation analyses) in this work

were conducted using the MOE version 2012.10 on two

computers, a Mac Pro, Dual Core Intel Xeon at 2.66

GHz, OS X 10.5 (Leopard) and a Dell Inspiron, Intel 2

Dual Core on OS Linux Mint 13. Energy calculations

and coordinate refinement were performed using the

AMBER 1222 forcefield parameters augmented with the

GB/VI implicit solvent model23 with a nonbonded cutoff

of 8 Å. PDB structures were prepared for simulation

work using the MOE Structure Preparation application

followed by Protonate3D.24

RESULTS AND DISCUSSION

AMA-II Stage 1

The Stage 1 models (ccg1, ccg2, and ccg3) were built

using the methods described in the previous section with

the exception of target MA2-1, a rabbit antibody, which

was modeled manually due to a lack of templates in the

PDB. Each final ccg3 model required 20–50 CPU

minutes to compute and 10–25 CPU minutes per final

model for ccg2 and ccg3 protocols with most of the time

spend in coordinate refinement. All of the protocols pre-

sented here produced models of good structural quality

evidenced by an overall MolProbity score average of 1.5,

lower than the 1.8 average we have calculated for 1,969

x-ray structures from the PDB (our Fab Database). A

detailed listing of the various MolProbity measurement

components and comparisons to the other participants

are provided in the Supporting Information Tables of

Topalev et al. in this issue.

Table I presents a comparison of the ccg1–3 structures

with the (previously unknown) x-ray coordinates of the

targets of the second antibody modeling assessment. The

RMSD values measured over the entire framework of all

10 models (FR) reveals a more robust and overall slightly

better performance of the established ccg3/autoFv proto-

col (0.80 6 0.19 Å RMSD), compared with ccg2 (0.87 6

0.24 Å RMSD). However, the discrepancy is largely

caused by a poor ccg2 template choice for modeling tar-

get MA2-3 with a RMSD of 1.35 Å compared with 0.57

Å of the corresponding ccg3 model. The low agreement

in dimer orientation is further evidenced by large tilt

angles (14.3�) and large discrepancies in the HL torsion

and HC2 bend angles (7.8� and 7.9� difference to the x-

ray structure). Our analysis revealed that the failure in

selecting an appropriate framework template for this tar-

get was not solely rooted in a failure of the FR scoring

function that was applied in selecting the five template

candidates to build the crude models, but rather in the

unusual, “open” conformation of CDR-H3 in one of the

models. Unfortunately, this unusual conformation also

measured the lowest FV complex binding energy among

the five crude models that is the driving parameter for

the framework selection of the consensus model. Further

analysis of the MolProbity scores (Topalev et al. in this

issue) and the all-atom energies of the ccg2 model are

reasonable for all of the measured components suggest

that lower interaction energies were not obtained at the

expense of unrealistic structures. It is possible that a

larger collection of crude models as used by ccg3/autoFv

(ten instead of five) offers better protection against

selecting a particularly poor framework template. How-

ever, given our findings that CDR-H3 residues are

strongly influential in the interaction between VL and VH

chains, the issues might be more complex and point

potentially to a chicken and egg problem by which the

orientation of the VL and VH chains may only be pre-

dicted accurately if the correct conformation of CDR-H3

is known. Even with inclusion of the poor modeling

result of target MA2-3, the measurements in the FR are

promising and comparable with the other modeling

approaches presented in this contest (see Almagro over-

view in this issue). As the ccg2 modeling protocol was

still under development at the time of AMA-II, we are

optimistic that further fine-tuning of the scoring param-

eters will produce more stable results that are in keeping

with those demonstrated with ccg3/autoFv over the last

few years. The even more experimental ccg1 protocol

fared worst of the three. Since ccg1 used the output of

ccg2 it would appear that the additional steps were detri-

mental and further investigation is required to diagnose

the cause. An interesting possibility is ccg1’s additional

coordinate refinement with CDR-H3 backbone atoms

fixed (letting the other CDR loops adapt to the backbone

of CDR-H3), which may introduce negative effects on

the other CDR loops (e.g., CDR-L1 in MA2-2, MA2-3

and MA2-10 and to a lesser degree in CDR-L3 in MA2-

3).

