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Abstract: Background: Theranostic approaches—the use of diagnostics for developing targeted
therapies—are gaining popularity in the field of precision medicine. They are predominately used in
cancer research, whereas there is little evidence of their use in respiratory medicine. This study aims
to detect theranostic biomarkers associated with respiratory-treatment responses. This will advance
theory and practice on the use of biomarkers in the diagnosis of respiratory diseases and contribute
to developing targeted treatments. Methods: We performed a cross-sectional analysis on a sample of
13,102 adults from the UK household longitudinal study ‘Understanding Society’. We used recursive
feature selection to identify 16 biomarkers associated with respiratory treatment responses. We then
implemented several machine learning algorithms using the identified biomarkers as well as age,
sex, body mass index, and lung function to predict treatment response. Results: Our analysis shows
that subjects with increased levels of alkaline phosphatase, glycated haemoglobin, high-density
lipoprotein cholesterol, c-reactive protein, triglycerides, hemoglobin, and Clauss fibrinogen are more
likely to receive respiratory treatments, adjusting for age, sex, body mass index, and lung function.
Conclusions: These findings offer a valuable blueprint on why and how the use of biomarkers as
diagnostic tools can prove beneficial in guiding treatment management in respiratory diseases.
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1. Introduction

The use of biological markers (hereafter, biomarkers) as a diagnostic tool to develop
targeted treatments—an approach commonly known as theranostics—has been increasingly
popular in cancer research. For instance, a recent systematic review [1] suggests that micro
RNAs (miRNAs) can be considered theragnostic biomarkers for predicting radiotherapy
response. Another review [2] found that miRNAs can also be used as biomarkers in
the diagnosis of prostate cancer, and it can potentially have an impact on chemotherapy
response. Moreover, Jothimani et al. [3] explored the role of non-coding RNAs (ncRNAs) as
diagnostic biomarkers and therapeutic agents for colorectal cancer. Nair et al. [4] suggest
that neutrophil gelatinase-associated lipocalin (NGAL) can be considered as a diagnostic
biomarker for perihilar cholangiocarcinoma (PHC) and potentially for developing targeted
therapeutics, while Tung et al. [5] supported that using miRNAs as a diagnostic biomarker
for colon adenocarcinoma (COAD) has led to a potential targeted drug (Gemcitabine) for
this type of gastrointestinal cancer.

The role of theranostic biomarkers is not limited to cancer, and it has also been
explored in other chronic diseases, including Alzheimer’s disease (AD) and hepatitis,
among others. Thus, Mahaman et al. [6] reviewed several biomarkers that can be used
for the accurate and the early diagnosis of AD, yielding in the development of targeted
treatments. Portelius et al. [7] investigated the performance of truncated amyloid-β (Aβ)
isoforms as theragnostic markers for AD, and they supported their use for developing
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potential treatments. Atkinson et al. [8] explored the association between serum keratin-
18 (K18) and histological features in patients with severe alcoholic hepatitis (AH). They
found a strong association, suggesting that serum K18 levels can be used as a theranostic
biomarker in the early diagnosis and appropriate treatment of AH.

As for the role of theranostic biomarkers in respiratory medicine, there is limited
research. Among this, we found convincing evidence for the use of blood eosinophils. For
instance, Kerkhof et al. [9] found that elevated blood eosinophils associated with increased
exacerbations in patients with mild-to-moderate Chronic Obstructive Pulmonary Disease
(COPD) can lead to improved lung function when treated with inhaled corticosteroids (ICS).
The theranostic ability of blood eosinophils was also confirmed by Siddiqui et al. [10], who
found that higher blood eosinophils count in patients with COPD was associated—when
treated with ICS—with decreased exacerbations as well from a pooled analysis of ten
studies with a total of 85,059 patients with COPD [11]. The latter study confirmed the
association between blood eosinophil count and reduced (or increased) exacerbations by
escalating (or de-escalating) ICS in patients with COPD.

