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Prediction model of acute
kidney injury after di�erent
types of acute aortic dissection
based on machine learning
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2Xinjiang Branch of National Clinical Research Center for Kidney Disease, Institute of Nephrology of

Xinjiang, Urumqi, China, 3Xinjiang Blood Purification Medical Quality Control Center, Urumqi, China,
4School of Public Health, Xinjiang Medical University, Urumqi, China

Objective: A clinical prediction model for postoperative combined Acute

kidney injury (AKI) in patients with Type A acute aortic dissection (TAAAD) and

Type B acute aortic dissection (TBAAD) was constructed by using Machine

Learning (ML).

Methods: Baseline data was collected fromAcute aortic division (AAD) patients

admitted to First A�liated Hospital of Xinjiang Medical University between

January 1, 2019 and December 31, 2021. (1) We identified baseline Serum

creatinine (SCR) estimation methods and used them as a basis for diagnosis

of AKI. (2) Divide their total datasets randomly into Training set (70%) and

Test set (30%), Bootstrap modeling and validation of features using multiple

ML methods in the training set, and select models corresponding to the

largest Area Under Curve (AUC) for follow-up studies. (3) Screening of the best

ML model variables through the model visualization tools Shapley Addictive

Explanations (SHAP) and Recursive feature reduction (REF). (4) Finally, the

pre-screened prediction models were evaluated using test set data from three

aspects: discrimination, Calibration, and clinical benefit.

Results: The final incidence of AKI was 69.4% (120/173) in 173 patients with

TAAAD and 28.6% (81/283) in 283 patients with TBAAD. For TAAAD-AKI, the

Random Forest (RF) model showed the best prediction performance in the

training set (AUC= 0.760, 95% CI:0.630–0.881); while for TBAAD-AKI, the Light

Gradient Boosting Machine (LightGBM) model worked best (AUC= 0.734, 95%

CI:0.623–0.847). Screening of the characteristic variables revealed that the

common predictors among the two final prediction models for postoperative

AKI due to AAD were baseline SCR, Blood urea nitrogen (BUN) and Uric acid

(UA) at admission, Mechanical ventilation time (MVT). The specific predictors

in the TAAAD-AKI model are: White blood cell (WBC), Platelet (PLT) and

D dimer at admission, Plasma The specific predictors in the TBAAD-AKI

model were N-terminal pro B-type natriuretic peptide (BNP), Serum kalium,

Activated partial thromboplastin time (APTT) and Systolic blood pressure (SBP)

at admission, Combined renal arteriography in surgery. Finally, we used in

terms of Discrimination, the ROC value of the RF model for TAAAD was 0.81
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and the ROC value of the LightGBM model for TBAAD was 0.74, both with

good accuracy. In terms of calibration, the calibration curve of TAAAD-AKI’s

RF fits the ideal curve the best and has the lowest and smallest Brier score

(0.16). Similarly, the calibration curve of TBAAD-AKI’s LightGBM model fits the

ideal curve the best and has the smallest Brier score (0.15). In terms of Clinical

benefit, the best ML models for both types of AAD have good Net benefit as

shown by Decision Curve Analysis (DCA).

Conclusion: We successfully constructed and validated clinical prediction

models for the occurrence of AKI after surgery in TAAAD and TBAAD patients

using di�erent ML algorithms. Themain predictors of the two types of AAD-AKI

are somewhat di�erent, and the strategies for early prevention and control of

AKI are also di�erent and need more external data for validation.

KEYWORDS

acute renal injury, machine learning, prediction model, acute aortic dissection, Type

A acute aortic dissection, Type B acute aortic dissection

Introduction

Acute kidney injury is one of the major complications of

Cardiac and vascular surgery (CVS), which has been named

CVS-AKI by scholars (1). AAD is a typical representative of

acute and critical cardiovascular disease. In recent years, the

detection rate of aortic coarctation has been increasing year

by year with the rise of public health awareness and the

improvement of medical treatment. Postoperative AKI leads

to increased length of stay and costs for patients and is

considered an important factor in poor outcomes, including

death, and is a focal point that needs to be addressed urgently

(2–7). The AAD is currently divided into two types, A and B,

according to the location of the rupture, using the Stanford

typing. TAAAD opens in the ascending aorta and often tears

proximally or distally, making the attack extremely dangerous

and often requiring urgent surgical repair. The incidence of

TAAAD- AKI reports ranged widely from 26 to 72% (3, 6, 8–

15). Patients with TBAAD involving only the descending aorta

and poorly treated with conservative medications often require

angiographic guidance for EVAR (endovascular aortic repair).

The incidence of AKI after TBAAD decreased compared to

TAAAD, but still ranged from 17.9 to 52.7% (2, 5, 7, 16).

The treatment of AKI currently lacks specific drugs, so early

identification and intervention remains a current hot topic in

AKI research.