Since the distinct arrangement of CDR loops is a criti-

cal factor in the formation of the antigen/antibody com-

plex, CDR measurements must be assessed on two

levels–the first with respect to their orientation within

the dimer and the second with respect to the accuracy of

the individual loop conformations. Assessment is com-

promised, however, when the entire antigen-binding sur-

face (all Loops) is considered due to the influence of the

CDR-H3 loop component. Accordingly, the canonical

loops are assessed first (Table I, Canonical) and, in this

measurement component, these show competitive results

with an average ccg3/autoFv of 1.00 6 0.29 Å RMSD for

all 10 models. The RMSDs are almost identical between

the protocols (�1.0 6 0.25 Å) with some interesting var-

iations in specific cases. For example, larger RMSD out-

liers of single models are responsible for the variations in

the light chain averages (CDR-L1 in MA2-7, 1.25 vs. 0.37

Å and 0.58 vs. 0.27 Å in MA2-8 for CDR-L2), whereas

overall improvement in modeling CDR-H1 and CDR-H2

is observed with ccg2 over ccg3. As expected, the less
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canonical and particularly challenging CDR loops (CDR-

L1 and CDR-L3 of target MA2-1, CDR-H1 of MA2-3 and

CDR-L3 of MA2-5) show lower precision but within the

range of the results in the modeling competition (see

Table I and Teplyakov and Almagro this issue). Promis-

ing results are seen in CDR loops with low agreements

to the North CDR clustering scheme such as the CDR-L3

loops of MA2-2 and MA2-3, CDR-L1 of MA2-4 and

MA2-5 and CDR-H2 of MA2-6 and MA2-8 where the

RMSD values are within the modeling precision of less

challenging cases. An exception is CDR-H2 of MA2-8

that has only been well modeled with the ccg2 protocol

(0.35 vs. 0.90 Å RMSD). As mentioned in Teplyakov and

Almagro (this issue), improvements could be made in

addressing the cis/trans configuration of certain proline

residues in the CDRs in more detail.

A quality assessment of the antigen-binding surface is

not complete without the analysis of the key CDR-H3.

Table I
RMSD Values in Å Between Three CCG Protocols (See Text) and the Stage 1 Target X-Ray Crystal Coordinates; “All” is the RMSD on the Entire

FV Region; “FR” Is the RMSD on the Framework (Excluding the CDR Loops); “Canonical” Is the RMSD on CDR L1–L3 and H1–H2; “L1–L3” and
“H1–H3” Are the RMSDs of Each Individual CDR Loop Region

All RMSD measurements (in Å) are based on backbone atoms N, Ca, C, and O.

Antibody Homology Modeling
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The unusually broad range in loop lengths, the confor-

