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Abstract

Cortical GABAergic interneurons have been shown to fulfil important roles by inhibiting excitatory principal
neurons. Recent transcriptomic studies have confirmed seminal discoveries that used anatomic and electro-
physiological methods highlighting the existence of multiple different classes of GABAergic interneurons.
Although some of these studies have emphasized that inter-regional differences may exist for a given class,
the extent of such differences remains unknown. To address this problem, we used single-cell Patch-RNAseq
to characterize neuropeptide Y (NPY)-positive GABAergic interneurons in superficial layers of the primary audi-
tory cortex (AC) and in distal layers of area CA3 in mice. We found that more than 300 genes are differentially
expressed in NPY-positive neurons between these two brain regions. For example, the AMPA receptor
(AMPAR) auxiliary subunit Shisa9/CKAMP44 and the 5HT2a receptor (5HT2aR) are significantly higher ex-
pressed in auditory NPY-positive neurons. These findings guided us to perform pharmacological experiments
that revealed a role for 5HT2aRs in auditory NPY-positive neurons. Specifically, although the application of
5HT led to a depolarization of both auditory and CA3 NPY-positive neurons, the 5HT2aR antagonist ketanserin
only reversed membrane potential changes in auditory NPY-positive neurons. Our study demonstrates the po-
tential of single-cell transcriptomic studies in guiding directed pharmacological experiments.
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Significance Statement

Using single-cell Patch-RNAseq, we characterized neuropeptide Y (NPY)-positive GABAergic interneurons
in superficial layers of the primary auditory cortex (AC) and in dendritic layers of CA3. A few hundred genes
were found to be differentially expressed in NPY-positive neurons between these two brain regions, includ-
ing AMPA receptor (AMPAR) auxiliary subunit Shisa9/CKAMP44 and the 5HT2a receptor (5HT2aR). These
findings guided us to perform pharmacological experiments that revealed a role for 5HT2aRs in superficial
auditory NPY-positive neurons.

Introduction
For decades, neurons were mainly characterized by

their anatomic and electrophysiological properties, and
marker expression (for review, see Klausberger and
Somogyi, 2008; DeFelipe et al., 2013; Tremblay et al.,

2016; Yuste et al., 2020). The identification of molecular
markers in combination with sophisticated genetic tools
such as the Cre-lox system has facilitated studies aimed
at a detailed functional characterization of classes and
subclasses of neurons (Tsien, 2016). More recently,
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single-cell sequencing techniques have enabled high-
throughput studies that, for the first time, characterized
the expression of thousands of genes in single cells
(Zeisel et al., 2015; Tasic et al., 2016, 2018). Further, a
combination of transcriptomic sequencing and brain slice
single-cell electrophysiology known as Patch-RNAseq
has been used to get a more refined picture of gene ex-
pression pattern and regional specificity (Cadwell et al.,
2016; Földy et al., 2016; Fuzik et al., 2016).
One particular class of GABAergic interneurons has re-

ceived our close attention: the neuropeptide Y (NPY)-ex-
pressing neurogliaform cells (Wozny and Williams, 2011;
Webster et al., 2021). These cells have mainly been de-
scribed in area CA1 (Price et al., 2005) and the somato-
sensory cortex (Tamás et al., 2003), but their existence in
other brain regions remains unclear (Weiss and Veh,
2011; Webster et al., 2021). At least in the hippocampal
area CA1, a closely related type of GABAergic neuron,
called Ivy cells, has been identified (Fuentealba et al.,
2008). Both neuroglia and Ivy cells express NPY but are
considered two separate classes based on their anatomic
position. Neurogliaform cells are mostly located in the vi-
cinity of pyramidal dendrites in stratum lacunosummolec-
ulare (SLM), whereas Ivy cells reside in the pyramidal cell
layer of CA1 (Fuentealba et al., 2008; Capogna, 2011;
Armstrong et al., 2012). Further, still in CA1, two different
types of neurogliaform cells were identified based on
whether or not they expressed neuronal nitric oxide syn-
thase (nNOS; Tricoire et al., 2010). These two types are
presumed to originate from different neurogenic origins:
nNOS-expressing cells from the medial ganglionic emi-
nence (MGE) and nNOS-negative cells from the caudal
ganglionic eminence (CGE; Tricoire et al., 2010). In the
neocortex, neurogliaform cells have been most thor-
oughly characterized in superficial layers of motor, visual
and sensory areas (Kalinichenko et al., 2006; Chittajallu et
al., 2013, 2020; Ibrahim et al., 2021).
Here, we aimed to use a comprehensive transcript-