In recent years, many predictivemodels for AKI after cardiac

surgery have been investigated and developed in China and

abroad. Includes Cleveland prediction model requiring RRT

(17), Mehta prediction model (18), Pannu predictive model (19)

and MCSPI prediction models without RRT (20), Chuang WN

prediction model (21) etc. However, most of the above models

are based on heart valve or coronary surgery, lack prediction

models for AAD-AKI, and mostly use Logistic Regression (LR)

methods that do not solve the nonlinearity problem well to

construct models. ML methods developed in recent years have

been used to improve the performance of clinical prediction

(22). Since the risk level of TAAAD and TBAAD and the surgical

approach are completely different, the mechanism and degree

of AKI occurring after surgery and its prognosis are also very

different. Therefore, this study constructs clinical prediction

models for each of the two types of AAD-AKI based on machine

learning methods to screen the characteristic variables and

provide a basis for early prevention and intervention of AKI in

AAD patients.

Methods

Study population

We retrospectively investigated 1,543 patients with AAD (of

which all TAAAD were from our thoracic surgery department

for open vascular replacement surgery; TBAAD were from

vascular surgery or cardiology department for EVAR) who were

hospitalized and treated with surgery from January 1, 2019 to

December 30, 2021 at the First Affiliated Hospital of Xinjiang

Medical University. Exclusion criteria: (1) patients who had

already started Renal Replacement Therapy (RRT) or died before

surgery; (2) patients with intermural hematoma and simple

aortic aneurysm; (3) patients with missing SCR and incomplete

relevant clinical data. The data of 456 patients were finally

included by excluding 1,087 cases who were not eligible. Among

them, 173 (38%) were TAAAD patients and 283 (62%) were

TBAAD patients.
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FIGURE 1

Baseline creatinine assessment method for patients with AAD.

Data collection

We collected data on demographic characteristics, vital

signs, common comorbidities, preoperative, intraoperative,

and postoperative indicators, and perioperative medication

regimens of hospitalized AAD patients through Electronic

Medical Record (EMR). Ultimately, 46 characteristics were

included for TAAAD patients and 42 characteristics were used

by TBAAD to construct the initial model for, respectively.

AKI is diagnosed using the 2012 Kidney Disease: Improving

Global Outcomes (KDIGO) Clinical Practice Guidelines for

Acute Kidney Injury (23), That is, SCR increased by 26.5µmol/L

(0.3 mg/dL) within 48 h, or increased by 50% from baseline

SCR within 7 d, or persisted for more than 6 h with urine

output<0.5mL/(kg·h). In fact, there is no definitive standard for

baseline SCR. For patients lacking a stable and reliable baseline

SCR record, the Risk, Injury, Failure, Loss of Kidney Function,

and End-stage Kidney Disease (RIFLE) (24) and The KDIGO

guidelines recommend using the Modification of Diet in Renal

Disease (MDRD) formula to retrograde the baseline SCR. The

MDRD formula uses variables such as SCR, age, sex, and race to

estimate the glomerular filtration rate (GFR) of the kidney (25).

While the European Renal Best Practice (ERBP) recommends

using the admission SCR (26), most investigators in clinical

practice mostly follow the ERBP guidelines. However, Siew et al.

(27) found that this approach resulted in an underestimation

of AKI incidence by 46%. In addition, one study (28) found

that in patients without predominantly nephropathy, the mean

serum SCR at one-year outpatient follow-up was closest to

their true GFR. We combined the guideline recommendations

and the characteristics of AAD onset and selected the optimal

assessment method from three perspectives as the baseline SCR

for patients with AAD (Figure 1).

Machine learning

We tried the following most popular supervised machine

learning methods to develop prediction models for classification

outcomes: DT (Decision Tree), RF, XGboost (eXtreme Gradient

Boosting), and LightGBM, and compared them with traditional

LR methods. These ML models are closer to the human mind

and have high interpretability as well as high accuracy. The

DT method is the simplest tree model (29). The elements that

make it up are nodes and edges, where the nodes are judged

based on the various characteristics of the samples and the edges

refer to the next classification direction DT uses the idea of top-

down recursion to construct information entropy falling fastest

tree, and uses Gini impurity as an indicator for classification

result judgment. The Gini index is the probability of random

classification error of samples in the data set. However, simple

DT has the disadvantages of overfitting and weak generalization

ability, so RF is derived on this basis. The basic idea of RF is

to construct the final prediction model by constructing decision

trees of random samples several times and using bagging to

output the results in a voting way (30). XGboost and LightGBM

are optimizations of Gradient Boosting Decision Tree (GBDT),

an iterative decision trees algorithm that uses weak classifiers

to make decision trees accumulate predictions that are closer

to the true value by continuously reducing the residuals of the

model. The model is used to reduce the residuals so that the

predictions accumulated by the decision trees are closer to the

true values. While XGboost (31) mainly adds regularization to

GBDT to build penalty function to reduce overfitting. lightGBM

uses aHistogram (histogram) based decision trees algorithm and

uses a Leaf-wise (leaf growth) strategy with maximum splitting

gain, which is more efficient in terms of training speed. It has

a significant advantage in handling large data in particular (32).
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FIGURE 2

Technology roadmap.

Each of these methods has its own advantages and disadvantages

in different dataset environments, and there is no absolute

advantage or disadvantage.

