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The need for new vector control approaches 
targeting outdoor biting Anopheline malaria 
vector communities
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Abstract 

Since the implementation of Roll Back Malaria, the widespread use of insecticide-treated nets (ITNs) and indoor 
residual spraying (IRS) is thought to have played a major part in the decrease in mortality and morbidity achieved 
in malaria-endemic regions. In the past decade, resistance to major classes of insecticides recommended for public 
health has spread across many malaria vector populations. Increasingly, malaria vectors are also showing changes in 
vector behaviour in response to current indoor chemical vector control interventions. Changes in the time of biting 
and proportion of indoor biting of major vectors, as well as changes in the species composition of mosquito commu-
nities threaten the progress made to control malaria transmission. Outdoor biting mosquito populations contribute to 
malaria transmission in many parts of sub-Saharan Africa and pose new challenges as they cannot be reliably moni-
tored or controlled using conventional tools. Here, we review existing and novel approaches that may be used to 
target outdoor communities of malaria vectors. We conclude that scalable tools designed specifically for the control 
and monitoring of outdoor biting and resting malaria vectors with increasingly complex and dynamic responses to 
intensifying malaria control interventions are urgently needed. These are crucial for integrated vector management 
programmes designed to challenge current and future vector populations.
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Background
Despite the substantial gains achieved by the Roll-back 
Malaria initiative (RBM) since the late 1990s, much of 
the African continent remains highly endemic for the dis-
ease and 93% of malaria deaths occur in this region [1]. 
Malaria control strategies in sub-Saharan Africa (SSA) 
rely heavily on programmes targeting vector popula-
tions through chemical interventions such as insecticide-
treated bednets (ITNs) and indoor residual spraying 
(IRS). These tools are estimated to have contributed to 
a 68% and 10% decrease, respectively, of malaria cases 
since the beginning of their broad-scale implementa-
tions in the early 2000s [2]. This progress has brought a 

number of countries to so-called pre-elimination status, 
and led the World Health Organization (WHO) and Roll 
Back Malaria (RBM) to revise their target to the new 
ambitious goal of reducing the global burden of malaria 
by 90% by 2030 [3, 4].

Entomological surveillance and monitoring are cru-
cial to the different approaches developed through the 
WHO Global Technical Strategy towards malaria elimi-
nation [3]. Entomological and epidemiological data have 
highlighted resurgence in malaria transmission in several 
areas in SSA that had achieved high vector control cov-
erage using ITNs and IRS [5–8]. For a long time, indoor 
chemical control tools have typically been the most effec-
tive against mostly endophagic and endophilic malaria 
vector species and populations [9]. Unfortunately, the 
efficacy of these tools is threatened because of the rapid 
evolution and spread of insecticide resistance in the main 
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malaria vectors in many regions of SSA (Fig.  1a) [10, 
11]. Worryingly, other studies have reported that resist-
ant Anopheles phenotypes may be more susceptible to 
Plasmodium falciparum infection [12–14] highlighting 
another risk that could be linked with the escalation of 
pesticide-based indoor interventions. Beyond the insec-
ticide resistance phenomenon, the selective pressures 
associated with pesticide exposure affect a large num-
ber of mosquito traits including behaviour, genetics, 

and physiology (Fig. 2). These parameters can affect the 
vectorial capacity and/or importance of anopheline vec-
tors and are important determinants of local patterns of 
malaria transmission.

The most efficient malaria vectors in SSA, Anopheles 
gambiae, Anopheles coluzzii and some members of the 
Anopheles funestus group exploit larval breeding sites 
near human habitats and feed preferentially on humans. 
They are considered to be predominantly endophagic 

Fig. 1 The increasing trend in numbers of peer-reviewed publications focusing on: a bednets or spraying and insecticide resistance in anophelines in 
Africa; and b on outdoor or early or exophily and biting behaviour in anophelines in Africa in the online Web of Science database (clari vate.com/webof 
scien cegro up/solut ions/web-of-scien ce/) (Search terms are in italics)

Fig. 2 The selective pressures associated with indoor chemical vector control interventions affect many biological characteristics of mosquito 
populations and mosquito traits that affect vectorial capacity and malaria transmission. Upward arrows denote an increase in the trait considered