pharmacological approach to investigate NPY-expressing
interneurons in the neocortical auditory and allocortical
hippocampal CA3 region. These two regions are known to
comprise of neurogliaform cells, but not much is known
about their transcriptomic composition (e.g., whether or
not they express neuroglia-associated markers, nNOS or
neuron-derived neurotrophic factor (NDNF; Tasic et al.,
2016), developmental origin (MGE or CGE), and pharma-
co-physiological function. At least in the superficial layer
of auditory cortex (AC), the importance of presumed

neurogliaform cells in fear conditioning has been demon-
strated (Letzkus et al., 2011), and also that these cells
expressed NDNF (Abs et al., 2018). However, their
transcriptomic composition has not been analyzed in
detail (Kalish et al., 2020).
Using Patch-RNAseq on cells sampled from NPY-

EGFP transgenic mice, we show differential expression of
.300 genes between CA3 and auditory cortical NPY-pos-
itive cells. These included differential expression of neuro-
developmental markers, which suggested that auditory
and CA3 NPY-expressing cells originated from CGE and
MGE, respectively. Further, based on the transcriptomic
insights, we investigated the role of a specific subtype of
5HT receptors (5HTRs) in pharmacological experiments,
which revealed a role for 5HT2aRs in auditory cortical, but
not in hippocampal NPY-positive interneurons.
In summary, our experiments highlight the benefit of

performing targeted cell-specific and region-specific se-
quencing to guide pharmacological experiments.

Materials and Methods
Animals
The single-cell RNA sequencing experiments were con-

ducted in Zurich, Switzerland. All animal protocols were
approved by the Veterinary Office of Zürich Kanton. The
University of Zurich animal facilities comply with all appro-
priate standards.
The pharmacological experiments were performed in

Glasgow, United Kingdom. All procedures were con-
ducted in accordance with the relevant United Kingdom
legislation [the Animals (Scientific Procedures) Act, 1986].
Both in Zurich and in Glasgow, male and female mice
from the NPY-hrGFP strain were used (van den Pol et al.,
2009).

Single-cell RNA sequencing
Samples were collected and processed as described

previously (Földy et al., 2016; Lukacsovich et al., 2019;
Winterer et al., 2019). In short, after sequencing, raw
reads were de-multiplexed and preprocessed using
Trimmomatic and Flexbar. Raw sequencing reads were
aligned to the Ensembl GRCm38 reference transcriptome
(version 2015-06-25), using STAR aligner with the fol-
lowing parameters: trimLeft = 10, minTailQuality = 15,
minAverageQuality = 20, minReadLength = 30, “single-
end/paired-end,” and “sense/antisense/both” options.
Gene counts were calculated using HTSeq. For conven-
ience, Ensembl gene IDs were converted to gene sym-
bols using the mouse GRCm38 version 86 GTF file as a
reference. In a few cases where different Ensembl gene
IDs identified the same gene symbol, average gene
counts were used.
For both quality control and normalization, we used

scran (Lun et al., 2016). For each cell, we calculated the
log of the number of unique genes that were detected,
and removed cells with a value of at least 3.5 median ab-
solute deviations (MAD) less than the median. For normal-
ization, we used computeSumFactors with sizes of 10
and 20. Cells that had negative or zero size were
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removed. For further analysis and plotting, gene counts
were converted into log2 space with a pseudo-count of 1.

