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Simple Summary: Cancer associated cachexia and loss of skeletal muscle mass is a negative prognos-
tic marker for survival. Temporal muscle thickness (TMT) is an easily accessible parameter that has
been suggested as a prognostic marker in glioblastoma. In this multicenter study we retrospectively
analyzed a cohort of 335 patients with newly diagnosed glioblastoma for their overall survival (OS)
and TMT. Although previous studies found TMT to be an independent prognostic marker for OS,
we could not reproduce these results. Instead, TMT seems to be a surrogate parameter for other
epidemiological data.

Abstract: Background: Reduced temporal muscle thickness (TMT) has been discussed as a prognostic
marker in IDH-wildtype glioblastoma. This retrospective multicenter study was designed to investi-
gate whether TMT is an independent prognostic marker in newly diagnosed glioblastoma. Methods:
TMT was retrospectively measured in 335 patients with newly diagnosed glioblastoma between
1 January 2014 and 31 December 2019 at the University Hospitals of Leipzig and Rostock. The cohort
was dichotomized by TMT and tested for association with overall survival (OS) after 12 months
by multivariate proportional hazard calculation. Results: TMT of 7.0 mm or more was associated
with increased OS (46.3 £ 3.9% versus 36.6 + 3.9%, p > 0.001). However, the sub-groups showed
significant epidemiological differences. In multivariate proportional hazard calculation, patient age
(HR 1.01; p = 0.004), MGMT promoter status (HR 0.76; p = 0.002), EOR (HR 0.61), adjuvant irradiation
(HR 0.24) and adjuvant chemotherapy (HR 0.40; all p < 0.001) were independent prognostic markers

for OS. However, KPS (HR 1.00, p = 0.31), BMI (HR 0.98, p = 0.11) and TMT (HR 1.06; p = 0.07) were
not significantly associated with OS. Conclusion: TMT has not appeared as a statistically independent
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1. Introduction

This article is an open access article Cancer associated cachexia leads to the loss of skeletal muscle, and the thickness

of skeletal muscle has been established as an independent prognostic marker of overall
survival (OS) in metastasizing cancer [1]. In patients with intracerebral tumors, an eas-
ily accessible marker for skeletal muscle mass is temporal muscle thickness (TMT) [2].
Recently, TMT has also been discussed as a prognostic marker in newly diagnosed [3-5]
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and progressive glioblastoma (GBM) [6]. Glioblastoma is the most common malignant
tumor of the brain, showing an incidence of 5 per 100,000 per year [7]; the median age at
diagnosis is 65 years and men are more frequently affected. Despite great efforts in the
advancement of treatment, the prognosis remains devastating, and five-year survival is
only 3% [8]. First-line treatment of GBM includes micro-surgical resection followed by
concomitant chemoradiotherapy [9,10]. However, depending on prognostic factors, pa-
tients are stratified in different therapeutic pathways, where chemotherapy or radiotherapy
can be administered without the other. For this reason, and to predict overall survival
(OS), prognostic biomarkers are necessary. A minor subtype of GBM develops out of a
primary less malignant astrocytoma or oligodendroglioma and shows a mutation of the
isocitrate dehydrogenase (IDH) gene, and is called secondary or IDH-positive GBM. The
majority of GBM are primary and IDH-negative and have a shorter OS. Other established
biomarkers are age, Karnofsky Performance Score (KPS), the extent of resection (EOR), and
Oé—methylguanine-DNA methyltransferase (MGMT) promoter methylation status [10,11].
Current studies describe further genetic and imaging biomarkers as well as neurological
performance to be relevant for OS prediction [12-14].

To analyze whether TMT can serve as an independent prognostic marker, as suggested
previously, we examined the records of patients with IDH-negative GBM in a retrospective
study of two major German University Hospitals.

2. Methods
2.1. Patient Cohorts

This study was approved by the local ethics committee (336/20-ek). We analyzed
medical records of all patients who were newly diagnosed with IDH-wildtype glioblastoma
at the University Hospitals of Leipzig or Rostock, Germany, between 1 January 2014 and
31 December 2019. All patients were at least 18 years old and received magnetic resonance
imaging (MRI) with contrast enhancement before surgery and within 72 h after surgery. All
patients were treated according to the current guidelines for glioma therapy and all cases
were discussed in weekly interdisciplinary tumor boards. Patients who did not undergo
surgery were excluded.

