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Abstract
Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal 
cord injury (SCI). The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed 
to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. 
Eighteen patients with incomplete SCI (mean age 40.94 ± 14.10 years old; male:female, 7:11) and 18 healthy subjects (37.33 ± 11.79 years 
old; male:female, 7:11) were studied by resting state functional magnetic resonance imaging. Gray matter volume (GMV) and functional 
connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in 
sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between 
left primary somatosensory cortex (BA1) and left primary motor cortex (BA4), and left BA1 and left somatosensory association cortex 
(BA5) was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and 
left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional 
connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI 
patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas 
were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be 
dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging 
biomarker for assessment and prediction of sensory function in patients with incomplete SCI. This trial was registered with the Chinese 
Clinical Trial Registry (registration number: ChiCTR-ROC-17013566).
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Introduction
Spinal cord injury (SCI) is a life-changing event that caus-
es characteristic neural reorganization (Fouad et al., 2008; 
García-Alías et al., 2015; Fink et al., 2016), which brings 
the opportunity for spontaneous functional recovery or 
intervention rehabilitation, especially in patients with in-
complete SCI (Curt et al., 2008; Kuppuswamy et al., 2011; 
Silva et al., 2015). Brain reorganization includes changes 
of anatomical structure and function following SCI (Fre-
und et al., 2013; Hou et al., 2014; Sabre et al., 2016). Rest-
ing state functional magnetic resonance imaging (fMRI) 
is a potent tool for quantitatively evaluating changes of 
brain structure and functional reorganization and for de-
veloping biomarkers for prognosis (Fuerra-Carrillo et al., 
2014; Jutzeler et al., 2015; Oni-Orisan et al., 2016; Kaushal 
et al., 2017). Previous studies have investigated anatomical 
or functional characteristics and analyzed these data sepa-
rately to explore cerebral reorganization after SCI (Freund 
et al., 2011; Min et al., 2015; Zhu et al., 2015). Each imag-
ing technique provides a different view of brain function 
or structure (Choe et al., 2015; Eippert et al., 2017; Sharp 
et al., 2017). Voxel-based morphometry is used to detect 
gray or white matter volume changes (Hou et al., 2014a,b; 
Ganzola et al., 2017; Lemola et al., 2017). Resting state 
functional connectivity is used to investigate functional 
alterations at the brain network level (Ugurbil, 2015; Lefe-
bvre et al., 2017; Palacios et al., 2017). However, separate 
analysis does not enable examination of joint information 
between modalities (Sui et al., 2012; Wang et al., 2015; 
Calhoun et al., 2016). To our knowledge, few studies have 
combined information of brain anatomical and functional 
reorganization and explored the internal relationship be-
tween them following SCI.

Previous studies have shown reduced gray matter vol-
ume (GMV) in patients with SCI in multiple brain regions, 
such as the bilateral primary motor cortex, primary so-
matosensory cortex, and supplementary motor areas (Fre-
und et al., 2011, 2013a,b; Hou et al., 2014a,b). However, 
others have reported no cortical atrophy after SCI (Lundell 
et al., 2011; Villiger et al., 2015). Cortical reorganization 
following SCI depends on the extent of the lesion, disease 
duration, and exposure to rehabilitation (Chen et al., 2012; 
Isa et al., 2014; Jutzeler et al., 2015). These factors may lead 
to inconsistent morphometric results. Therefore, single 
cortical morphometric analysis may only partially reveal 
the structural reorganization mechanism and overlook 
other information (i.e., network functional alterations). 
Sensorimotor network alterations have also been report-
ed at acute and chronic stages in SCI patients (Min et al., 
2015; Zhu et al., 2015). Whether the network functional 
changes following SCI accompany cortical atrophy re-
mains unclear. In addition, fMRI could provide an objec-
tive and quantitative method for predicting neurological 
recovery (Freund et al., 2013a,b; Lee et al., 2017; Morgan et 
al., 2017). The International Standards for the Neurologi-

cal Classification of Spinal Cord Injury is routinely used to 
determine levels of injury and to classify the severity of the 
injury (Marino et al., 2003; Steeves et al., 2012). However, 
it is insensitive for evaluating rehabilitation intervention 
or prognosis (Kirshblum et al., 2014; Kumru et al., 2016).

We aimed to explore whether the alteration of anatom-
ical structure and network function were concomitant in 
sensorimotor areas after incomplete SCI, and determine 
the association between altered characteristics of cerebral 
reorganization and clinical scores. Combined anatomic 
and network functional information from fMRI may pro-
vide more comprehensive descriptions of brain reorgani-
zation following incomplete SCI, and may be helpful for 
identification of accurate and sensitive imaging biomark-
ers for rehabilitation intervention or prognosis.