Electrophysiology and pharmacology
Brains were sliced in the horizontal plane for hippocam-

pal recordings or the coronal plane for neocortical record-
ings as previously described (Winterer et al., 2019;
Beerens et al., 2021). NPY cells were recorded from su-
perficial layers [layer 1 (L1)-L2] of the AC and SLM of the
CA3 in ACSF using standard potassium gluconate solu-
tions [for the sequencing experiments: ACSF: 126 mM

NaCl, 2.5 mM KCl, 10 mM glucose, 1.25 mM NaH2PO4,
2 mM MgCl2, 2 mM CaCl2, and 26 mM NaHCO3; intracel-
lular solution: 95 mM potassium gluconate, 50 mM KCl,
10 mM HEPES, 4 mM Mg-ATP, 0.5 mM Na-GTP, and
10 mM phosphocreatine; pH 7.2, KOH-adjusted,
300 mOsm (Winterer et al., 2019), and for the pharma-
cological experiments: ACSF: 115 mM NaCl, 25 mM

NaHCO3, 3 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2,
1 mM MgCl2, 3 mM sodium pyruvate, and 10 mM glu-
cose; intracellular solution 125 mM potassium gluco-
nate, 10 mM HEPES, 6 mM KCl, 0.2 mM EGTA, 2 mM

MgCl2, 2 mM Na-ATP, 0.5 mM Na-GTP, and 5 mM so-
dium phosphocreatine (Beerens et al., 2021)].
The following drugs were used: TCB-2, ketanserin tar-

trate, and serotonin hydrochloride (all Tocris).
To assess the responses to pharmacology a continuous

current-voltage (IV) protocol was applied (range �200–
350pA; step size 50 pA). Current injections lasted 1 s with
9 s in between current injection steps. The total duration
of recording was 30min with 30 mM 5HT and 10 mM ketan-
serin being added to the perfusion system 2 and 12min
after start of the recording, respectively.
For TCB-2 recordings, baseline spontaneous activity

was recorded for 2 min before 10 mM TCB-2 was added to
the perfusion system and spontaneous activity was re-
corded for another 10min. The IV protocol (range �100–
300pA; step size 25pA) was recorded both before and
10min after application of the drug to see its effect on
resting membrane potential (RMP), input resistance (Rin),
and spiking frequency. Spontaneous activity was always
recorded at RMP with 0pA injected and IV protocols were
recorded with a current injection to reach a RMP of
�70mV to keep IV conditions the same throughout the
recording.
L6 PFC pyramidal neurons were also recorded to test

TCB-2 activity as previously shown (Tian et al., 2016). The
same protocol was used as for AC NPY-positive neurons
except for a TCB-2 concentration of 5 mM.

Data analysis and statistics
The pharmacology experiments were analyzed using

AxographX. RMP, Rin, and firing frequency were ex-
tracted from the recordings. The effect of TCB-2 on the
RMP was determined by taking the average RMP of the IV
recording at baseline or 10min after drug application. The
Rin was calculated by the reduction in membrane poten-
tial in response to a �100-pA injection. The number of
spikes per current injection was counted to calculate the

spiking frequency for every 25-pA step of positive current
injection to create a frequency-current-curve (fI-curve).
Regarding the 5HT and ketanserin experiments, the

RMP was determined for every trace within the 100ms
preceding the current injection, resulting in an RMP value
for every 10 s of the recording. The first 4min of the re-
cording were used as a baseline. The effect of 5HT on the
RMP was determined by averaging the RMP values of 1
min surrounding the peak of the 5HT effect. The peak was
defined as where the RMP was the highest, which was
typically around 14min into the recording. The RMP after
ketanserin application was determined by taking the aver-
age of the RMP values from the last minute of the record-
ing. The relative effects of 5HT and ketanserin on RMP
were calculated by taking the average RMP values after
application and subtracting the average RMP baseline
values for each cell.
Statistical analysis was performed and graphs were

generated in GraphPad Prism. Statistical tests used were
t test and two-way ANOVA followed by Bonferroni multi-
ple comparison test. The threshold for statistical signifi-
cance was set at p, 0.05. The following indications of
statistical significance are used: *p,0.05, **p, 0.01,
***p, 0.001.