http://clarivate.com/webofsciencegroup/solutions/web-of-science/
http://clarivate.com/webofsciencegroup/solutions/web-of-science/
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and endophilic [15] but these traits are somewhat plas-
tic and levels of outdoor biting and resting vary between 
populations. There are also reports of An. gambiae (s.s.) 
populations with high levels of exophily that pre-date 
the intensification of chemical vector control [16, 17]. 
The sibling species, Anopheles arabiensis is known to 
frequently bite and rest outdoors [18]. In recent years, 
reports of behavioural shifts observed in response to 
intensified ITNs and IRS interventions have accumu-
lated suggesting that they play an increasingly important 
role in malaria resurgence (Fig. 1b). Several studies con-
ducted in SSA showed that An. arabiensis has replaced 
An. gambiae (s.s.) and An. coluzzii as the most domi-
nant species following the intensifications of ITNs use 
[19–22]. Another study conducted in Kenya showed a 
shift in vector species with An. arabiensis and An. merus 
taking the place of An. gambiae (s.s.) and An. funestus as 
main malaria vectors [23]. In some regions, these popula-
tions now display behavioural avoidance, either through 
behavioural resilience or the evolution of behavioural 
resistance, towards indoor control tools such as actively 
seeking human hosts earlier at dusk and sometimes until 
dawn, feeding on non-human hosts, and increasingly 
resting outside. In Senegal, diurnal activity of An. funes-
tus has been reported after the introduction of ITNs 
[24]. Another study in Ethiopia reported early evening 
activity by An. arabiensis with a peak activity between 
19 and 20 h after the introduction of ITNs [25]. Earlier 
biting patterns might be concomitant with outdoor bit-
ing activities, as recently reported in Senegal in An. gam-
biae (s.l.) and An. funestus following two campaigns of 
ITNs renewal [26]. In Tanzania, An. arabiensis and An. 
funestus exhibited outdoor biting patterns, and were 
active early in the evenings after 47% of ITNs use [22]. 
Similar patterns were reported from a study testing the 
efficacy of outdoor landing boxes for anopheline control 
[27]. The tendency of outdoor biting was also described 
in the early morning hours in An. coluzzii and An. melas 
populations on Bioko Island [28]. This highlights the het-
erogeneity of Anopheles species and the predisposition of 
some vectors, such as An. arabiensis, to feed to an even 
higher degree outdoors and often on non-human hosts in 
response to the use of indoor vector control tools [29]. 
The result is that changes in vector behaviour, whether 
through resistance or resilience, are currently one of the 
most important challenges to malaria control, and alter-
native strategies to tackle outdoor populations at adult 
and immature stages need to be developed urgently.

Despite growing evidence of the importance of out-
door transmission, most tools for entomological sur-
veillance and monitoring typically focus on indoor 
mosquito populations and may no longer be adequate 
for characterising the fast-changing composition and 

feeding behaviour. The human landing catches (HLC), 
which has long been the most efficient method of col-
lection for anthropophilic endo- and exophagic vector 
species, is no longer possible in many regions [30, 31]. 
This method is based on capturers catching mosquitoes 
as they land on their exposed legs throughout the night, 
providing information on the timing of bites by local 
vector species. Understandably, the use of HLC has 
now been discouraged on ethical grounds as human-
baits may not only be exposed to malaria vectors but, 
increasingly, to aedine mosquitoes carrying arboviruses 
for which prophylaxis or treatment is not yet available. 
Traps commonly used for monitoring indoors such as 
the Centre for Disease Control and Prevention light 
traps (CDC-LT) do not perform equally well for out-
door mosquito collections [32–34]. Indoor resting sam-
pling by pyrethroid spray catch (PSC) is a commonly 
used tool that has no outdoor equivalent. Resting 
boxes, have long been used for indoors and outdoors 
monitoring [35] but their effectiveness outdoors varies 
greatly with the availability of natural resting sites, and 
seasonal factors, time of day, rainfall and humidity [36].

Thus, as is the case for vector control programmes, 
entomological monitoring surveys require novel sam-
pling approaches and methodologies that address 
increasingly variable vector population feeding and 
resting patterns in order to perform effective surveil-
lance and planning of vector control interventions. 
The paucity of vector control tools approved or under 
interim approval by WHO or in development targeting 
outdoor mosquito populations underscores these needs 
(Fig.  3). The objective of this review is to discuss and 
highlight tools that may best address the urgent need 
for outdoor vector population monitoring and control. 
Existing surveillance and control tools have already 
been reviewed in the general context of malaria con-
trol and elimination elsewhere [37–39]. Consequently, 
rather than attempting to be exhaustive, we will focus 
on those relevant to outdoor sampling and discuss in 
more depth those that are novel and/or scalable tools 
and could therefore help tackle the emerging challenges 
posed by the fast evolution of exophagic and exophilic 
malaria vector communities.