Statistical analysis

The Python software version 3.7.13 (https://www.python.

org) was used for statistical processing and analysis, mainly

including the drawing toolkit Matplotlib (version 3.3.4), and

the machine learning framework scikit-learn (versions 0.24.2

and 1.0. 2). In the present study, for continuous variables,

the Kolmogorov-Smirnov test was used to assess the normal

distribution of the data when performing the characterization,

and x ± s was used for measures that obeyed normality, and

t-tests were used to compare between groups in the training

and test sets. Variables that did not follow a normal distribution

were described usingM (P25,P75), and group comparisons were

made using the Wilcoxon rank sum test for two independent

samples. For categorical variables, n (%) was used for description

and group comparisons were made using the χ
2 test. A two-

tailed test was set and p < 0.05 was statistically different.

For both TAAAD and TBAAD datasets, we randomly

divided them into a training set (70%) and a test set (30%). Using

Logistic Regression and various ML methods in the training

set, we use Bootstrap resampling technique (1,000 times) to

randomly select a random number of samples in the training

set each time for initial modeling, and the unsampled part
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FIGURE 3

SCR, BUN and UA di�erences between AKI and Non-AKI groups.
* represents statistical di�erences. (A) Is from the TAAAD data;

(B) is from the TBAAAD data.

for internal validation, and evaluate the prediction accuracy by

plotting the receiver operating characteristic (ROC) curve of

each model in the training set and calculating the AUC size to

evaluate the prediction accuracy, and the best performing model

is used for subsequent studies.

To analyze the specific contributions made by the features

included in this study to the model, we used the feature

visualization toolkit Shap (version 0.40.0) for observing the

specific performance of features in the model, which is based on

the idea of game theory and belongs to a post hoc explanatory

framework that can provide specific Shapley values to assess

the importance of each feature in each sample relative to the

target variable (33). In addition, we filtered the variables through

a method based on RFE from the Sklearn library, a greedy

algorithm for finding the optimal subset of features, which is

more stable in dealing with multicollinearity problems than

the previously used Lasso regression. The variables are filtered

using a five-fold cross-validation to output stable and reliable

variables, and the final variables for inclusion in the compact

prediction model are determined by the results of SHAP and

RFE. In addition, hyperparametric search and optimization

of the screened prediction models are performed using the

GridSearch method in the Sklearn library.

Finally, we evaluated the final incorporated compact

machine models in terms of three dimensions: Discrimination,

Calibration and Clinical benefit using the test set data. In terms

of discrimination, we compared the performance of the compact

models with the widely used clinical metrics SCR, BUN and UA

in diagnosing AKI by plotting the ROC curves in the test set. In

addition, to evaluate the difference between the predicted and

true results of each machine learning model for AKI occurrence,

we plotted a calibration plot in the test set, where the x-axis

of the curve represents the predicted probability of AKI and

the y-axis represents the actual probability of AKI occurrence.

The dashed line represents the ideal curve, and the closer to

the dashed line, the higher the agreement. In addition, the Brier

score is used to quantitatively assess the agreement, and the

lower the Brier score for a set of predicted values, the better

the prediction calibration. To show the practical utility of the

model in the clinic, we also plotted the DCA curve to meet the

practical needs of clinical decision makers. The X-axis of this

curve is the threshold probability and the Y-axis is the net benefit

corresponding to each threshold probability (Figure 2).

Results

Baseline characteristics

In our research, the incidence of postoperative AKI was

69.4% (120/173) in TAAAD patients and 28.6% (81/283) in

TBAAD patients, both slightly higher than in other studies

(8, 16, 34). SCR, BUN and UA are currently the most commonly

used clinical indicators to respond to kidney function (35), but

these metabolites are not markers of kidney injury and may be

interfered with by other factors such as feeding and metabolism.

We performed a univariate analysis of these two most sensitive

indicators for the diagnosis of AKI, and Figure 3 demonstrates

that the differences in baseline SCR, admission BUN and UA

in the total data set for both types of AAD were statistically

significant (p < 0.05) in both the AKI and non-AKI groups.

This study depicts the concentration and dispersion of each

variable in the total data set for patients with both types of

AAD, and furthermore, the total data set was randomly split

into a training set and a test set by 7:3, and all variables did not

differ significantly in both split data sets. This indicates that the

training and test set data are homogeneous and comparable (see

Tables 1, 2).
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TABLE 1 TAAAD patient characteristics and perioperative variables.

TAAAD variables All

(N = 173)

Training set

(N = 121)

Test set

(N = 52)

P

Age (years) 48.53± 8.47 48.54± 8.69 48.52± 8.03 0.99

Male, n (%) 150(86.70) 105(86.78) 45(86.53) 0.84

Preoperative factors

Hypertension, n (%) 121(69.94) 83(68.59) 38(73.08) 0.68

Diabetes, n (%) 22(12.72) 16(13.22) 6(11.54) 0.95

CCD, n (%) 15(8.67) 12(9.92) 3(5.77) 0.55

CKD, n (%) 10(5.78) 7(5.78) 3(5.77) 0.720

History of smoking, n (%) 71(41.04) 45(37.19) 26(50.00) 0.16

Renal artery involvement in CTA 0.34

No, n (%) 105(60.69) 77(63.64) 28(53.85)

Unilateral, n (%) 52(30.06) 35(28.92) 17(32.69)

Bilateral, n (%) 16(9.25) 9(7.44) 7(13.46)