Data availability
Raw data are freely available under NCBI GEO

#GSE193293.

Results
NPY-positive neurons in AC and CA3:
electrophysiological properties
We first recorded the electrical properties of NPY-posi-

tive neurons in L1 and L2 of the neocortical AC and in allo-
cortical SLM at the boarder to stratum radiatum (SR) of
area CA3 (Fig. 1A) in current-clamp using a 1.5-s current
injection with increasing amplitude (range �200–350pA;
Fig. 1C) to confirm the typical late-spiking phenotype of
neurogliaform cells (Overstreet-Wadiche and McBain,
2015). Then, the cytosol of NPY-positive neurons was as-
pirated via the glass pipette and a cDNA preparation was
performed using established protocols (Földy et al., 2016;
Lukacsovich et al., 2019; Winterer et al., 2019). In total 30
neurons, 10 from AC and 20 from CA3, passed our quality
control criteria (see Materials and Methods).
With regard to electrophysiological properties, we

analyzed passive (e.g., Rin and RMP; Fig. 1D1,D2, re-
spectively) and active properties (e.g., action potential
properties; Fig. 1D3,D4). None of these parameters
were significantly different with the exception of the la-
tency to first action potential (AP) (Fig. 1D3). CA3 NPY-
positive neurons spiked significantly later than AC
neurons using a near-rheobase current injection. In ad-
dition, we analyzed the sag potential in response to hy-
perpolarizing current injections, but this was not
different between the two types (data not shown).
Together, our results show that the sampled neocortical

and allocortical NPY-positive neurons were mostly similar
with regard to their intrinsic electrical properties.
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Single-cell transcriptomics of NPY-positive neurons in
AC and CA3
Molecularly, we found more pronounced differences

between the two cell types. In AC and CA3 NPY-posi-
tive neurons, we detected 3163–6288 (47586 334,
mean 6 SEM) and 3141–8149 (58776 318, mean 6
SEM; Fig. 1E, p = 0.0368, two-tailed t test) genes, re-
spectively. While both types expressed the GABAergic
markers Gad1 and Gad2 (Fig. 1G), over 300 genes are
found to be differentially expressed in NPY-positive
neurons between the two cell types (p, 0.01; Fig. 1D).
Of these, .60 genes were differentially expressed with
a p-value, 0.001 (Fig. 2).
As known markers, Npy and Reln were expressed in

both types, but their expression was significantly higher in
AC compared with the CA3 type. In line with previous
studies, Ndnf and Car4 were expressed in approximately
half of the AC NPY-positive neurons (Tasic et al., 2016;
Schuman et al., 2019), but only in two out of 20 CA3 NPY-
positive neurons. Other markers, such as Lamp5 and
Nos1 were not differently expressed in AC and CA3 NPY
neurons (Fig. 1G).

Next, we examined the expression of transcription
factors that are related to developmental origins
(Lukacsovich et al., 2019; Winterer et al., 2019). MGE-
derived interneurons are known to express the tran-
scription factors Lhx6, Nkx2-1, Satb1, Sox6, Tox2, or
Tox3 (Batista-Brito et al., 2009; Paul et al., 2017; Lim
et al., 2018). Lhx6 and Nkx2-1 were selectively ex-
pressed in CA3 NPY-positive neurons (Fig. 1H, Lhx6:
p, 0.001 and Nkx2-1: p, 0.05). CGE-derived inter-
neurons are known to express the transcription factors
Prox1, Nr2f1, Nfia, or Nfix (Paul et al., 2017). Of these,
Prox1 and Nfix was selectively enriched in AC NPY in-
terneurons (Fig. 1G, Prox1: p, 0.001; Nfix: p, 0.05),
in which Nr2f1 (also known as Coup-TF1) was also
more frequently detected (Fig. 1H). By contrast, Sox6
was rarely detected in either type (Fig. 1H).