Traps for host‑seeking females
Capturing females as they seek a host to blood-feed 
and produce eggs is one of most effective ways of sam-
pling mosquito populations. Focussing on this important 
female life-stage is often preferred as it directly relates 
to mosquito population demographics as well human 
exposure to potentially infective bites, hence disease 
transmission.
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Host‑baited traps
Different host-baited traps have been developed to 
monitor mosquito biting behaviour as a safer alterna-
tive to human landing catches (HLC) both indoors or 
outdoors. Human-baited traps such as the Mbita trap 
use a volunteer protected by a bednet to attract mos-
quitoes within a larger netted trap chamber [40], but 
was not as effective as HLC in collecting outdoor mos-
quitoes, as revealed by a comparative study conducted 
in Madagascar [41]. Furvela tent-traps were also devel-
oped to collect outdoor mosquitoes. A Furvela trap has 
a CDC-LT trap (without a light) fixed to the outside of 
a tent. The tent is occupied by a volunteer whose odour 
attracts mosquitoes [42]. Other variations are the Ifa-
kara Tent A and B traps which operate by drawing 

mosquitoes into funnel entrances tilted upward into an 
upper rectangular section of a canvas tent, the human 
bait rests in the tent’s lower section protected by net-
ting [31]. Host Decoy Traps (HDT) draw odours from a 
host housed in a tent and release them through a pipe 
onto a warm, black sticky target. Depending on the host 
used, these traps sometimes captured larger number of 
host-seeking females than HLC [43].

Recently, the mosquito electrocuting trap (MET) was 
developed as direct replacement to HLC for collecting 
mosquitoes indoors and outdoors at given time intervals 
throughout the night. It consists in an electrified square 
box, in which a human volunteer places his/her legs to 
attract mosquitoes that get electrocuted upon contact 
with the box [44]. Promisingly, METs have produced 

Fig. 3 Schematic representation of mosquito distribution in a typical rural habitat. The selective pressure on indoor mosquito populations resulting 
from the implantation of ITNs and IRS induce behavioural changes of mosquitoes that bite increasingly outdoors (1), earlier at dusk and/or later at 
dawn when humans are not protected (2). Mosquitoes may also feed more often on non-human hosts (3), and rest outdoors (4) to avoid exposure 
to vector control. Most WHO-approved tools currently focus on the control of indoor populations (blue boxes) and those that are in development 
or under interim approval follow the same trend (*), leaving few current options for scalable control of outdoor biting populations (www.who.int/
vecto r-contr ol/vcag/new-inter venti ons/en/). *Interim approval; ** Pyrethroid-PBO net in areas with metabolic resistance

http://www.who.int/vector-control/vcag/new-interventions/en/
http://www.who.int/vector-control/vcag/new-interventions/en/
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estimates of mosquito biting rates and timing of biting 
that closely correlate with those produced by HLC [45].

Whilst being valuable monitoring tools, host-baited 
traps are often large and cumbersome to set-up. Fur-
thermore, their need for hosts makes them intrinsically 
labour intensive, thereby precluding their use for large-
scale vector control programmes.

Odour‑baited traps
Advances in the sensory and chemical ecology of mos-
quitoes have stimulated the development of a host of 
novel traps exploiting mosquito attraction to  CO2, 
human odours, chemical attractants, and manipulating 
visual cues [39, 46–48]. In principle, cost-effective traps 
could provide another angle of attack for controlling both 
indoor and outdoor vector populations.

In the late 1990s, the development of counter flow 
geometry (CFG) greatly increased the efficacy of mos-
quito traps [49]. CFG traps operate by producing a down-
ward flow of air exiting a chemical lure from the trap 
entrance to attract mosquitoes, an updraft flow then 
sucks the mosquitoes into a collector [49]. A study con-
ducted in Kenya showed that the addition of attractants 
such human foot odour and  CO2 greatly increase the 
ability of CFG traps to capture An. gambiae (s.s.) [50]. 
However, CFG traps with octenol and dry ice were not as 
effective for collecting Anopheles mosquitoes compared 
to HLC [50, 51]. This highlights the need to further opti-
mize the lures used to attract mosquitoes to CFG traps.

Counter flow technology was exploited in the Bio-
gent Sentinel Trap (BGS) which effectively combines 

olfactory and visual cues for sampling aedine species 
and has become a major tool in arbovirus surveillance 
programmes [52]. The BGS trap uses black and white 
contrast and a chemical lure which mimics human skin 
odour [53]. This trap has been evaluated for surveillance 
of African anopheline malaria vectors. Interestingly, in 
Burkina Faso, BGS traps baited with BG lure and  CO2 
collected more An. coluzzii than CDC traps outdoors 
during dry and rainy seasons [54]. This same pattern was 
also observed in Brazil, but placing the trap above ground 
with a downwards airflow orientation led to higher catch 
rates of An. darlingi than CFG, CDC and the Fay-Prince 
traps, which were comparable to HLC catches [55]. These 
results showed that in some settings the so-called BG-
Malaria (BGM) inverted BGS trap could potentially be 
as effective as HLC for monitoring mosquitoes. In semi-
field studies conducted in Tanzania, BGM traps were 
more effective in sampling An. arabiensis compared to 
BGS with or without  CO2 and synthetic human odours 
[56]. Additionally, the BG-lure combined with  CO2 was 
shown to be more effective than other odour blends [57]. 
These findings showed that the BGS trap, particularly 
in its BGM configuration, could be a valuable trap for 
capturing outdoor African malaria vectors, even when 
outdoors. However, given the current price-tag of their 
synthetic lure and their moderate anopheline mosquito 
catch rate, CFG-based traps would generally benefit from 
further improvements resulting in increased cost-effec-
tiveness (Table 1).