This study aims to build on this evidence toward expanding the search for theranos-
tic biomarkers associated with respiratory-treatment response. Specifically, rather than
focusing on previously known and validated biomarkers (e.g., blood eosinophils), we will
identify a novel set of theranostic biomarkers whose response to any respiratory treatment
has not yet fully been explored. We will do this in a large sample of healthy individuals,
a small proportion of whom are exposed to respiratory treatment. This will help us gain
an advanced understanding of the role of biomarkers in disease diagnosis towards drug
development.

2. Materials and Methods

This is a retrospective study on adults who undertook the UK Household Longitudinal
survey “Understanding Society” [12]. In this survey, information is collected annually on
household changes and individual circumstances. During the period 2010–2012, all adults
aged 16 and over were invited to participate in a nurse health assessment interview that
consisted of a range of physical measures and biomarkers.

From a total of 35,937 participants eligible for the nurse visit, 20,700 participated in
the health assessment. Of those, 14,333 participants agreed to give their blood sample for
biomarker analysis and 13,102 participants (36.5%) had at least one biomarker available
(Figure 1).
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Missing values for biomarkers (ranging from 2% to 40%), weight (3%), height (1%), per-
cent predicted forced expiratory volume in 1 s (ppFEV1) (36%), and body mass index (BMI)
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(3%) were imputed with the method of multivariate imputation of chained equations [13].
We then standardized the biomarkers to the same scale and performed recurrent feature
extraction (i.e., backwards feature selection) [14], an unbiased and data-driven method
that takes into account all available biomarkers to identify those significantly associated
with any respiratory treatment response. We used the repeated cross-validation resampling
method with ten repeated training/test splits of the data during feature elimination to
mitigate overfitting [15]. The biomarkers derived from the recurrent feature extraction
along with age, sex, ppFEV1, and BMI were used as predictors for training several machine
learning models (logistic regression, decision tree [16], random forest [17], and gradient
boosting machine [18]) on a 70% random split of the data. The remaining 30% of the
data was used for validation. To ensure the continuous predictors (i.e., biomarkers, age,
ppFEV1, and BMI) were on the same scale, we standardized them prior to training (and
testing). To deal with class imbalance, due to the small number of participants receiving
respiratory treatment, we used the R package “ROSE” for random over-sampling of the
minority class [19]. The models’ performance was assessed on overall accuracy, sensitivity,
specificity, positive predictive values (PPV), and negative predictive values (NPV) [20].
We used a logistic regression model on the whole dataset to interpret the association of
biomarkers on treatment response after adjusting for age, sex, ppFEV1, and BMI. Adjusted
odds ratios and 95% confidence intervals (CIs) were used to assess the impact of biomarkers
on respiratory drug use.

3. Results

The demographic characteristics of our sample are described in Table 1.

Table 1. Participants’ demographic characteristics.

Characteristic Statistic Participants (N = 13,102)

Age (years) n 13,102
Mean (SD) 51.5 (17.2)

Median 52.0
Sex, n (%) Male 5848 (45)

Female 7254 (55)
Height (cm) n 12,988

Mean (SD) 167.5 (9.5)
Median 167

Weight (kg) n 12,773
Mean (SD) 78.2 (16.1)

Median 76.6
BMI (kg/m2) n 12,749

Mean (SD) 27.8 (5.3)
Median 27.2

BMI: Body Mass Index; SD: Standard Deviation.

As shown in Table 1, the study’s participants have an average age of 52 years, most of
them are female with an average BMI of 28 corresponding to an overweight category [21].

Table 2 summarizes the participants’ clinical characteristics including biomarkers,
percent predicted lung function, and respiratory drug use.