We recorded the age at the date of diagnosis, sex, body mass index (BMI), Karnofsky
Performance Score (KPS), MGMT status, extent of resection (EOR), and the administration
of adjuvant chemoradiotherapy. Here, gross-total resection was defined as EOR over 90%,
sub-total resection (STR) as EOR below 90%, excluding biopsy, and biopsy was defined as
burr-hole trepanation with needle biopsy.

Overall survival (OS) was recorded as the time between tumor resection and death.
These were assessed on 30 June 2021. If patients lived beyond that date or were lost to
follow-up, the date of last contact was implemented as a censored value.

2.2. TMT Measurement

For TMT assessment, T1 weighted magnetic resonance images (MRI, 1 mm isovoxel
resolution) with gadolinium in axial slides perpendicular to the axis of the temporal muscle
were used. An experienced neuroradiologist who was blinded to clinical patient data
measured TMT. The measurement was performed on both sides and recorded as mean
TMT per patient (Figure 1).

2.3. Statistical Analysis

Statistical analysis was carried out using SPSS statistics software version 24.0.0.2 (IBM,
Armonk, NY, USA). Spearman’s rank-order correlation was applied to determine the re-
lationship between BMI and TMT. Receiver operator characteristic (ROC) analysis was
performed for TMT. One-year survival was calculated using the Kaplan-Meier estimate,
which is given with standard deviation. Statistical significance was determined via log rank
testing. Influence on survival probability of continuous and categorized parameters was
analyzed via univariate Cox regression. Parameters with p-values below 0.2 in univariate
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analysis were then implemented into a multivariate proportional hazard calculation. Sub-
group comparison of epidemiological data was performed employing Mann-Whitney-U
testing. p-values below 0.05 were considered to be statistically significant.

Figure 1. Example of temporal muscle thickness (TMT) measurement in contrast enhanced axial T1
magnetic resonance imaging (MRI) of a 70-year old male patient with an overall survival (OS) of
18 months. Measurement is marked with arrows (right: 7.6 mm, left: 7.8 mm).

3. Results
3.1. Patient Cohort and Temporal Muscle Thickness

Baseline data is presented in Table 1. During the study period, 335 patients with newly
diagnosed glioblastoma were eligible. Concerning epidemiological data such as gender
ratio, average age and 12-months survival, the cohort is comparable to larger studies [15].
Average TMT was 7.0 + 2.1 mm for both sides and average BMI 27.1 + 5.7 kg/m?. Only for
values below 30 kg/m? was there a weak correlation between TMT and BMI (Spearman’s p
0.247). Otherwise, TMT and BMI did not correlate. Concerning TMT and patient sex, there
was also a weak correlation (Spearman’s p —0.297).

3.2. Temporal Muscle Thickness and Overall Survival

Continuous and categorized parameters were employed in univariate Cox regression
to analyze influence on survival probability. Here, increasing KPS (HR 0.98; p < 0.001)
and TMT (HR 0.92; p = 0.004), a positive MGMT methylation status (HR 0.63), gross total
resection (HR 0.53), receiving adjuvant irradiation with concomitant temozolomide (HR
0.1) and chemotherapy with temozolomide (HR 0.23; all p < 0.001) were significantly corre-
lated with prolonged overall survival while higher patient age was inversely associated
with patient survival (HR 1.03; p < 0.001). BMI and patient sex did not show statistical
significance (Table 2, center column).

Since a TMT cutoff could not be calculated by ROC (AUC 0.558), a Kaplan Meier
analysis was performed with cohorts stratified by the average TMT from baseline data.
Survival curves are shown in Figure 2. Patients with a TMT of 7.0 mm and more had a
significantly increased OS (12-months-survival 46.3 & 3.9%) compared to the corresponding
sub-group (12-months-survival 36.6 + 3.9%, p < 0.001 by log-rank test). A comparative
sub-cohort analysis, however, revealed that patients with a TMT of 7.0 mm and more were
mostly male (as already analyzed before), received GTR as well as adjuvant chemotherapy
with temozolomide more often, and had corresponding tumor samples that revealed a
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methylated MGMT promoter more frequently (Table 3). A subgroup multivariate cox
regression analysis of only male or only female patients did not give significant results for
TMT, either (p = 0.125 and p = 0.429, respectively).