Another trap making use of CFG is the mosquito mag-
net (MM) trap which converts propane gas into  CO2 and 

Table 1 Characteristics of representative monitoring and control tools and their potential for scaled-up programmes targeting 
outdoor biting and resting anopheline mosquito populations in Africa (see text for details)

a And variations and improvements thereof (see text for details)
b US dollars

Abbreviations: na, not applicable; RCT, randomized control trial; VCAG, Vector Control Advisory Group

Tool Outdoor/indoor surveillance Compared to HLC Estimated cost/unitb Scalable 
for outdoor 
control

Status of development

BGS and BGM traps Outdoor [54, 55] Yes [55, 186] $100–200 Yes Commercialised

Mosquito Magnet Outdoor [59] Yes [60] $300–1000 No Commercialised

Clay  potsa Outdoor [67] No $1–$50 Yes Under development

Resting  boxesa Indoor and outdoor [35, 66] Yes [64, 187] $1–$50 Yes Under development

Attractive Toxic Sugar Baits Indoor and outdoor [71, 188] No $1–50 Yes Three RCT protocols reviewed 
by VCAG 

Larvicides na na $1–50 Yes Commercialised

Genetically modified mos-
quitoes

na na Not available Potentially Cage studies results commu-
nicated to VCAG 

Genetically modified sym-
bionts

na na Not available Potentially Under development

Endectocides na na $1–50 Yes RCT protocol in review
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emits heat and moisture to attract mosquitoes [58, 59]. 
In French Guiana, the MM trap combined with 1-octen-
3-ol and HLC, were 2-fold more efficient collectors of 
anophelines than the CDC Light trap (LT) with or with-
out human bait [60]. Further studies in Tanzania, showed 
that baiting the MM trap with a worn sock (foot odour) 
greatly increased its efficacy [61] and that using  CO2 was 
crucial, combined with natural or synthetic odours [58–
60, 62]. Despite its efficacy as a monitoring tool, the bulk 
and high cost of the MM trap makes it much less scalable 
than other alternatives (Table 1).

Resting traps
A much more affordable option is to target female mos-
quitoes in search of a resting site after a blood meal. 
Resting traps offer and opportunity to capture females 
that are seeking shelter outdoors in a shaded and hid-
den location whilst digesting the blood meal and matur-
ing their eggs, but they can also capture adult females 
at other life stages as well as males. Historically, two of 
the most widely used methods for sampling indoor rest-
ing mosquitoes were pyrethrum spray catches (PSC) and 
aspiration from pit shelters [36], but neither of them are 
practical or scalable for large-scale outdoor surveillance 
and vector control.

Resting boxes (RB) are one of the simplest methods 
used for surveillance and control of mosquitoes outdoors 
[35]. They are commonly made from cardboard, wood or 
a dark plastic container and placed near human habita-
tions. RB traps provide artificial shelter against preda-
tors, heat and desiccation, thereby attracting blood-fed, 
semi-gravid and gravid females and also males [35, 63]. 
In Tanzania, RBs baited with cow urine caught more An. 
arabiensis outdoors than HLC [64]. As expected, they 
collected more fed, semi-gravid and gravid females of 
An. arabiensis than the CDC light trap method, which 
caught only unfed host-seeking females [35]. Resting 
boxes also have the advantage of attracting various spe-
cies of mosquitoes including Anopheles, Culex and Culi-
seta mosquitoes [53, 65]. A sticky version of resting boxes 
(SRB) has also been developed for more efficient trapping 
in Burkina Faso, where a higher diversity of mosquitoes 
was collected indoors and outdoors using SRBs when 
compared to backpack aspiration inside houses (BP) and 
pit-shelters used outdoors (PIT) [66]. Resting boxes are 
cheap to make with local materials, easily scalable, and 
therefore provide another scalable tool for surveillance 
and control of outdoor and indoor resting mosquitoes 
alike [35] (Table 1).

African water storage clay pots are another format of 
resting traps for indoor and outdoor sampling of vari-
ous mosquito species [67, 68]. In western Kenya, clay 
pots used outdoors collected a larger number of male 

and female An. arabiensis and An. gambiae compared 
to pit-shelter traps [67]. While in Tanzania, Bijllaardt 
et  al. [68] showed that clay pots used indoors collected 
a higher proportion of blood-fed females than CDC light 
traps. Clay pots have also been used in combination with 
entomophagic fungi for biological control [69]. Expo-
sure to conidia applied to the inside of a resting pot has 
resulted in the decrease of longevity in both females and 
males of An. gambiae and An. funestus [69]. Some stud-
ies have shown that human odour or animal urine can 
further improve the attractiveness of clay pots, making 
them a locally-producible and scalable monitoring tool 
(Table 1). Some of their drawbacks are their heavy weight 
and fragility compared to other resting boxes.