SBP at admission (mmHg) 136.53± 24.30 136.64± 25.56 136.27± 21.33 0.93

DBP at admission (mmHg) 75.85± 13.78 76.04± 13.97 75.42± 13.47 0.79

EF (%) 60.74± 4.81 60.69± 4.91 60.86± 4.61 0.83

WBC (109/L) 13.09± 4.36 13.18± 4.61 12.88± 3.72 0.68

HGB (g/L) 139.81± 16.86 139.49± 16.78 140.56± 17.18 0.70

PLT (109/L) 184.31± 71.12 189.26± 75.30 172.79± 59.33 0.16

APTT (s) 30.9(29.0, 33.7) 31(29.3, 33.8) 30.35(28.7, 33.2) 0.22

D dimer (ng/mL) 2,179(799.0, 3,885.0) 2,051(799.0, 3,605.0) 2,732(811.5, 3,997.5) 0.40

Serum kalium (mmol/L) 3.72± 0.51 3.73± 0.53 3.71± 0.47 0.86

Blood calcium (mmol/L) 2.20± 0.12 2.21± 0.12 2.20± 0.13 0.62

ALT (u/L) 29.55(22.4, 46.0) 29.85(23.0, 49.04) 29.05(20.7, 38.07) 0.44

BUN (mmol/L) 6.47± 2.13 6.45± 2.19 6.52± 2.01 0.83

UA (mmol/L) 373.77± 116.96 363.77± 125.10 397.02± 92.30 0.09

Baseline SCR (umol/L) 75.0(62.55,94.56) 73.24(62.55, 93.8) 77.85(62.72, 97.79) 0.28

Proealcitonin (ng/mL) 0.07(0.04, 0.17) 0.07(0.04,0.17) 0.06(0.05, 0.145) 0.71

IL-6 (pg/mL) 64.7(29.4, 104.4) 64.7(27.31, 115.0) 64.2(32.95, 98.16) 0.97

CTn I (ug/L) 0.024(0.01, 0.16) 0.018(0.01, 0.158) 0.031(0.013, 0.183) 0.35

Pericardial effusion, n (%) 45(26.01) 33(27.27) 12(23.08) 0.70

Pleural effusion, n (%) 47(27.17) 34(28.10) 7(13.46) 0.81

N-terminal pro BNP (ng/L) 211.0(84.81, 678.0) 241.0(84.81, 691.0) 196.0(89.105, 630.5) 0.60

LAC (mmol/L) 1.7(1.2, 2.7) 1.7(1.3, 2.9) 1.6(1.15, 2.2) 0.06

PaO2/FiO2 (mmHg) 331.82± 128.40 333.61± 129.66 327.63± 126.57 0.78

Intraoperative factors

Emergency operation, n (%) 93(53.76) 64(52.89) 29(55.77) 0.85

CPB duration (mins) 150.0(120.0, 174.0) 150.0(120.0, 176.0) 144.0(112.0, 169.5) 0.41

DHCA (mins) 79.0(68.0, 97.0) 79.0(68.0, 97.0) 77.5(67.5, 95.0) 0.75

Intraoperative bleeding volume (mL) 1,000(1,000.0,1,800.0) 1,000(1,000.0,1,800.0) 1,000(1,000.0,1,600.0) 0.70

Red blood cell transfusion (units) 4.0(3.0, 7.0) 4.0(3.0, 7.0) 4.0(3.0, 6.0) 0.34

Plasma transfusion (mL) 1,760(1,510, 2,180) 1,760(1,510, 2,090) 1,755(1,515, 2,250) 0.99

Type of operation

Ascending aortic or hemiarch replacement, n (%) 157(90.75) 109(90.08) 48(92.31) 0.86

Total arch replacement, n (%) 125(71.43) 88(72.73) 37(71.15) 0.98

Aortic root replacement, n (%) 105(60.69) 70(57.85) 35(67.31) 0.32

Simultaneous coronary artery bypass grafting, n (%) 21(12.14) 17(14.05) 4(7.69) 0.88

(Continued)

Frontiers inCardiovascularMedicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2022.984772
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Xinsai et al. 10.3389/fcvm.2022.984772

TABLE 1 (Continued)

TAAAD variables All

(N = 173)

Training set

(N = 121)

Test set

(N = 52)

P

Postoperative factors

MVT (hours) 199.49± 166.81 192.46± 163.94 215.85± 173.81 0.40

LOS in ICU (days) 12.94± 10.37 12.06± 9.58 15.00± 11.85 0.09

Perioperative drugs

RASI, n (%) 67(38.73) 50(41.32) 17(32.69) 0.37

Loop diuretics, n (%) 168(97.11) 118(97.52) 50(96.15) 0.99

Vasopressors, n (%) 155(89.59) 106(87.60) 49(94.32) 0.30

Statins, n (%) 16(9.25) 12(9.92) 4(7.69) 0.86

Antibiotics, n (%) 172(99.42) 120(99.17) 52(100) 0.66

CCD, cardia-cerebrovascular disease; CKD, chronic kidney diseases; CTA, computed tomography angiography; SBP, systolic blood pressure; DBP, diastolic blood pressure; EF, ejection

fraction; WBC, white blood cell; HGB, hemoglobin; PLT, platelet; APTT, activated partial thromboplastin time; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN,

blood urea nitrogen; UA, uric acid; SCR, serum creatinine; IL, interleukin; CTn, cardic troponin; BNP, B-type natriuretic peptide; LAC, lactic acid concentration; PaO2, arterial oxygen

tension; FiO2, inspired oxygen fraction; CPB, cardiopulmonary bypass; DHCA, deep hypothermic circulatory arrest; MVT, mechanical ventilation time; LOS, length of stay; ICU, intensive

care unit; RASI, renin angiotensin aldosterone system inhibitor. Emergency surgery is defined as surgical treatment within 24 hours of admission.