mational flexibility as well as its influence on other areas

of the antigen-binding complex warrants a separate eval-

uation. Since it is not yet possible to employ any type of

loop conformation dictionary in modeling this loop

accurately, it is probably best to offer a set of plausible

conformations as a representation of CDR-H3 rather

than a single conformation providing only the sequence

as input. To this end, the main objective of the ccg1 pro-

tocol is to provide a diverse, structurally sound, and

energetically plausible collection of CDR-H3 conforma-

tions. On average, 55 alternate and diverse conformations

were generated in approximately one CPU hour of com-

putation on a common desktop computer. While this

approach demonstrates that the primary objective was

satisfied, the H3 modeling results in Table II reveal that

it was not possible to improve the modeling predictions

of CDR-H3 compared with the output conformations of

ccg2 and ccg3 (which performed best). The ccg1 confor-

mation diversification step does not fail in producing

reasonably accurate conformations (average global

RMSD of 1.54 6 0.61 Å) but rather in selecting the best,

or close to the best, solution within the generated con-

formation pool. The H3 scoring function, trained on

loop-specific properties like psi/phi torsion values, FV

interaction energies and surface area was implemented as

a relative metric for ranking CDR-H3 loop conforma-

tions but failed in predicting CDR-H3 conformations

accurately (3.31 6 0.94 Å). By default, the ccg1 protocol

uses energies as a ranking criterion for the models in

addition to the loop score. Selecting the lowest energy

model for predicting H3 would have improved the aver-

age RMSD value to 2.89 6 0.57 Å (and thus within the

assessment) but would have also failed to improve the

prediction accuracy of CDR-H3 of the input models ccg2

or ccg3/autoFv. Figure 2(A) lists the AMBER12 energies

of the target x-ray structures and the global RMSDs in

CDR H3 of the top 3 ranking ccg1 models (Models 1, 2,

and 3) followed by the lowest RMSD model. The suffix

indicates the position of the low RMSD conformer

within the energy-ranked conformation set. The compar-

ison of AMBER12 all-atom energies shows that the x-ray

structures would have been discarded in all cases if pres-

ent in the pool of ccg1 conformations. The correlation

analysis [global RMSD (y-Axis) vs. AMBER12 all-atom

energies (x-Axis)] as depicted in the plots of Figure 2(A)

does not support the notion that prediction accuracy is

linked to low energies of the models further substantiat-

ing our problems in discriminating the best or close to

the best possible solutions. Taken together, these results

suggest that modeling of CDR-H3 still represents a seri-

ous challenge both for us as well as for the participants

that use more computationally expensive methods for

modeling H3.

In summary, the fully automated modeling protocols

ccg3/autoFv and ccg2 show good prediction accuracy in

the structural core and the canonical CDR loop regions. In

AMA-II, the more seasoned and established ccg3/autoFv

modeling method displayed a more robust and slightly

improved performance compared with ccg2 (overall

RMSD average of 1.05 vs. 1.11 Å for ccg2 and 1.14 Å for

ccg1 Table I) in contrast to an internal benchmark (data

not shown). The variations we observe among these mod-

eling procedures are more evident in the framework/dimer

orientation category (see Table I FR section as well as

Topalev et al. and the Supporting Information Section of

Table II
RMSD Values in Å (Local and Global) of H3 Between Three CCG Protocols (See Text) and the Stage 1 Target X-Ray Crystal Coordinates; “Lowest”

Is the Smallest RMSD Value of Intermediate Models Generated in the Protocols; “ccg1–3” Are the RSMD Values of the Three Protocols; “Lowest
E” Is the RMSD of the Intermediate Structure with the Lowest Forcefield Energy for ccg1

Global RMSDs denote loop measurements after superposition of the framework first.
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Figure 2
Comparison of AMBER12 all-atom energies (kcal/mol) of the target x-ray crystal structures with the Stage-1 (A) and Stage-2 models (B). Values

referring to the X-ray structures are shown with gray background, followed by the lowest three energy models (Model-1, Model-2, and Model-3)
and the model with the lowest global RMSD (LowRMSD_x). The suffix indicates the rank in the energy-sorted conformation pool. The RMSD val-

ues (Å) are based on measurements in the backbone (N, Ca, C, and O) of CDR H3 and represent the global RMSD to the target H3. The Plots
show the results of a correlation analysis (global RMSD against AMBER12 all-atom energies), “n” denotes the number of conformations left in the

conformation pool after removal of models with bad energies or unresolvable clashes, “R” is the Pearson’s correlation coefficient of global RMSD

(y-axis) and Amber12 all-atom energies (x-axis).



Almagro et al. in this issue) and are signs of a not yet fully

fine-tuned and matured ccg2 modeling protocol.

Comparison to the first antibody modeling
assessment (AMA-I)

The second assessment (AMA-II) provides an oppor-

tunity to measure the improvements made since the first

assessment (AMA-I). The comparison is best done with

the autoFv/ccg3 protocol since this protocol was also

used in the first modeling assessment. As depicted in

Figure 3, the current version of the autoFv protocol sug-

gests enhancements in the important framework (FR),

canonical loops (Canonical) measurements evidenced by

the average RMSD values of 1.34 vs. 1.05Å over the

entire FV, 0.93 vs. 0.79 Å in the framework and 1.17 vs.