As shown in Table 2, all biomarkers and the lung function (ppFEV1) fall within
a normal range, while a small proportion of participants had received any respiratory
drug, suggesting that this is a healthy group of people. Following missing values imputa-
tion and recurrent feature extraction, we retrieved 16 biomarkers significantly associated
with respiratory drug use. These are: albumin, alkaline phosphatase, aspartate transami-
nase, cholesterol, dehydroepiandrosterone sulphate, gamma-glutamyltransferase, glycated
hemoglobin, high-density lipoprotein, c-reactive protein, insulin-like growth factor 1, fer-
ritin, triglycerides, urea, haemoglobin, fibrinogen activity (Clauss), and cytomegalovirus
(cmv) IgG.
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Table 2. Participants’ clinical characteristics.

Characteristic Statistic Participants (N = 13,102)

Cholesterol (mmol/L) n 12,895
Mean (SD) 5.4 (1.2)

Median 5.3
HDL cholesterol (mmol/L) n 12,876

Mean (SD) 1.6 (0.5)
Median 1.5

Triglycerides (mmol/L) n 12,898
Mean (SD) 1.8 (1.2)

Median 1.5
Glycated haemoglobin (mmol/mol) n 12,162

Mean (SD) 37.3 (8.2)
Median 36

C-reactive protein (mg/L) n 12,530
Mean (SD) 3.3 (7.1)

Median 1.4
Cytomegalovirus IgG (cmv) n 12,896

Mean (SD) 1.5 (0.5)
Median 2

Cytomegalovirus IgM (cmv) n 12,896
Mean (SD) 1.9 (0.2)

Median 2
Clauss fibrinogen (g/L) n 12,837

Mean (SD) 2.8 (0.6)
Median 2.7

Haemoglobin (g/L) n 12,156
Mean (SD) 136.9 (13.9)

Median 137
Ferritin (ug/L) n 12,894

Mean (SD) 137.4 (176.8)
Median 100

Albumin (g/L) n 12,920
Mean (SD) 46.8 (2.9)

Median 47
Alkaline phosphatase(u/L) n 12,785

Mean (SD) 71.5 (23.4)
Median 69

Alanine transaminase(u/L) n 12,777
Mean (SD) 28 (26.2)

Median 23
Aspartate transaminase(u/L) n 12,386

Mean (SD) 30.7 (23.6)
Median 29

Gamma glutamyl transferase (u/L) n 12,816
Mean (SD) 34.1 (51.3)

Median 23
Creatinine (µmol/L) n 12,918

Mean (SD) 76.4 (19.6)
Median 74

Urea (mmol/L) n 12,923
Mean (SD) 6.2 (1.7)

Median 6
Testosterone (nmol/L) n 7830

Mean (SD) 11.8 (8.0)
Median 12.6

Insulin-like growth factor 1 (nmol/L) n 12,831
Mean (SD) 18.4 (7.4)

Median 17
Dehydroepiandrosterone sulphate (µmol/L) n 12,873
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Table 2. Cont.

Characteristic Statistic Participants (N = 13,102)

Mean (SD) 4.6 (3.2)
Median 3.8

ppFEV1 n 8471
Mean (SD) 92.9 (16.4)

Median 94.1
Respiratory drug use, n (%) Yes 1526 (12)

No 11,576 (88)
HDL: high-density lipoprotein; SD: Standard Deviation; ppFEV1: percent predicted Force Expiratory Volume in 1 s.

We trained four machine learning models (i.e., logistic regression, decision tree, ran-
dom forest, and gradient boosting machine) in the training dataset, and we assessed their
performance in predicting treatment response on the validation set (Table 3).

Table 3. Models’ performance on the validation dataset.