Model development

We used LR, DT, RF, XGboost and LightGBM to construct

the models, and used all features in the TAAAD and TBAAD

training sets as input variables, respectively, and used Bootstrap

(1,000 times) for internal validation in the training set to

improve model stability. As shown in Figure 4, for TAAAD-

AKI, the RF model exhibited the best prediction performance

(AUC = 0.760, 95% CI:0.630–0.881), while for TBAAD-AKI,

the LightGBM integrated learning model was the best (AUC

= 0.734, 95% CI:0.623–0.847). It is worth mentioning that

although DT may be too biased, it is clear and easy to

understand and is the basis for learning and understanding

other machine models. Figure 5 visualizes the process of DT

recursively determining whether a patient has postoperative AKI

from the initial root node to the final leaf node. As seen in

Figure 5A, three of the eight leaf nodes in the TAAAD-AKI

decision tree model have a Gini index of more than 0.2, and

Figure 5B shows that four of the eight leaf nodes in the TBAAD-

AKI model have a Gini index >0.2. Both of these suggest

poor accuracy.

Variable filter

The best models based on TAAAD-AKI and TBAAAD-

AKI were analyzed using the SHAP package for model

interpretation, and the higher the SHAP value of a feature,

the higher the likelihood of postoperative AKI. Figures 6A1,B1

show the descending ranking according to SHAP values after

inclusion of all variables in the training set. To prevent

overfitting and increase clinical controllability, we screened

the variables by the REF method and selected 10 feature

variables each by five-fold cross-validation. Figures 6A2,B2 show

the effect of the compact model distribution explained by

SHAP again after screening. Figures 6A3,B3 then show the

importance ranking of the transformed predictor variables.

We found that admission baseline SCR was the top-ranked

predictor in both intact and compact models for patients with

both types of entrapment. In both types of entrapment, the

same common indicators of postoperative AKI in addition to

baseline SCR are: admission BUN and UA, MVT and LOS

in ICU. In TAAAD-AKI, the specific predictors are: WBC,

PLT and D dimer at admission, Plasma transfusion and CPB

duration in surgery. In the TBAAD-AKI prediction model, the

specific predictors are: N-terminal pro BNP, Serum kalium,

APTT and SBP at admission, Combined renal arteriography

in surgery. After variable screening, we included the selected

variables in the model and used Grid Search to determine the

optimal hyperparameters. Hyperparameters were searched and

visualized in TAAAD-AKI for the RF model and in TBAAD-

AKI for the LightGBM model (see Tables 3, 4 for specific

hyperparameter settings).

Model validation and evaluation

We validated the constructed compact ML prediction

models in the test set. Figures 7A1,B1 show the performance

of two types of AAD using the best ML compact prediction

model to compare with the AKI clinically sensitive measures

SCR, BUN and UA to predict AKI, respectively. We found that

the combined prediction level of machine learning is higher than

that of a single predictor. Figures 7A2,B2 show the calibration

curves of the different machine learning models for the two

types of AAD, respectively, and it can be clearly seen that in
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TABLE 2 TBAAD patient characteristics and perioperative variables.

TBAAD Variables All

(N = 283)

Training set

(N = 198)

Test set

(N = 85)

P

Age (years) 51.98± 11.22 51.40± 11.33 53.33± 10.90 0.18

Male, n (%) 229(80.9) 164(82.8) 20(23.5) 0.28

Preoperative factors

Hypertension, n (%) 248(87.6) 175(88.4) 73(85.9) 0.70

Diabetes, n (%) 17(6.0) 12(6.1) 5(5.9) 1.00

CCD, n (%) 46(16.3) 30(15.2) 16(18.8) 0.55

CKD, n (%) 18(6.3) 12(6.1) 6(7.1) 0.96

History of smoking, n (%) 136(48.1) 99(50.0) 37(43.5) 0.38

Renal artery involvement in CTA 0.39

No, n (%) 144(50.9) 104(52.5) 40(47.1)

Unilateral, n (%) 117(41.3) 77(38.9) 40(47.1)

Bilateral, n (%) 22(7.8) 17(8.6) 5(5.9)

SBP at admission (mmHg) 149.01± 25.55 149.41± 25.20 148.09± 26.47 0.69

DBP at admission (mmHg) 85.43± 15.32 85.19± 14.95 86.01± 16.22 0.68

EF (%) 60.65± 4.51 60.54± 4.71 60.90± 4.01 0.54

WBC (109/L) 11.33± 3.89 11.20± 3.79 11.65± 4.13 0.37

HGB (g/L) 140.38± 20.31 140.80± 21.24 139.40± 18.06 0.60

PLT (109/L) 209.09± 74.59 209.68± 76.10 207.73± 71.38 0.84

APTT (s) 31.25± 4.74 31.33± 4.48 31.08± 5.33 0.69

D dimer (ng/mL) 1,020.0(557.0, 2,572.5) 1,057.5(612.5, 2,572.5) 908.0(551.0, 2,528.0) 0.20

