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LETTER TO THE EDITOR
Flow-controlled ventilation may
reduce mechanical power and
increase ventilatory efficiency in
severe coronavirus disease-19
acute respiratory distress
syndrome
To the Editor,

The prevention of ventilator-induced lung injury (VILI) is
the mainstay of the management of mechanical ventila-
tion in patients with acute respiratory distress syndrome
(ARDS).1 Official guidelines have focused on tidal volume,
plateau pressure (Pplat), positive end-expiratory pressure
(PEEP), and driving pressure (DP), i.e., the difference
between Pplat and PEEP, to identify lung-protective ven-
tilation strategies.2 However, even values of tidal vol-
umes and Pplat that are normally considered safe may
result in injurious ventilation.3

Mechanical power (MP) represents the total energy trans-
ferred from the mechanical ventilator to the lungs during
inflation and includes dynamic variables such as inspiratory
flow rate and breathing frequency.3 Some studies suggest
that MP may predict mortality in ARDS patients3 and that
higher inspiratory flow rates increase the risk of VILI in
patients with mild to moderate ARDS.4

The lungs of patients with coronavirus disease (COVID)-19
related ARDS are characterized by parenchymal heterogene-
ity, leading to regional differences in pulmonary mechanical
properties.5 Consequently, higher velocities of lung inflation
may drive a greater fraction of tidal volume to alveolar units
with shorter time constant and unevenly amplify lung stress
in some regions.3 Therefore, reducing flow rates might be
beneficial.

Flow-controlled ventilation (FCV) (Evone�, Ventinova
Medical, Eindhoven, The Netherlands) is a ventilatory mode
where both inspiratory and expiratory flow rates are main-
tained constant and < 20 L/min throughout the respiratory
cycle by regulating tracheal pressure, as measured through
a dedicated lumen opening at the distal end of the endotra-
cheal tube.6 During FCV, the inspiratory flow rate, inspira-
tory to expiratory ratio, peak inspiratory pressure (Ppeak),
end-expiratory pressure (EEP), and the inspiratory concen-
tration of oxygen are pre-set, whereas tidal volume and
respiratory rate vary depending on ventilator settings and
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the patient’s respiratory mechanics.7 Some studies observed
improved lung recruitment, more homogeneous lung
aeration,6,8,9 better gas exchange,8-12 and attenuated
experimental lung injury with FCV,12, compared to volume-
targeted mechanical ventilation (conventional mechanical
ventilation, CMV). We hypothesize that FCV would reduce
MP and ventilatory ratio (VR) in COVID-19 patients develop-
ing refractory hypoxemia despite optimization of CMV and
prone positioning.

This pilot study was performed in 10 sedated and para-
lyzed COVID-19 ARDS patients admitted to the intensive
care unit with arterial partial pressure of oxygen to inspired
oxygen fraction ratio (PaO2/FiO2) < 150 mmHg during CMV
while in prone position for at least 12 consecutive hours.2

Inspiratory and expiratory flow rates were initially set at
15 L/min with inspiratory to expiratory ratio 1:1, while EEP
was equal to PEEP and Ppeak to Pplat during CMV, thereby
maintaining approximately the same DP and consequently
similar tidal volumes. All measurements were obtained in
CMV prior to switching to FCV (CMV1), after 4 hours of FCV,
and then again after 4 hours of CMV (CMV2). All variables are
reported as median (interquartile range) and compared
using the Friedman test, followed by pairwise comparison
with Wilcoxon signed-rank test and post-hoc Bonferroni cor-
rection. All statistical tests were two-tailed and statistical
significance was defined as p<0.05.

Patient age was 59 (55-57) years and the predicted body
weight 65 (59-68) kg. Nine (90%) patients survived the hospi-
tal stay. As reported in Table 1, during FCV inspiratory flow
rate, respiratory rate, and minute ventilation were all
decreased, compared to both CMV1 and CMV2. During FCV
the MP was 10.8 (9.9-13.4) J/min, as opposed to CMV1 [22.7
(20.3-25.6) J/min (p=0.006)] and CMV2 [20.1 (19.0-24.0) J/
min (p=0.006)], and VR was 1.40 (1.28-1.44), as compared
with CMV1 [2.22 (1.90-2.56) (p=0.006)] and CMV2 [2.20
(1.79-2.57) (p=0.006)]. Arterial partial pressure of carbon
dioxide, pH, and PaO2/FiO2 were not significantly different
among the three conditions.

Our study evaluating a series of 10 consecutive patients
affected by COVID-19 with refractory hypoxemia, despite
prone positioning while receiving CMV, suggests that FCV
may be associated with some advantages. First, the applica-
tion of FCV resulted in decreased MP, as a consequence of
lower inspiratory flow rates and breathing frequencies,
potentially reducing the dissipated energy.7,12,13 Indeed,
FCV was shown to reduce MP11 and attenuate VILI through
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Table 1 Ventilatory settings, mechanical properties of the respiratory system, and outcome variables