Differential expression of synaptic receptor coding
genes
We next explored the expression of ionotropic gluta-

mate receptors (iGluRs) and their auxiliary subunits,
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Figure 1. Single-cell transcriptomics of NPY-positive neurons in AC and CA3. A, Overview image of a coronal neocortical (left) and
a horizontal hippocampal (right) brain slice obtained from an NPY-hrGFP mouse. Scale bar: 1 mm. B, Experimental flowchart start-
ing with electrophysiology, followed by scRNAseq and pharmacological experiments. C, Electrophysiological characterization of AC
and CA3 NPY-positive neurons. Note the longer latency to action potential firing in CA3 neurons (see also D3). D1–D4, Active and
passive electrophysiological properties of NPY-positive neurons. E, Number of detected genes in AC and CA3 NPY-positive neu-
rons. F–H, Differentially expressed genes between AC and CA3 NPY-positive neurons.
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because these play important roles in synaptic transmis-
sion and plasticity (Fig. 3A). L1 neocortical interneurons,
for example, may use them to integrate information from
other neocortical areas (D’Souza and Burkhalter, 2017).
However, NMDA and kainate receptor were not differen-
tially expressed (Grin and Grik, Fig. 3A).
By contrast, although AMPA receptor (AMPAR) sub-

units 1 and 2 (encoded by Gria1 and Gria2) were ex-
pressed in both cell types, Gria1 and Gria2 were
enriched in AC and CA3 NPY neurons, respectively
(Fig. 3A).
Still regarding AMPARs, their auxiliary subunits have

been shown to regulate the biophysical properties as well
as the trafficking of AMPAR (Greger et al., 2017).
Strikingly, the auxiliary subunit Shisa9 (also known as
CKAMP44) was predominantly expressed in AC, but not
in CA3 NPY-positive neurons (p, 0.001; Fig. 3B). Given
that this molecule has been shown to modulate short-
term plasticity (von Engelhardt et al., 2010), it is plausible
that AC NPY-positive neurons may display different re-
sponses following repetitive stimulation compared with
CA3 NPY-positive neurons. In contrast to Shisa9, both
Cnih2 and Neto1, auxiliary subunits of AMPA and kainate
receptors, respectively, were enriched in CA3 NPY-posi-
tive neurons (Fig. 3B). Taken together, NPY-positive neu-
rons may assemble iGluRs and auxiliary subunits in a

region-specific and/or developmental origin-specific fashion
to achieve input-specific synaptic transmission.

Transcriptomically-guided pharmacological
experiments
It is well established that inhibitory GABAergic inter-

neurons receive diverse neuromodulatory inputs (for re-
view, see Pelkey et al., 2017), and are prominent targets
of serotonin modulation (Athilingam et al., 2017; Winterer
et al., 2019). In this domain, our transcriptomic analysis
revealed surprisingly low overall expression of 5HTRs,
with the exception of the Htr2a subunit, which was en-
riched in AC NPY-positive cells (p, 0.001; Fig. 3C).
5HT2a receptors (5HT2aRs) are G-protein-coupled re-

ceptors that have either been shown to form homomers
(Brea et al., 2009) or heteromers (González-Maeso et al.,
2008) mediating a wide range of physiological functions
(Zhang and Stackman, 2015). To examine the functional
consequences of Htr2a expression in AC NPY-positive
neurons, we performed electrophysiological experiments
testing pharmacological responses to the 5HT2aR antag-
onist ketanserin in both cell types. We applied 30 mM of
5HT (Fig. 3D) followed by the application of the 5-HT2aR
antagonist ketanserin (10 mM). We found that 5HT depo-
larized both AC and CA3 NPY-positive interneurons,
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continued
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showing that functional HT receptors were present on
both types (Fig. 3D,E). However, ketanserin only reversed
these changes in AC, but not CA3, neurons. To further ex-
plore 5HT2a-mediated effects, we tested the 5HT2aR-
specific agonist, TCB-2 (10 mM), on superficial AC NPY-
positive neurons (n=6 cells, N=2 mice). However, TCB-2
alone did not alter the RMP, the Rin, and AP firing fre-
quency measured as a frequency-current-curve (fI-curve
range from �100 to 300pA, step size 25pA; data not
shown). In order to test whether TCB-2 was effective, we
applied it on prefrontal L6 pyramidal neurons, because
these cells were recently shown to be responsive to 5 mM