Serum kalium (mmol/L) 3.66± 0.43 3.67± 0.41 3.63± 0.46 0.48

Blood calcium (mmol/L) 2.22± 0.13 2.23± 0.12 2.21± 0.13 0.48

ALT (u/L) 25.4(19.435,34.645) 25.8(19.33, 35.83) 24.7(19.85, 32.10) 0.56

BUN (mmol/L) 5.9(4.77,7.06) 5.92(4.89, 7.09) 5.55(4.55,6.70) 0.07

UA (mmol/L) 344.97± 117.12 352.45± 115.99 327.54± 118.57 0.10

Baseline SCR (umol/L) 63.4(52.55, 75.25) 64.99(54.17, 77.55) 60.42(50.0, 71.70) 0.42

Proealcitonin (ng/mL) 0.06(0.04, 0.11) 0.06(0.04, 0.11) 0.05(0.03, 0.12) 0.13

IL-6 (pg/mL) 32.37(15.905, 63.17) 30.09(15.91, 61.75) 36.70(16.53, 70.63) 0.39

CTn I (ug/L) 0.012(0.012, 0.015) 0.012(0.012, 0.015) 0.012(0.012, 0.017) 0.55

Pericardial effusion, n (%) 15(5.3) 10(5.1) 5(5.9) 1.00

Pleural effusion, n (%) 65(23.0) 49(24.7) 16(18.8) 0.35

N-terminal pro BNP (ng/L) 124.0(54.25, 392.69) 115.0(51.16, 377.0) 152.0(64.1,393.0) 0.29

LAC (mmol/L) 1.5(1.1, 2.1) 1.6(1.1, 2.15) 1.4(1.1, 2.06) 0.46

PaO2/FiO2 (mmHg) 333.61± 105.59 333.02± 108.60 333.99± 98.84 0.88

Intraoperative factors

Emergency operation, n (%) 59(20.8) 37(18.7) 22(25.9) 0.23

Total operation duration (mins) 90.0(75.0, 120.0) 90.0(70.0, 120.0) 105.0(75.0, 125.0) 0.25

Dose of contrast media (mL) 40.0(20.0, 60.0) 40.0(20.0, 60.0) 40.0(20.0, 60.0) 0.30

Type of operation

Complex EVAR, n (%) 8(2.8) 5(2.5) 3(3.5) 0.94

Combined renal arteriography,

n (%)

112(39.6) 81(40.9) 31(36.5) 0.57

Postoperative factors

MVT (hours) 0.0(0.0, 5.0) 0.0(0.0, 4.5) 0.0(0.0, 5.0) 0.90

LOS in ICU (days) 5.0(9.0, 15.0) 5.5(1.0, 8.5) 5.0(1.0, 7.0) 0.23

(Continued)
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TABLE 2 (Continued)

TBAAD Variables All

(N = 283)

Training set

(N = 198)

Test set

(N = 85)

P

Perioperative drugs

RASI, n (%) 227(80.2) 163(82.3) 64(75.3) 0.23

Loop diuretics, n (%) 112(39.6) 78(39.4) 34(40.0) 1.00

Vasopressors, n (%) 70(24.7) 50(25.3) 20(23.5) 0.87

Statins, n (%) 51(18.0) 37(18.7) 14(16.5) 0.78

Antibiotics, n (%) 273(96.5) 193(97.5) 80(94.1) 0.29

EVAR, endovascular aneurysm repair; Complex EVAR is defined as requiring simultaneous repair of branches; Combined renal arteriography is defined as the addition of renal

arteriography on the basis of main artery angiography.

FIGURE 4

AUC comparison between machine learning models. (A) Shows the ROC curves and AUC values of di�erent models predicting post-operative

AKI after Bootstrap 1,000 times in the TAAAD training set. (B) Shows the ROC curves and AUC values of di�erent models predicting

postoperative AKI after Bootstrap 1,000 times in the TBAAD training set.

TAAAD-AKI, the calibration curve of RF fits the ideal curve

(diagonal) the best and has the smallest Brier score (0.16). That

is, the predicted value of RF differs the least from the true value

compared to the other models. In contrast, the calibration curve

of LightGBM in TBAAD-AKI is the closest to the ideal curve and

has the smallest Brier score (0.15). The prediction consistency

of the model was likewise recognized. Figures 7A3,B3 show

the analysis of decision curves for different machine learning

models. Similarly, RF showed the greatest net clinical benefit in

the TAAAD-AKI test set; LightGBM showed the widest range

of benefit in TBAAD-AKI, meaning that the model has a higher

clinical utility.