There are many variations around the resting box for-
mat that can be used both indoors and outdoors. In the 
outdoor setting, the attractiveness of resting traps to 
mosquitoes depends on many environmental factors [36]; 
such as the availability of other resting sites (vegetation, 
holes and crevices), and harsh weather conditions that 
encourage mosquitoes to seek shelter (e.g. dry season). 
This limits their outdoor efficacy to some settings and 
environmental conditions.

Attractive toxic sugar baits (ATSB)
The use of ATSB is a promising novel approach target-
ing sugar feeding, another lesser-known part of the mos-
quito life-style. Newly emerged mosquitoes need energy 
reserves for flying, mating and blood feeding [70]. Both 
males and females draw their nutrient sources by feed-
ing on plant nectar, flowers and fruits to cover their 
energy needs. For this purpose, the use of ATSB has been 
explored to attract mosquitoes with fruity and flowery 
scents combined with sugar solutions and a toxic com-
pound to kill them.

The potential of this novel approach against African 
malaria vectors was demonstrated in Mali where a sin-
gle outdoor application of ATSB laced with boric acid 
resulted in a 90% decrease in An. gambiae (s.l.) densi-
ties [71]. Research efforts have focused on optimizing 
the dosage of toxic compounds such as eugenol, boric 
acid, spinosad and dinotefuran to best balance toxic and 
repellent effects [72, 73]. As an example, an intermedi-
ate concentration of 1% of eugenol achieved the highest 
mortality rates of An. quadrimaculatus compared to con-
centrations 0.1 and 10% [74]. Whilst ATSB has the poten-
tial of becoming an affordable and scalable new vector 
control tool, the attractiveness of the toxic bait to mam-
mals and children is a concern [75]. Thus ivermectin, 
which is non-toxic to mammals and an effective endec-
tocide, was successfully used to control semi-field cage 
populations of An. arabiensis resulting in a 95% decrease 
in 48 h [76]. Whilst mathematical models suggest that 



Page 7 of 15Sougoufara et al. Parasites Vectors          (2020) 13:295  

ATSBs can have strong effects on malaria transmission, 
particularly because of their effect on female lifespan 
[77], several issues are currently limiting their deploy-
ment. In the context of widespread resistance to common 
chemical control interventions in anopheline vectors, the 
possible evolution of resistance to toxic bait compounds 
and interactions with existing resistant mosquito pheno-
types needs to be considered. Of particular relevance is 
the use of oral toxins such as boric acid, tolfenpyrad and 
chlorfenapyr whose mode of actions contrasts with that 
of neurotoxic insecticides and were shown to be effective 
against populations of An. arabiensis and Culex quinque-
fasciatus resistant to pyrethroids [78]. Another current 
concern associated with ATSB deployment is their poten-
tial detrimental effect on non-target insects, particularly 
when deployed outdoors [74, 79–81].

In a recent study in the lower Jordan Valley, Attrac-
tive Sugar Baits (ASB) laced with the mosquito biocon-
trol aerobic bacterium Bacillus sphaericus were used to 
suppress An. sergentii populations [82]. The suppressive 
effect was achieved by adults contaminating larval breed-
ing sites with B. sphaericus, resulting in larval suppres-
sion rather than a direct effect on the lifespan of adults 
[82]. This, and other compounds that target blood feed-
ing insects specifically, will be key to the acceptance of 
ATSB as a broadly applicable novel intervention tool. 
Indeed, modelling studies have demonstrated the poten-
tial power of deploying ATSBs, particularly in combina-
tion with existing interventions for control of malaria 
vectors in SSA regions hyperendemic for malaria [77, 83].

Larvicides
Targeting the immature stages of malaria vectors in 
their outdoor aquatic habitats is increasingly being 
considered as an arm required for achieving malaria 
elimination in sub-Saharan Africa. This method of 
control was the cornerstone of several malaria control 
programmes and was used with greatest success in the 
eradication of invasive populations of An. gambiae and 
An. arabiensis, in Egypt and Brazil respectively [84, 
85]. Due to widespread resistance to some chemical 
compounds and their toxicity within the environment, 
biolarvicides are the preferred choice, because they 
make use of toxic proteins produced naturally in some 
soil bacteria. Large-scale application of the biolarvicide 
Bacillus thuringiensis var. israelensis (Bti) in Burkina 
Faso over three years resulted in a dramatic decrease 
in exposure to bites [86]. Across SSA ecosystems, lar-
val control using Bti and Bacillus sphaericus (Bs) com-
bined with ITNs resulted in significant decreases in 
malaria vector densities which translated in a decrease 
in malaria transmission in some but not all areas [87–
89]. These mitigated results illustrate the difficulties 