TCB-2 (Tian et al., 2016). However, in contrast to this pre-
vious report, we did not detect any response of TCB-2
(5 mM) on the above parameters during electrophysiologi-
cal recordings from pyramidal cells (n=7 cells, N=3
mice; data not shown). As a consequence, we could not
collect additional information on 5HT2aR function.
Nonetheless, our pharmacological experiment with keta-
serin (Fig. 3D,E) supported the functional expression of
5HT2aR in AC NPY-positive neurons.

Discussion
Using single-cell transcriptomics we investigated

mRNA expression of NPY-positive neurons in two differ-
ent cortical regions, in the neocortical AC and allocortical
area CA3 of the hippocampus (CA3). We found that gene
expression pattern showed remarkable differences be-
tween these region, although NPY-positive neurons in
both regions showed characteristic electrophysiological
features of neurogliaform cells (Overstreet-Wadiche and
McBain, 2015). Cells in both populations expressed well-
known markers of neurogliaform cells such as Reln (reel-
in), Lamp5, and Nos1, but only superficial neocortical
NPY-positive neurons expressed additional markers Ndnf
and Car4 (Tasic et al., 2018). However, depending on the
statistical power applied, dozens to hundreds of genes
were differentially expressed between AC and CA3 NPY-
positive neurons.

Developmental origin
Given that neurogliaform cells have been shown to orig-

inate from different neurogenic zones, MGE and CGE, it
was first important to establish if, in addition to presumed
regional differences, differences in the cells’ neurogenic
origin could contribute to the observed discrepancies. In
the cortex, it has been previously established that deep
layer neurogliaform cells (L5 and L6) express the tran-
scription factor Lhx6, and therefore these were consid-
ered to be derived from the MGE (Lamp 51 Lhx61),
whereas the majority of superficial neurons were consid-
ered to be CGE-derived (Tasic et al., 2018; Gouwens et
al., 2020). In the hippocampus, earlier single-cell PCR
analyses already demonstrated a similar dichotomy in the
origin of CA1 neurogliaform cells (Tricoire et al., 2010),
which was significantly extended by a more recent large-
scale transcriptomic study (Harris et al., 2018). This study
analyzed the transcriptomic content of CA1 GABAergic
interneurons and revealed the existence of 49 clusters
that form 10 larger transcriptomic groups the authors

called “continents.” Two of these were classified as neu-
rogliaform cell containing continents. One consisted of
presumed Ivy and MGE-derived neurogliaform cells,
whereas the other consisted of CGE-derived neuroglia-
form cells (Harris et al., 2018). Cell numbers in these two
larger groups were nearly evenly split. In our dataset from
CA3, only two out of the 20 NPY-positive neurons did not
express Lhx6, suggesting that CA3 NPY-positive cells are
at least dominantly, and possibly entirely, derived from
MGE.