1.0 Å in the canonical loop categories. A similar degree

of progress is seen with the ccg2 protocol. As discussed

above, the differences observed in modeling the H3 loop

are not rooted in a systematic effort to improve model-

ing in this category but rather a result of refinements

made in other areas of the binding site that result in bet-

ter predictions of CDR-H3 overall.

AMA-II Stage 2

Stage 2 focused on modeling of CDR-H3 when given

the coordinates of the remaining antibody dimer. Minor

deviations in modeling the framework and canonical

CDR loops will influence the architecture of the antigen

binding surface and will in turn affect the modeling of

CDR-H3. In this respect, Stage 2 can be viewed as a

reduction of the modeling complexity by eliminating the

uncertainty of modeling the remaining FV region; in

other words, Stage 2 is a CDR-H3 modeling exercise

under ideal conditions. Using the dedicated CDR-H3

loop database and techniques described in the previous

section (still under development at the time of AMA-II),

we generated five models, CCG1–CCG5, selected on the

basis of three different scoring regimes. The CCG1 and

CCG2 models were the two lowest forcefield energy

structures; CCG3 and CCG4 models represent the top

two ranking models based on specialized H3 loop scores;

CCG5 models were selected manually (based on personal

experience, atom clashes and protein geometry) from the

pool of the top ten candidates of each group.

Table III presents the RMSD comparison (local and

global) of each of the generated models with the experi-

mental crystal structure. The number of CDR-H3 confor-

mations generated was �800 conformations for CDR-H3

Figure 3
Comparison of the RMSDs of the automated protocols in the first and
second antibody modeling assessment in the FV region (All), the dimer

framework (FR), Canonical Loops (Canonical), and CDR-H3 (H3).

Table III
RMSD Values in Å (Local and Global) Between Three Distinct Selection Methods (See Text) Employed in Stage 2 and the Target X-Ray Crystal

Coordinates; “H3” Gives the Length of the CDR-H3 Loop; “nConfs” Is the Total Number of Conformations Generated in the Respective Pool;
“CCG1 and 2” Are the RMSDs of the Lowest AMBER12 All-Atom Energy Models, “CCG3 and 4” Are the RMSDs of the Models With the Highest

Loop Scores and CCG5 Is Based on a Manual Selection, “Lowest” Is the Lowest RMSD Conformer in the Pool

All RMSD measurements are based the backbone atoms N, Ca, C, and O.
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lengths of 8, �1,200 for lengths 10 and 11, and �300

conformations for the 14 residue loop of target MA2-6.

Conformation coverage was good with 7 of 10 targets

having a conformation generated at <1.0 Å local RMSD

to the experimental structure, two between 1.0 and 1.25

Å and target MA2-6 at 1.6 Å. It appears the conforma-

tion space of target MA2-6 was not adequately sampled

suggesting that the iteration limits of LowModeMD

should increase as a function of loop length. The energy-

based selections, CCG1 and CCG2, were better than the

scoring function selections, CCG3 and CCG4; this is true

on average and in the individual cases with the exception

of target MA2-3. In three cases, the manual selection,

CCG5, outperformed the CCG1 energy based selections;

however, in two out of the three the RMSD to the crystal

structure was >2.0 Å and these cases (MA2-6 and MA2-

8) also had no generated conformations under 1.0 Å

RMSD. This suggests that in the absence of a close-to-

experiment conformation, aesthetic qualities of the loop

conformation, rather than energy, may lead to closer pre-

dictions. The average CCG1 RMSD to experiment on all

10 targets was 1.5 local and 2.5 Å global. Leaving out the

targets for which no conformation <1 Å RMSD (local)

was generated (MA2-2, MA2-6, and MA2-8) the averages

were 1.1 Å RMSD local and 1.7 Å global. This supports

the hypothesis that if there is a close conformation to

experiment in the pool then the energy based selection

can do well.