inherent in identifying and treating numerous ephem-
eral Anopheles vector breeding sites with larvicides that 
have a short duration of activity [90]. The limitations 
can make larval control laborious and costly. Long-
lasting microbial larvicides FourStar briquets (Central 
Life Sciences, Sag Harbor, NY, USA) and LL3 (Univer-
sity of California, Irvine, CA, USA) were developed to 
surmount low residual activity. The use of FourStar in 
Kenya significantly reduced indoor and outdoor biting 
by malaria vectors [91]. In the same country, combined 
FourStar and LL3 applications significantly reduced 
all stages of An. gambiae and An. funestus larvae den-
sities for up to 20 weeks compared to a non-interven-
tion area [92] with no significant impact on non-target 
organisms [93]. To avoid resistance to these biolarvi-
cides other biological control interventions have been 
proposed. For example, laboratory and field tests con-
ducted in Benin showed that treatment of larval breed-
ing sites with eggs of the nematode Romanomermis 
iyengari significantly reduced An. gambiae larvae den-
sity [94]. Early larval stages are more susceptible to 
infection, hence nematode control should be applied 
shortly after rainfall and relies on extensive surveying 
of breeding sites. Interestingly, nematode applications 
targeting the South American malaria vector An. albi-
manus in Colombia, resulted in decreased larval densi-
ties and malaria prevalence in children [95].

Importantly, biolarvicides can impact vector popu-
lations irrespective of their level of resistance to pes-
ticides and degree of endophily. They can specifically 
target anophelines, resulting in fewer effects on non-tar-
get organisms than with chemical larvicides. Therefore, 
and provided that the frequency of their application in 
different ecological settings can be effectively managed, 
larval biocontrol offers much promise for integrated vec-
tor control programmes in SSA.

Genetic vector control approaches
Mosquito release programmes that rely on the release of 
sterile male, genetically-modified mosquitoes, or mos-
quitoes carrying a genetically-modified symbiont offer 
a completely different approach to control anopheline 
vector populations, which importantly, is independent 
of their degree of endophagy, endophily, timing of biting 
and anthropophily.

Sterile mosquito releases
The oldest of the so-called genetic vector control 
approaches is the sterile insect technique (SIT), which 
has been used since the 1950s as a species-specific and 
environmentally-friendly method of controlling insect 
populations [96]. It relies on mass-rearing of males that 
are sterilised by irradiation or chemicals and released 
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in large numbers into the mapped-out area [97]. Wild 
females that mate with sterile males do not produce 
viable offspring. SITs have been successfully deployed 
against a variety of insect pests but have so far had lim-
ited success against mosquito vector control [98–108]. 
For the control of large and complex African malaria vec-
tor populations, SIT is usually not considered a realistic 
strategy due to the large scale of releases required [109]. 
For this reason, ongoing programmes targeting African 
malaria vectors focus only on small and/or ecologically-
isolated populations such as An. arabiensis in Northern 
Sudan or KwaZulu, Natal in South Africa [110–113]. 
These projects are in their developmental stages and have 
generated the first data on the survival, dispersal and 
mating competitiveness sterile males, all crucial com-
ponents for determining adequate male release ratios. A 
drawback of classic SIT is that radio-sterilization nega-
tively affects male mating competitiveness, and this has 
been confirmed in An. coluzzii [114] and An. arabiensis 
[110]. Despite this, small-scale releases in Sudan, showed 
that irradiated An. arabiensis males participated in natu-
ral swarms, suggesting that inundative releases could be 
effective for local control strategies. Currently, the actual 
mating success of males remains to be determined [112]. 
The paucity of these examples highlights the urgent need 
for research focusing on the ecology of malaria vectors 
mosquito releases.

SIT programmes require extensive infrastructure and 
typically need to be sustained for long periods of time to 
negate the effects of re-invasion by migrant mosquitoes, 
and this constrains their cost effectiveness. However, the 
current context of decreasing vector densities observed 
in parts of Africa may increase the scope for controlling 
residual malaria vector populations with self-limiting 
SIT-like interventions.

Genetically modified mosquitoes
Nowadays, sterile males can be created by molecular 
engineering, removing the need for radio- or chemi-
cal sterilisation. GM and SIT sterile male releases have 
the same reliance on mass production and inundative 
releases and are thus not considered a scalable strategy 
for the control of large complex SSA anopheline popula-
tions. However, other genetic-modification approaches 
exploit the principle of genetic inheritance to introduce 
and spread epidemiologically relevant effector genes into 
mosquito populations. In population replacement strate-
gies, the introduced gene may, for example, interfere with 
a vector’s capacity to support development and transmis-
sion of pathogens resulting in a refractory population. In 
population suppression approaches, the genetic modi-
fication is designed to decrease the fertility of female 

mosquitoes or the sex-ratio of their progeny resulting in 
population crash [115, 116].