Logistic Regression Observed

Predicted No treated Treated

No treated 2130 162
Treated 1342 295

Accuracy (%) 62
Sensitivity (%) 64
Specificity (%) 61

PPV (%) 18
NPV (%) 93

Decision Tree

Predicted

No treated 2293 208
Treated 1179 249

Accuracy (%) 65
Sensitivity (%) 54
Specificity (%) 66

PPV (%) 17
NPV (%) 92

Random Forest

Predicted

No treated 2475 208
Treated 997 249

Accuracy (%) 69
Sensitivity (%) 54
Specificity (%) 71

PPV (%) 20
NPV (%) 92

Gradient Boosting machine

Predicted

No treated 2462 208
Treated 1010 249

Accuracy (%) 69
Sensitivity (%) 54
Specificity (%) 70

PPV (%) 20
NPV (%) 92

PPV: Positive predicted value; NPV: Negative predicted value.
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The logistic regression model performs better with response to sensitivity, i.e., the
ability to correctly predict treatment response. In contrast, the other three models (i.e.,
random forest, gradient boosting machine, and decision tree) perform better than the
logistic regression in terms of specificity, which is the ability to correctly rule out any
respiratory drug use. All models have a similar performance in PPV or NPV, i.e., in
correctly predicting (or ruling out) treatment response given that the participant was
receiving (or not) any respiratory therapy.

As the logistic regression model exhibited a higher sensitivity compared to other
models (64% vs. 54%), we used this to interpret the impact of biomarkers on treatment
response after adjusting for age, sex, body mass index, and lung function (i.e., ppFEV1)
(Table 4).

Table 4. Impact of biomarkers on treatment response.

Biomarker Odds Ratio 95% CI p-Value

Albumin (g/L) 0.94 0.91, 0.98 <0.001
Alkaline phosphatase(u/L) 1.03 1.007, 1.07 0.017

Aspartate transaminase(u/L) 1.03 0.99, 1.06 0.106
Cholesterol (mmol/L) 0.94 0.91, 0.97 <0.001

Dehydroepiandrosterone sulphate
(µmol/L) 0.78 0.75, 0.81 <0.001

Gamma glutamyl transferase (u/L) 1.03 0.99, 1.06 0.081
Glycated haemoglobin (mmol/mol) 1.05 1.02, 1.08 0.001

HDL cholesterol (mmol/L) 1.08 1.04, 1.11 <0.001
C-reactive protein (mg/L) 1.04 1.003, 1.07 0.035

Insulin-like growth factor 1 (nmol/L) 0.92 0.88, 0.95 <0.001
Ferritin (ug/L) 0.91 0.87, 0.94 <0.001

Triglycerides (mmol/L) 1.06 1.02, 1.09 <0.001
Urea (mmol/L) 0.99 0.96, 1.02 0.467

Haemoglobin (g/L) 1.04 1.01, 1.08 0.009
Fibrinogen activity (Clauss) (g/L) 1.09 1.06, 1.13 <0.001

Cytomegalovirus IgG (cmv) 0.97 0.94, 1.002 0.069
CI: Confidence interval; HDL: high-density lipoprotein. Adjusting for age, sex, body mass index, and ppFEV1.

As shown in Table 4, on the one hand, increased levels of half of these biomarkers
(i.e., alkaline phosphatase, glycated haemoglobin, high-density lipoprotein cholesterol,
c-reactive protein, triglycerides, haemoglobin, and fibrinogen) were significantly associated
with higher odds of treatment response. On the other hand, participants with increased
levels of albumin, cholesterol, dehydroepiandrosterone sulphate, insulin-like growth factor
1, and ferritin were significantly less likely to receive any respiratory treatment. The associa-
tions between aspartate transaminase, gamma glutamyl transferase, urea, cytomegalovirus
IgG and respiratory treatment use were not statistically significant.

4. Discussion

This study used recurrent feature extraction—a data reduction method—to identify
the most significant biomarkers associated with respiratory treatment response. We trained
several machine learning models on 70% of the data, and we validated their performance
on 30% of the data to identify that a logistic regression model was the most sensitive
(64%) to treatment response. Among the biomarkers associated with increased odds of
respiratory treatment, five of them (high-density lipoprotein cholesterol, c-reactive protein,
triglycerides, haemoglobin, and Clauss fibrinogen) are risk factors for cardiovascular
disease (CVD), and two of them (glycated haemoglobin and alkaline phosphatase) are risk
factors for diabetes and liver disease, respectively. The link between liver disease and CVD
and diabetes and CVD has been confirmed in previous studies [22,23]. Recent studies have
also demonstrated the association between CVD, liver disease, diabetes, and respiratory
viral infections (e.g., COPD and COVID-19) [24–26]. Therefore, our findings are consistent
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with previous studies suggesting that people at risk of CVD, liver disease, or diabetes are
also at risk of respiratory infections and therefore can be treated similarly.