Auxiliary subunits of the AMPAR
Auxiliary subunits of the AMPAR have been described

to be involved in trafficking of the AMPAR, but also in
modulating the biophysical properties of the receptor
complex (Greger et al., 2017). Among others, members
of the Shisa family have been shown to bidirectionally
modulate surface expression and AMPAR-mediated
currents in a region-specific and cell type-specific man-
ner (Abdollahi Nejat et al., 2021). Here, we provide fur-
ther evidence for the latter notion by showing selective
expression of Shisa9/CKAMP44 in AC NPY-positive
neurons. With regard to potential consequences of
Shisa9/CKAMP44 signaling, previous studies provided
hints. Over-expression of Shisa9/CKAMP44 reduced
short-term AMPA-receptor dependent plasticity in CA1
pyramidal neurons (von Engelhardt et al., 2010), where-
as in dentate gyrus of Shisa9/CKAMP44 knock-out
mice enhanced paired-pulse facilitation was observed
(von Engelhardt et al., 2010). These would suggest that
higher expression of Shisa9/CKAMP44 in AC NPY-pos-
itive neurons may weaken short-term plasticity of in-
coming synaptic inputs in these cells. Despite these
insights, short-term plasticity properties of NPY-posi-
tive neurons remains mostly unknown. Future studies
will have to address this issue and how this ties in with
the neuronal firing properties of these neurons
(Fuentealba et al., 2010; Li et al., 2014).

Serotonin receptor signaling
Intriguingly, although 5HT3a receptor has been postu-

lated as a specific marker of superficial neurons in the
neocortex (Tremblay et al., 2016), we could not find evi-
dence supporting this notion in cells collected from super-
ficial AC. By contrast, we found that only AC, but not CA3,
NPY-positive cells expressed 5HT2aR subunits. We fol-
lowed up on this finding with transcriptomically-guided
pharmacological experiments, which revealed functional
modulation of 5HT responses by application of the 5HT2a
antagonist ketaserin (Fig. 3), underscoring our transcrip-
tomics-based finding. Previously, using transgenic mice,
Htr2a expression was found in deep layer pyramidal neu-
rons, but also in fast-spiking and delayed-spiking inter-
neurons in all layers (Weber and Andrade, 2010). Fast-
spiking cells likely represented parvalbumin (PV)-positive
interneurons, whereas delay-spiking cells likely repre-
sented a diverse population of only partially neurogliaform
cells. A different study has shown that 5HT2aR activation
depolarizes PV-positive interneurons and increases their
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Rin (Athilingam et al., 2017). By contrast, only one third of
all L5 pyramidal neurons in the prefrontal cortex re-
sponded, by increased AP firing, to the application of 5HT
(Béïque et al., 2007). Similarly to 5HT, application of se-
lective 5HT2 agonist am-5-HT also induced AP firing in
these cells (Béïque et al., 2007). While we tried application
of another selective 5HT2 agonist, TCB-2, previously also
shown to affect prefrontal L6 pyramidal neurons, we
could not detect changes in AC NPY-expressing neurons
by TCB-2 alone. Given that in our additional control experi-
ments, TCB-2 did not induce AP firing in prefrontal cortical
L6 pyramidal neurons either (not shown), these experiments
remain inconclusive. However, our observation that the
5HT2a-specific antagonist ketanserin reversed the depolari-
zation induced by 5HT in AC, but not in CA3, NPY-express-
ing cells, provided evidence for the functional expression of
5HT2a subunit-containing 5HTRs in AC NPY-expressing
cells. This finding may have consequences to human clinical
pharmacology. Antidepressant effects of psychedelics,
such as psilocybin, are believed to manifest themselves
through acting on 5HT2aRs (for review, see Nutt et al., 2020;
Carhart-Harris et al., 2021). In this manner, our findings
would implicate AC NPY-expressing cells as a cellular sub-
strate of these antidepressant effects.
In summary, our study provides detailed insights into

the transcriptomic composition of NPY-expressing neurons
in the AC and hippocampal CA3 areas, and reveal modula-
tory effects by 5HT2a specifically on the AC population.
Further, our study demonstrates how transcriptomically-
guided pharmacological experiments can generate physio-
logical knowledge. Expanding on this framework, future
studies have the potential to facilitate the identification and
understanding of functional, anatomic, molecular and phar-
macological properties of neurons in a cell type-specific and
region-specific manner, and augment transcriptomic brain
cell atlases.
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