Genetically modified mosquitoes are an increasingly 
promising prospective tool for integrated vector man-
agement. Over the past decade, genetic approaches have 
benefited from major innovations in genetic engineer-
ing, but their future deployment is contingent on broad 
public and regulatory acceptance is therefore currently 
much more complex compared to SIT interventions. At 
the technical level, the biggest challenge initially faced 
by GMM vector control approaches stemmed from the 
fact that the spread of effector genes through wild popu-
lations was constrained by Mendelian inheritance and 
fitness costs associated with genetic modifications [117, 
118]. The recent development of gene drives that bypass 
Mendelian inheritance has resolved these issues [119]. A 
number of recent laboratory studies have confirmed that 
genes conferring refractoriness to pathogens or genes 
suppressing mosquito populations by affecting female 
fertility or creating sex-ratio distortion can effectively 
spread through anopheline populations [120–124]. Mod-
elling studies have also shown the strong potential impact 
of such intervention on vector dynamics under a wide 
array of environmental conditions [125].

Gene drives take advantage of selfish genetic elements 
such as homing endonuclease genes (HEGs) that can 
recognize and cleave a specific DNA target site of 20–30 
bp [126]. The cell’s DNA repair machinery allows the 
HEG being copied on the homologous chromosome, via 
homology directed repair (HDR), to be spread in super-
Mendelian fashion over subsequent meiotic events and 
generations. In An. gambiae (s.s.), Windbichler et  al. 
[127] showed that a HEG inserted in an autosomal locus 
could spread and knockout a synthetic gene express-
ing a fluorescent marker through mosquito caged popu-
lations. In 2016, CRISPR-Cas9 was used to knockout 
genes responsible for An. gambiae female fertility show-
ing a capacity to spread over consecutive generations. 
However, genetic resistance impeded the complete sup-
pression of the caged populations [122, 128]. In An. ste-
phensi, an autosomal drive based on CRISPR-Cas9 and 
HDR mechanism was developed to spread anti-Plasmo-
dium falciparum molecules [124]. Another strategy uses 
endonuclease genes to cleave X-linked rDNA sequences 
during spermatogenesis resulting in male-biased sex-
distortion and population suppression when released at 
high rates in a caged population [121, 122]. The inser-
tion of the “X-shredding” construct on the Y chromo-
some using CRISPR-Cas9 resulted in stronger male 
bias and drive [121]. Similarly, chemical vector control 
approaches, genetic modifications aiming to achieve 
population suppression or replacement, are vulnerable to 
possible evolution of resistance mechanisms. This is now 
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taken into consideration at the genetic engineering level 
and is also being investigated through simulation mod-
els [129, 130]. Recently, CRISPR-Cas9 was used to target 
a highly conserved and functionally constrained DNA 
sequence within the double sex gene, responsible for An. 
gambiae sex differentiation, resulting in the rapid spread 
of the genetic knockout and population crash without 
selection of genetic resistance in the laboratory [123]. As 
is the case for chemical control, another possible solu-
tion to manage the emergence of resistance would be 
the deployment of several variants of gene-drive strains. 
Therefore, the ability to produce strains with multiple 
effector mechanisms or multiple strains with contrasted 
molecular effector processes may be key and requires 
consideration early on. Another limitation stems from 
the fact that this approach currently requires genetic 
introgression of the driving constructs into locally-colo-
nised wild-type genetic backgrounds which is not always 
feasible. Finally, genetic approaches face considerable 
challenges in terms of public perception and regulatory 
requirements [131, 132].

Paratransgenic approaches
Instead of relying on engineered mosquitoes, other popu-
lation replacement approaches focus on modifying sym-
bionts within mosquitoes. One such approach consists in 
colonizing mosquitoes with genetically modified symbi-
otic organisms such as bacteria, viruses and fungi, able 
to express effector molecules in order to achieve an anti-
biosis relationship towards the pathogens they transmit 
[133–135]. Another strategy aims to modify symbionts 
resulting in imbalance in mosquito microbiome, which, 
in turn, results in reduced lifespan, hence vectorial capac-
ity [136, 137]. With that in mind, detailed studies have 
described mosquito bacterial communities and bacteria 
displaying important roles in mosquito biology, includ-
ing mosquito-pathogen interactions [136, 138–143]. 
Symbiotic bacteria species of the genera Asaia, Serratia 
and Panthoea produced promising outcomes by signifi-
cantly decreasing Plasmodium prevalence in anophelines 
[137, 144–147]. The absence of fitness costs in terms of 
mosquito longevity and fecundity [137, 145, 147] is para-
mount for the transmission of genetically modified (GM) 
bacteria in subsequent generations. Successful vertical 
and horizontal transmission experiments of GM Asaia 
in semi-field experiments demonstrated ability to spread 
engineered symbionts in mosquito populations making 
paratransgenesis a promising new tool for controlling 
vector-borne diseases. In parallel to those efforts, Ciri-
motich et al. [148] have isolated natural bacteria species 
in wild populations of An. arabiensis that inhibited the 
development of P. falciparum. However, the potential 

of this approach for vector control needs to be further 
explored.