In contrast, increased cholesterol and albumin levels as well increased levels of ferritin
and insulin-like growth factor 1 were associated with reduced odds of respiratory treatment,
which may suggest that either a) these participants were more likely to receive other
than respiratory treatments—in fact, the proportion of participants who received any
cardiovascular drug was higher than that of any respiratory treatment (28% vs. 12%)—or
b) it was a result of negative confounding [27] that led to an underestimation of a true
association, which is frequently seen in observational studies [28].

There are some limitations to our study. First, the absence of eosinophil counts, which
is proven to be associated with respiratory diseases, e.g., COPD and mediated by inhaled
corticosteroids [9–11] may be the reason for the low accuracy—especially the sensitivity—of
our models. Although this study aims to explore the association of other than eosinophils
biomarkers, we believe that had this biomarker been present in the dataset, our models
would have been more sensitive in predicting any respiratory treatment response. Another
limitation is that our study consists of a sample of healthy participants, whose measured
biomarkers are within a normal range and, consequently, a small proportion of them are
receiving respiratory-related treatment. Therefore, despite the biomarkers included in this
study being measures of risk factors for potential CVD, liver disease, or diabetes, we would
not be able to identify any direct link between those biomarkers and any disease that would
potentially lead to respiratory treatment.

Moreover, approximately 5000 participants did not consent or were unable to give
their blood, so their biomarkers could not be assessed. These participants could be different
from those who have given blood samples, and their inclusion in the study may have
altered the results. A fourth limitation is the lack of specific respiratory related treatments
in our data. Our treatment response consists of any respiratory drug taken without being
specific on the kind of drug, its dosage, or the frequency taken. Therefore, we could not
assess whether any of the identified biomarkers were associated with a particular drug that
would help provide a roadmap for targeted treatments.

5. Conclusions

This is the first study that, to the best of our knowledge, presents a set of biomarkers—
known to be associated with chronic diseases (e.g., CVD, liver disease, and diabetes)—
whose association with a respiratory treatment response has not been previously explored.
This study was done on a large sample of healthy participants with unknown underlying
conditions and a low intake of respiratory treatment. We used machine learning and
data reduction methods to identify the most significantly associated biomarkers with any
respiratory treatment response.

We trained several machine learning models, including logistic regression and random
forest, with 70% of the data, and we assessed their performance on the rest of the data
(30%) that did not contribute any information to the models’ development (i.e., they were
independent). Although none of these biomarkers are a known risk factor for respira-
tory disease, we identified 16 of them, and along with age, sex, body mass index, and
lung function we were able to predict respiratory treatment response with 64% accuracy
correctly. We then used the logistic regression model to calculate the odds of associa-
tion between the biomarkers and the treatment response. We found that elevated levels
of alkaline phosphatase, glycated haemoglobin, high-density lipoprotein cholesterol, c-
reactive protein, triglycerides, haemoglobin, and fibrinogen activity were associated with
increased odds of treatment response, whereas increased levels of albumin, cholesterol,
dehydroepiandrosterone sulphate, insulin-like growth factor 1, and ferritin were associated
with reduced odds of respiratory treatment response. There was insufficient evidence for a
significant association between aspartate transaminase, gamma glutamyl transferase, urea,
cytomegalovirus IgG, and respiratory treatment response.
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Should our findings be validated in other populations—including, e.g., patients with
respiratory diseases with a variety of respiratory drugs—we are confident that they would
assist in effectively guiding both disease diagnosis and associated targeted therapies.
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