Table 1. Baseline data.

Characteristics Value
No. of patients 335
sex male 196
female 139
average age (years) 66.8 (18-92.7)
average BMI (kg/m?) 27.1 (18-53.8)
average KPS 72.6 (20-100)
average TMT (mm) 7.0 (3-14.9)
positive 108
MGMT status negative 137
unknown 90
biopsy 80
extent of resection STR 102
GTR 153
adjuvant radiotherapy w/o 43
with concomitant temozolomide with 292
. . w/o 127
adjuvant temozolomide with 208
12-months survival (%) 422+22

Average values are given with their range. BMI: body mass index; GTR: gross-total resection; KPS: Karnofsky
Performance Scale; MGMT: O°-methylguanine DNA methyltransferase; STR: sub-total resection; TMT: temporal
muscle thickness.

Table 2. Cox Regression.

Univariate Cox Regression Multivariate Cox Regression
Variable
HR 95CI p Value HR 95CI p Value
Age 1.03 1.02-1.05 <0.001 1.01 1.01-1.03 0.004
Sex 0.97 0.72-1.17 0.48 - - -

Body Mass Index 0.98 0.96-1.01 0.16 0.98 0.96-1.01 0.11

KPS 0.98 0.98-0.99 <0.001 1.00 0.99-1.00 0.31

Temporal Muscle Thickness 0.92 0.87-0.97 0.004 1.06 1.00-1.14 0.07
MGMT status 0.63 0.54-0.74 <0.001 0.76 0.64-0.91 0.002
extent of resection 0.53 0.46-0.62 <0.001 0.61 0.52-0.72 <0.001
_ adjuvantirradiation 0.10 0.07-0.15 <0.001 0.24 0.16-0.38 <0.001

with concomitant temozolomide

adjuvant temozolomide 0.23 0.18-0.30 <0.001 0.40 0.29-0.55 <0.001

Italic values indicate statistical significance. HR: Hazard Ratio; MGMT: O°-methylguanine DNA methyltransferase; KPS: Karnofsky
Performance Scale; 95CI: 95% confidence interval.
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Figure 2. Overall survival and temporal muscle thickness by Kaplan Meier analysis. TMT: temporal
muscle thickness.
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Table 3. Sub-cohort stratified by TMT.

Characteristics TMT >7.0mm  TMT<7.0mm  p-Value
No. of patients 171 164 -
male 123 73
sex female 48 91 <
average age (years) 66.4 = 10.2 652 114 0.749
average BMI (kg/m?) 262+5.1 28.0+5.2 0.905
average KPS 70.2 +18.9 75.0 £17.0 0.308
positive 71 37
MGMT status negative 74 63 <0.001
unknown 26 64
biopsy 30 50
extent of resection STR 51 51 0.005
GTR 90 63
adjuvant radiotherapy w/o 16 27 0.263
with concomitant temozolimide with 155 137 ’
. . w/o 49 78
adjuvant temozolomide with 12 86 0.003

p-values were calculated via Mann-Whitney U test. Italic values indicate statistical significance. BMI: body
mass index; GTR: gross total resection; KPS: Karnofsky Performance Scale; MGMT: 06-methylguanine DNA
methyltransferase; STR: sub-total resection; TMT: temporal muscle thickness.

All mentioned parameters were implemented into a multivariate proportional hazard
calculation (shown in Table 2, right column). Patient age (HR 1.01; p = 0.004), MGMT
promoter methylation status (HR 0.76; p = 0.002), extent of resection (HR 0.61), adjuvant
irradiation (HR 0.24) and adjuvant chemotherapy (HR 0.40; all p < 0.001) had independent
effects on overall survival. In contrast, BMI (HR 0.98, p = 0.11) and TMT (HR 1.06; p = 0.07)
were not significantly associated with OS.

4. Discussion

We present a retrospective analysis of more than 300 patients with newly diagnosed
IDH-wildtype glioblastoma from two German university hospitals, investigating the prog-
nostic value of temporal muscle thickness (TMT).