Some discussion is warranted surrounding the issues

related to energy based model selection. First, atomic

forcefields are only approximations and, as such, they

have parameterization errors; for example, the bonded

parameters, van der Waals and electrostatics/solvation

treatment. The lowest energy structures can be quite dif-

ferent from each other. For example, Figure 4 shows the

three lowest energy conformers of CDR-H3 sampled near

the x-ray structure of MA2-8; there is a large conforma-

tional spread but with a relatively small energy range of

2.6 kcal/mol (well within forcefield parameterization

error). This presents a problem when ranking conforma-

tions and has been observed in small molecule docking

calculations.25 Second, forcefields are quite sensitive to

small perturbations of the coordinates; experimental

coordinates (which serve as the RMSD reference) are

typically high in energy when compared to refined mod-

eled structures, which, in some sense, is a built-in bias

towards higher RMSD values. Given the premise of Stage

2 modeling with >90% of the heavy atom coordinates

known, the energy differences among the models are

caused exclusively by the conformational variability in

CDR H3. Comparing the top energy models with the

native x-ray structures as shown in Figure 2(B) reveals a

systematic failure in discriminating the low RMSD con-

former from the conformation pool. The results of a cor-

relation analysis of AMBER12 all-atom energy against

global RMSD do not support the notion of a linear

relationship between the two variables [Fig. 2(B)]. This

suggests that other—maybe more CDR H3-specific—

terms are required to increase the loop prediction

accuracy.

In retrospect, keeping all of the non-H3 heavy atoms

fixed in our protocol may have contributed to the

higher RMSD values; for example, the join residues in

the FV (being fixed) may have contributed to increased

strain energy that could have been relaxed if a tether-

ing protocol was used. Such strain would confound

the ranking and perhaps the Ramachandran compo-

nent of the scoring function used in CCG3 and CCG4

(and implicitly in CCG5) may help in such cases if

some means were developed to combine it with the

energy value.

CONCLUSION

We have described a method for automatic modeling

of the FV region of an immunoglobulin. It is based upon

the use of a precompiled antibody x-ray structure data-

base. This database is used as a source of framework and

hypervariable region structural templates, which are

Figure 4
Conformational range in CDR-H3 within a small energy window of 2.6

kcal/mol. The energies of Models 1, 2, and 3 are in order from lowest
to highest and the deviation of the models from the x-ray coordinates

were 6.37, 3.63, and 2.56 Å global RMSD.

Antibody Homology Modeling
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grafted together. Multiple initial models from multiple

templates are constructed. A final consensus model is

built by selecting the templates used in one or more of

the initial selected by considering forcefield binding ener-

gies between FV components along with cluster analyses

of the CDRs of the initial models. In addition, we have

described a method for modeling the CDR-H3 loop in

the context of known coordinates for the remainder of

an FV. The method is based on using a computationally

enriched database of H3 conformations as a source for

loop grafting and coordinate refinement.

The described methods were used in the Second Anti-

body Modeling Assessment (see Almagro, this issue) on

commonly available desktop computer hardware; �30

min of CPU time were required to build each model

without user intervention (except for one manually mod-

eled rabbit FV). Stage 1 of AMA-II involved full FV mod-

eling and our models resulted in an average of 1.05 Å

RMSD to the (previously withheld) x-ray crystal coordi-

nates. Our previously established protocol (used in the

First Antibody Modeling Assessment) proved the best

when compared with two experimental new protocols

still under development. Stage 2 of AMA-II focused on

CDR-H3 modeling with known remaining FV coordi-

nates. Our specialized CDR-H3 modeling method (which

was still under development at the time of the assess-

ment) produced conformation predictions that were on

average 1.5 Å local RMSD to the x-ray coordinates and

2.4 Å global RMSD. Leaving out a few problem struc-

tures resulted in a remaining average of 1.1 Å local

RMSD local and 1.7 Å global.

The accuracy of CDR-H3 predictions (whether under

Stages 1 or 2 conditions) is lower than that of the other

CDR loops and the remainder of the FV region. Our

methods are capable of generating diverse numbers of

CDR-H3 conformations and in the majority of cases con-

sidered in AMA-II there was a generated conformation

<1.0 Å RMSD from the x-structure. The challenge

appears to be the accurate ranking of the conformations.

We present some evidence that the forcefield energies are

a viable method for ranking keeping in mind that

parameterization and coordinate perturbations can have

a significant impact on such ranking.
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