Discussion

In this study, we retrospectively collected perioperative data

of patients undergoing AAD surgery in our hospital for three

consecutive years and found that the incidence of AKI was

higher in both TAAAD and TBAAD patients than in other

studies, which may be related to our improved method of

assessing baseline SCR. Because this improves the sensitivity of

AKI diagnosis and is more beneficial in detecting patients with

early AKI compared to routine admission SCR as a baseline

value. In addition, this study constructed clinical prediction

models for AAD-AKI with different typing using the ML

algorithm with superior performance. The results illustrate that

the best model is not consistent across different data and

relying on empirical selection of a fixed single model may

reduce its reliability. Our results show that several clinically

common indicators of kidney function, such as baseline SCR,

hospital admission BUN and UA, were significantly different in

both AKI and non-AKI groups in the TAAAAD and TBAAD

whole datasets. Furthermore, baseline SCR, hospitalized BUN,

and UA were also important predictors of both types of

AAD-AKI in the best ML models constructed using training
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FIGURE 5

Visualization of the decision tree model. Recursive determination of whether a patient has AKI, blue represents AKI and orange represents

Non-AKI. Each box represents a node and the straight lines with arrows represent edges, both on the left are Ture and both on the right are

False. The main contents contained in the boxes are: the features used to slice the current node; The Gini represents the possible error rate of

the current node, and the smaller the Gini index in this figure, the higher the color density of the node. Value is the actual number of non-AKI

and non-AKI patients contained in the current node, and class represents the patient class predicted by the current node (class = No: non AKI

patients, class = Yes: AKI patients). (A) Shows the TAAAD-AKI decision tree model. (B) Shows the TBAAD-AKI decision tree model.

set data, respectively. SCR is a metabolite of skeletal muscle

phosphoric creatine, BUN is a metabolite of proteins, and

UA is a metabolite of purines, both of which are excreted

through kidney urine, and urination disorders lead to varying

degrees of upregulation. In addition, patients with AAD are

more likely to develop hypertension, and hyperuric acid is often

associated with hypertension (36). Hyperuric acid crystallization

in kidney tissue resulting in obstructive kidney injury is also

one of the pathogenesis of AAD-AKI, and studies have shown

that hyperuric acid is associated with AKI incidence and death
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FIGURE 6

Interpretation of variable importance using SHAP values. SHAP assigns points to each feature of the patient in the graph, with features

decreasing in importance from high to low, and colors representing the magnitude of the feature value (high in red, low in blue); the X-axis is

used to measure the impact of the feature on AKI (positive on the right, negative on the left; the higher the value, the stronger the impact).

(A1–A3) Shows the features importance of TAAAD-AKI. (B1–B3) Shows the features importance of TBAAD-AKI.
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TABLE 3 TAAAD-AKI random forest.

Hyperparameters Search domain Final setting

max_depth 10–200 10

max_features “auto”, “sqrt” auto

min_samples_leaf 1,2,4,8 8

min_samples_split 2,5,10 10

n_estimators 1–200 90

TABLE 4 TBAAD-AKI LightCBM.

Hyperparameters Search domain Final setting

num_leaves 5–31 5

Max_depth 3,4,5 3

subsample 0.8,0.9,1.0 0.8

Colsample bytree 0.8,0.9,1.0 0.8

reg_alpha np.log(0.01), np.log(1,000) 6.9

reg_lambda np.log(0.01), np.log(1,000) 6.9

outcomes in patients (37). Although they are interfered with

by a variety of factors and are not perfect indicators of kidney

function, they are still a major marker for diagnosis of AKI

under existing conditions. Perioperative dynamic monitoring of

these early warning molecules is particularly important for early

detection of AKI.

Other predictors in the TAAAD-AKI compact model have

been extensively discussed in several studies. Decreased PLT on

admission and increased D dimer are positively associated with

the development of AKI andmay be associated with more severe

disease. When blood flow passes through a non-endothelialized

pseudolumen, it triggers the activation of platelets and the

coagulation system, leading to platelet depletion and an increase

in fibrin degradation products (38). CPB, as a marker of surgical

complexity, has been repeatedly demonstrated as a risk factor

for the development of TAAAD-AKI. The main mechanisms

leading to AKI are (1) ischemia-reperfusion injury (IRI). Low

pressure, low flow, non-pulsatile perfusion, hemodilution, and

massive intraoperative bleeding during CPB can lead to renal

hypoperfusion (39). (2) Inflammation and oxidative stress. The

contact of blood with artificial materials activates immune

cells and inflammatory factors during extracorporeal circulation

transfer (40). In addition, exposure of erythrocytes to non-

physiological ducts and shear forces of blood flow can lead

to hemolysis, production of large amounts of free HB and

oxygen radicals, and even inflammatory storms. WBC is one

of the markers of inflammatory response, and this study

suggests that elevated WBC leads to an increased incidence

of postoperative AKI, which is consistent with the findings

of Takahashi, a Japanese scholar (41). The TAAAD surgical

procedure bleeds heavily and always requires transfusion of

blood products. However, blood transfusion can increase the

inflammatory response. In CPB patients, blood transfusion

has been shown to be associated with AKI and RRT (8, 9,

42). TAAAD patients all require ventilator-assisted ventilation

for varying periods of time after deep anesthesia. Prolonged

MVT is an important risk factor for the development of AKI,

which is consistent with the results of other studies (11).

We concluded that: continuous optimization of the procedure,

shortening of CPB time, optimization of volume status, and

use of goal-directed therapy (GDT) (43); Reducing traumatic

bleeding, using Autologous platelet-rich plasma (APRP) to

reduce intraoperative allogeneic blood transfusion; promoting

the recovery of patients’ autonomic respiratory function as soon

as possible, stopping mechanical ventilation at the right time,

and reducing LOS in ICU can help reduce the risk of AKI in

TAAAD patients after surgery.