Variable CMV1 FCV CMV2 p-valuea Kendall’s W

Ventilatory settings
Respiratory rate (breaths/min) 26 (24-28) 17 (16-18)b,c 25 (22-26) <0.001 0.930
Tidal volume (mL/kg PBW) 6.9 (6.8-7.3) 6.8 (6.5-7.3) 6.8 (6.5-7.2) 0.968 0.003
Minute ventilation (L/min) 11.8 (10.2-12.8) 7.7 (7.1-8.2)d,e 10.8 (9.6-12.1) <0.001 0.830
Peak pressure (cmH2O) 27 (25-28) 23 (20-25)b,c 26 (25-28) <0.001 0.810
Plateau pressure (cmH2O) 21 (20-23) 21 (19-23) 22 (21-23) 0.015 0.420
PEEP (cmH2O) 9 (8-10) 9 (7-10) 9 (8-10) 0.772 0.030
Inspiratory flow (L/min) 26 (23-26) 15 (14-15)d,e 22 (22-26) <0.001 0.800
Gas exchanges
pH 7.37 (7.30-7.42) 7.39 (7.36-7.42) 7.34 (7.27-7.42) 0.280 0.130
PaCO2 (mmHg) 49 (43-51) 45 (42-48) 51 (45-56) 0.275 0.130
PaO2/FiO2 (mmHg) 128 (116-134) 136 (115-147) 134 (106-152) 0.275 0.150
Ventilatory ratio 2.22 (1.90-2.56) 1.40 (1.28-1.44)d,e 2.20 (1.79-2.57) <0.001 0.770
Mechanical properties of the respiratory system
Crs (mL/cmH2O) 36 (34-38) 35 (34-40) 36 (33-39) 0.704 0.040
Driving pressure (cmH2O) 13 (12-13) 12 (11-13) 13 (12-14) 0.331 0.110
Mechanical power (J/min) 22.7 (20.3-25.6) 10.8 (9.9-13.4)d,e 20.1 (19.0-24.0) <0.001 0.760

Abbreviations: CMV, conventional mechanical ventilation; FCV, flow-controlled ventilation; PBW, predicted body weight; PEEP, positive
end-expiratory pressure; PaCO2, arterial partial pressure of carbon dioxide; PaO2/FiO2, arterial partial pressure of oxygen to fraction of
inspired oxygen ratio; Crs, compliance of the respiratory system.
All measurement were obtained in CMV prior to switching to FCV (CMV1), after 4 hours of FCV, and then again after 4 hours of CMV (CMV2).
During CMV, plateau pressure (Pplat) and total PEEP were measured at the points of zero flow during an end-inspiratory and end-expiratory
pause, respectively, while during FCV Pplat is displayed every 10 cycles after an automatic pressure drop in the pressure curve.
Driving pressure was computed as the difference between Pplat and total PEEP, during CMV, and the difference between peak pres-
sure (Ppeak) and end-expiratory pressure, during FCV. Crs was calculated as the ratio between tidal volume and driving pressure.
Inspiratory flow during CMV was calculated as the ratio between tidal volumes and inspiratory time, while inspiratory flow during
FCV is set on the ventilator.
Ventilatory ratio was calculated as the ratio between the product of measured minute ventilation (mL/min) and measured PaCO2 and the
product between predicted minute ventilation (PBW*100 mL/min) and expected PaCO2 (37.5 mmHg) (10.1164/rccm.201804-0692OC).
Mechanical power was calculated as follows: 0.098*respiratory rate*tidal volume*[Ppeak-1/2*(Pplat-PEEP)] (10.1186/s13054-020-03116-w).
Variables are reported as median (interquartile range) and were compared using the Friedman two-way analysis of variance, followed by
pairwise comparison with Wilcoxon signed-rank test and post-hoc Bonferroni correction, when indicated. The Kendall's W value is the
effect size estimate for Friedman test and ranges from 0.1-0.3 (small effect) to >0.5 (large effect).
a p-value from the Friedman two-way analysis of variance.
b p<0.05 between FCV and CMV1 after post-hoc Bonferroni correction.
c p<0.05 between FCV and CMV2 after post-hoc Bonferroni correction.
d p<0.01 between FCV and CMV1 after post-hoc Bonferroni correction.
e p<0.01 between FCV and CMV2 after post-hoc Bonferroni correction.
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this mechanism in porcine models.12 Second, our results are
in keeping with preclinical8,9,12 and clinical studies,6, dem-
onstrating higher ventilatory efficiency, probably related to
improved intrapulmonary distribution of ventilation with
FCV. Third, although we did not observe any significant
improvement in gas exchange with FCV, previous studies
reported better oxygenation and carbon dioxide elimination
with this mode.8-12, Therefore, our study extends to the crit-
ical illness setting the current evidence, mainly limited to
preclinical studies and small clinical studies performed in
the operating room, suggesting that FCV might reduce VILI,
while maintaining adequate gas exchanges.

Our study has important limitations. First, the small
sample size makes our findings exploratory and hypothe-
sis-generating. Larger prospective studies are necessary
to confirm these results and support clinical studies
ascertaining the impact of FCV on clinical outcomes. Sec-
ond, the external validity and the generalizability of our
findings to patients with acute respiratory failure of
2

different etiology need to be assessed. Furthermore, we
cannot rule out that different dead space of the ventila-
tor apparatus may have contributed to the improvement
of VR with FCV. However, this is unlikely because we
always used an active humidifier before the Y-piece of
the respiratory circuit during CMV.

In conclusion, FCV reduced MP and VR in a small cohort of
severely hypoxemic COVID-19 patients receiving CMV and
prone positioning.
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