Wolbachia releases
The endosymbiotic bacteria, Wolbachia colonises 
the gonads of many insect species and can promote 
its spread through its host populations via cytoplas-
mic incompatibility [149]. In mosquitoes, Wolbachia 
can also negatively affect the development of viruses 
and pathogens [150]. These characteristics have led to 
the development and implementation of strategies in 
which cytoplasmic incompatible Wolbachia-carrying 
strains are mass-reared and released for the control of 
arbovirus transmission [149, 150]. The potential use 
of Wolbachia infection for preventing Plasmodium 
transmission in anopheline populations is a particu-
larly exciting perspective [151]. Experimental studies 
in An. gambiae have reported that Wolbachia infection 
can induce an upregulation of immune genes that can 
inhibit Plasmodium development [152, 153]. However, 
in contrast to what is observed in Aedes aegypti, the 
prevalence and transmission of Wolbachia in natural 
populations of the malaria mosquito An. gambiae are 
much lower, which currently hinders the development 
of such strategy for malaria control [152, 153]. Fur-
ther research is therefore urgently needed to boost the 
prospects of Wolbachia-infected anophelines release 
towards malaria vector control.

Endectocides
The recent discovery that ivermectin antifilarial drug 
treatments were also active against ectoparasitic infes-
tations such as lice and scabies [154, 155] opened up 
another novel strategy for the control of anopheline vec-
tors. Treating human hosts or their domestic animals 
with molecules that can reduce the density of the insects 
that feed on them is an approach that would be equally 
effective against indoor and outdoor mosquito popula-
tions [156]. In Burkina Faso, Pooda et al. [157] reported 
an increase in mortality and decrease in fertility of An. 
coluzzii feeding on cattle treated with ivermectin. Inter-
estingly, in Senegal, mass ivermectin treatment of the 
human population in three villages, negatively affected 
the longevity of blood-fed An. gambiae females [158]. In 
a larger study focusing on mass drug administration of 
ivermectin in three countries of West Africa, a significant 
decrease in longevity was recorded which translated in 
lower sporozoite rates in both indoor resting and outdoor 
host-seeking An. gambiae (s.l.) populations [159]. Ongo-
ing trials focus on balancing the need for high doses of 
ivermectin required to maintain adequate mosquitocidal 
activity with possible side effects [160]. Other research 
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efforts are seeking to find alternative and longer last-
ing compounds that could be used towards mass-drug 
administration strategies [161].

Conclusions
There are a large number of tools available for malaria 
vector control, some proven and tested, some being 
refined and others in development stages. So far, the 
few affordable and scalable tools endorsed by WHO and 
deployed by RBM have targeted indoor biting vector 
populations. These interventions are losing effectiveness 
by the day and are no longer adequate in many settings 
where malaria transmission is now significantly sus-
tained by outdoor biting vector populations. The spread 
of insecticide resistance in malaria vectors and the shift 
in vector composition and feeding pattern resulting from 
sustained selection pressure on endophilic mosquitoes 
calls for additional control tools dealing specifically with 
such increasingly common phenotypes. In this review, we 
highlight some of the existing or emerging tools which 
may be particularly effective for surveillance and control 
of outdoor biting malaria vectors. Whilst this list might 
seem long, there are truly few approaches that com-
bine cost effectiveness, scalability and sustainability. The 
recent development of synthetic attractants for counter-
flow traps have shown encouraging results for ongoing-
malaria surveillance and monitoring but their cost is an 
obstacle to scalability in rural settings. The use of larvi-
cides, perhaps combined with novel models of deploy-
ment via communities and/or technologies, may be 
feasible in urban and semi-urbanised settings. Amongst 
the truly novel tools, sugar baits and endectocides could 
provide cost effective and scalable angles of attack for 
the control of outdoor-biting malaria vectors and offer 
versatility in the way that they can be dispensed in vari-
ous settings. Finally, advances in genetic engineering and 
modelling of gene-drives for vector population suppres-
sion or replacement offers new ways of targeting malaria 
vectors with fast changing biting behaviour. It is hoped 
that a more diverse toolbox will facilitate increased ver-
satility and integration of vector control management, as 
well as adopting more responsible and sustainable use of 
classic chemical control tools.
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