The characteristic predictors in the compact model of

TBAAD-AKI are equally worthy of discussion. As with TAAAD,

LOS in ICU and the accompanying prolonged MVT are

also associated with TBAAD-AKI. On the one hand, MVT

indirectly reflects the severity of lung injury. and that respiratory

insufficiency leads to hypoxemia, and the kidney, as an oxygen-

sensitive organ, is therefore susceptible to induce AKI. On the

other hand, positive pressure ventilation leads to a decrease in

cardiac output and causes inadequate renal perfusion which

can also lead to AKI. prolonged APTT is considered to be

related to the large amount of thrombin depletion during

thrombosis of the patient’s pseudocavitary blood. All of these

factors suggest that the patient is relatively sicker and more

likely to develop AKI. Elevated Nt-proBNP on admission is

one of the specific indicators of cardiac insufficiency, and low

cardiac output causes a decrease in glomerular filtration rate

(GFR), which is also described as “Cardio-renal Syndrome”

(CRS) (44). It is also elevated during the oliguric phase of

AKI due to reduced excretion of Nt-proBNP. Poorly controlled

hypertension is thought to be the main cause of morbidity in

patients with AAD. In this study, elevated admission SBP was

found to be a predictor of the development of AKI after TBAAD.

Luo et al. (5) considered that admission systolic blood pressure

>140 mmHg was an independent risk factor for AKI after

EVAR. Excessive blood pressure will further cause false lumen

extension, eventually leading to the occurrence of AKI. EVAR

in patients with TBAAD requires a large amount of contrast

media to determine the location of the breach, guide wire

and stent. Contrast-induced acute kidney injury (CI-AKI) is

significantly increased with the use of large amounts of contrast

media in a short period of time (45). EVAR in patients with

TBAAD requires a large amount of contrast media to determine

the location of the breach, guide wire and stent. Contrast-

induced acute kidney injury (CI-AKI) is significantly increased

with the use of large amounts of contrast media in a short

period of time (46). Contrast dose was also not included in our

study, but when we defined combined renal arteriography as
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FIGURE 7

Evaluation and validation of the two models. (A1,B1) are comparisons of the performance of the compact model after feature selection with the

prediction performance of AKI occurrence in the test set using baseline SCR, BUN and UA alone. (A2,B2) are the calibration curves for di�erent

machine learning models and the Brier scores. (A3,B3) are the clinical decision curves for the di�erent machine learning models. The gray

dashed line is the benefit rate for all patients who received the intervention, and the pink dashed horizontal line is no benefit for all patients who

did not receive the intervention. The intersection with all is taken as the starting point and the intersection with None as the ending point, within

which is the corresponding total net benefit.
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adding renal arteriography to aortography, it was found to be

positively associated with TBAAD-AKI. We believe that when

the kidneys are more heavily impacted by contrast media, it

is most likely to be a risk factor for CI-AKI, although more

prospective evidence is needed to support our view. In summary,

for TBAAD patients, we believe that more stringent blood

pressure control, protection of cardiac function, avoidance of

exposure to nephrotoxic drugs, timely postoperative hydration

therapy, reduction of unnecessary mechanical ventilation, and

active correction of complications are of great significance for

the diagnosis and treatment of AKI.

In summary, we found differences in the incidence,

important risk predictors and renal protective measures between

TAAAD-AKI and TBAAD-AKI, which are ultimately related

to their pathogenesis. In our subsequent related studies, we

found that the pathophysiology of AKI due to the two types

of entrapment differs in terms of ischemia-reperfusion injury,

inflammation and oxidative stress, activation of neurohumoral

fluids, obstruction of metabolic substances, and endogenous and

exogenous nephrotoxins. A more detailed description requires

our further confirmation.

Strengths and limitations

The strengths of our study are: (1) We adjusted the

ambiguous baseline SCR assessment method according to the

pathogenic characteristics and clinical experience of AAD

patients. (2) We simultaneously constructed and compared

clinical prediction models of two types of AAD-AKI, which have

not been found in other literatures so far. (3) According to the

actual situation of the two types of AAD datasets, we select the

best ML model that matches them, instead of using the same

machine algorithm without verification.

Our study also has some limitations: (1) We are still limited

by the problem of insufficient sample. The larger the sample of

the prediction model, the better the effect of machine learning.

(2) There are a large number of missing values in important

variables such as BMI, urine protein, cystatin C, and urine

volume, so they were not included in the study, which may

reduce the performance of the model. (3) Our research also

requires external validation to determine the robustness of

the model.

Conclusion

In this study, we successfully constructed and validated a

clinical prediction model for postoperative AKI in TAAAD and

TBAAD patients using different machine learning algorithms.

ML is more accurate than the traditional logistic regression

model. With the popularization of big data and artificial

intelligence, the application of machine learning in the medical

field will be more extensive. After variable screening, we found

that the predictors of AKI caused by the two types of AAD were

very different, and the corresponding treatment strategies were

also different. These findings need to be further confirmed in

future prospective studies.
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