Since a TMT cut-off value could not be defined by ROC analysis, we stratified our
patient cohort by the average TMT of 7.0 mm. This cut-off value is comparable with recent
studies [4-6]. Furthermore, we added the BMI as an additional factor to be considered. In
univariate analysis, the difference between the Kaplan Meier estimates of patients with
higher and lower TMT values was significantly different. However, there was a bias within
other proven prognostic parameters such as EOR, MGMT promoter methylation status and
adjuvant therapy regimen. Consequently, multivariate analysis revealed TMT and BMI not
to be statistically significant markers for overall survival. Interestingly, there was a weak
correlation of TMT and BMI in non-obese patients. This could not be observed in patients
with a BMI > 30 kg/m? and might point to a linear relation of overall skeletal muscle mass
and body mass, which our data cannot further elaborate.

It has long been known that cancer, in particular in its metastatic form, leads to
cachexia with skeletal muscle atrophy. In these patients, muscular atrophy has proven
to be a prognostic marker for survival [1]. In particular, measurement of the TMT has
shown to reproduce highly reasonable results and to serve as an easily accessible surrogate
of overall skeletal mass, which can be assessed on CT or MR images during routine
imaging in cancer staging. The exact underlying mechanism of cancer cachexia, however,
is unknown, but metastasizing cancers and chemotherapy toxicities are suspicious of
leading to muscle atrophy [16,17]. Taking these results of metastatic cancer studies into
consideration, chemotherapy for GBM has a more favorable safety profile than in other
cancers, with thrombocytopenia being the main dose-limiting toxicity [9]. Also, metastases
of GBM outside the central nervous system are very rare [18], and deterioration is therefore
usually caused by decreasing neurological performance rather than systemic effects [19].
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Earlier research reported TMT as an independent prognostic marker in GBM after first
progression [6], but also found statistical differences in epidemiological data in cohorts
stratified by TMT [5]. While this alone sufficiently explains why TMT in our cohort is
only a surrogate parameter for epidemiological differences between patients, the statistical
significance cannot be reproduced in multivariate analysis. There are several possible
explanations for these findings.

First, we measured TMT before treatment. Therefore, our data rather reflects the
overall physical constitution of our patients than the general physical reaction to surgery,
chemoradiotherapy or the devastating diagnosis of progressive glioblastoma. This also en-
abled us to measure TMT bilaterally in all patients, which was not possible in progressive
glioblastoma patients, due to temporal muscle atrophy following surgery and irradia-
tion [6]. Also, long-term treatment with corticosteroids that causes skeletal muscle atrophy
and compromises survival in glioblastoma, was ruled out in our study design [20,21].
However, if cachexia has been the cause of deterioration directly before death, it would not
be detectable in our measurement at the time of diagnosis. Therefore, the time of imaging
for skeletal muscle mass may be important.

Second, patients with unknown or mutated IDH-status were excluded from our cohort.
Considering IDH-wildtype GBM (now known as Astrocytoma WHO grade IV [10]) as an
independent entity, allowed for a more coherent data analysis in comparison to previous
works that did not screen for IDH status [3], or included both IDH-mutated and IDH-
wildtype GBM [6]. Last, our multi-center cohort is larger than those of single-center studies
on newly diagnosed glioblastoma and eliminates single-center effects on overall survival
and TMT measurement [3-5].

The epidemiological data in our cohort is comparable to larger studies [7]. We also
found known epidemiological markers for overall survival to be statistically significant in
multivariate analysis (Table 2). Specifically, patient age, MGMT promoter methylation sta-
tus, extent of resection, adjuvant irradiation and adjuvant chemotherapy were independent
markers for overall survival [10-14]. These study characteristics emphasize the quality and
comparability of our data. The limitations of this study lie within its design, which is of a
retrospective nature, and therefore a recruitment bias cannot be fully ruled out. Although
TMT was measured as described in other studies, there may be inter-observer variability,
which was not ruled out by a further analysis during this study. However, measuring the
thickness of the temporal muscle in a defined point along its axis is not prone to large
aberrations.

5. Conclusions

In metastasizing cancers, TMT is a well investigated marker for patient survival [22,23].
Although it has been proposed as an independent marker for survival in progressive
as well as in newly diagnosed glioblastoma [3-5], our multicenter data showed that in
patients with newly diagnosed glioblastoma, TMT is only a surrogate parameter for other
epidemiological data. Therefore, in newly diagnosed IDH-wildtype glioblastoma, our data
cannot support the role of TMT as an independent prognostic marker.
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