Participants and Methods
Participants
Eighteen inpatients with incomplete SCI (7 males, 11 fe-
males; mean age of 40.9 ± 14.1 years old) were from the 
Department of Rehabilitation at the Beijing Tsinghua 
Changgung Hospital in China. At the time of study enroll-
ment, motor function, sensory function, neurologic level, 
and injury degree were assessed by American Spinal In-
jury Association (ASIA) criteria (Marino et al., 2003), the 
walking index for spinal cord injury II (WISCI II; Dittuno 
et al., 2001), and the Spinal Cord Independence Measure 
(SCIM; Catz et al., 2001). Eighteen healthy subjects (sev-
en males, 11 females; mean age of 37.3 ± 11.8 years old) 
were enrolled from the Department of Rehabilitation at 
the Beijing Tsinghua Changgung Hospital as controls and 
had no history of neurologic disorder. The study protocol 
was approved by the Ethics Committee of Beijing Tsinghua 
Changgung Hospital of China (IRB No. 2015-002). All 
participants provided their written informed consent to 
participate according to the Declaration of Helsinki. This 
trial was registered with the Chinese Clinical Trial Registry 
(registration number: ChiCTR-ROC-17013566).

Inclusion criteria of eligible patients
Patients presenting with all of the following criteria were 
considered for study inclusion: incomplete injury (ASIA C 
or D; Marino et al., 2003), subacute SCI and chronic SCI 
(time since injury greater than 1 month and less than 12 
months), neurologic level above T12. 

Exclusion criteria of eligible patients
Patients with one or more of the following conditions were 
excluded from this study: brain lesions, mental illness, sei-
zures. 

Data acquisition
All MRI data were acquired with a GE 3.0T MR scanner 
(DISCOVERY MR750 model; General Electric American, 
Waukesha, WI, USA). Participants were positioned su-
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pine and scanned using a standard 32-channel head-coil. 
Functional MRI parameters for resting state Blood Oxygen 
Level Dependent (BOLD) images were an “Ax-BOLD-
rest” series using a gradient echo planar-imaging sequence 
with repetition time = 2,000 ms, echo time = 30 ms, flip 
angle = 90°, pixel space = 3.5 mm2, slice thickness = 3.5 
mm, spacing between slices = 4 mm, acquisition matrix = 
[64, 0, 0, 64] equivalent to in-plane resolution = 64 × 64, 
reconstruction diameter = 224 mm, 34 axial slices, and 
240 temporal positions. T1-weighted images (T1) were a 
“Sag 3D T1BRAVO” series, with repetition time = 8.21 ms, 
echo time = 3.18 ms, flip angle = 8°, voxel space = 1 mm3, 
spacing between slices = 1 mm, acquisition matrix = [0, 
256, 256, 0], equivalent to 256 axial slices and 256 coronal 
slices. The sagittal slice number depended on the head size 
of each subject, ranging from 156 to 174 mm, correspond-
ing to the 36 subjects in this study. The reconstruction 
diameter was 256 mm. 

Data processing
GMV based on Brodmann area
There were four steps to obtain the GMV. Step 1 was 
to obtain skull stripped T1 images. First, T1-weighted 
images were segmented into gray matter, white matter, 
cerebrospinal fluid, and others in native space, using the 
“Segment” function of SPM12. To extract brain tissue, 
only the segmented gray matter, white matter, and cere-
brospinal fluid were regrouped in the native space to gen-
erate the extraction mask. The skull stripped images were 
extracted by masking original T1 data. Step 2 was Mon-
treal Neurological Institute (MNI) space normalization. 
The skull-stripped T1 images were normalized to the MNI 
space (space size = 181, 217, 181) by using the “normalize” 
function of SPM12. Step 3 was gray matter segmentation. 
The normalized T1 in the MNI space was segmented into 
three types of tissue: gray matter, white matter, and ce-
rebrospinal fluid, using the approach of brain tissue seg-
mentation based on Markov Random Fields (Ruan et al, 
2002), to obtain the gray matter in the MNI space. Step 4 
was the GMV calculation. GMV was defined as the total 
voxel number inside a specific area (or volume in 3D). The 
MNI-template with Brodmann area labels (including left 
and right hemispheres, total 82 areas) was used to accu-
mulate all gray matter-MNI voxels inside the labeled area 
to obtain the GMV corresponding to each Brodmann area. 

Functional connectivity analysis
There were three steps to obtain functional connectivity: 
preprocessing, brain network node construction, and net-
work features analysis. 

Step 1 was resting state BOLD signal preprocessing, 
which was performed using DPARSFA version 3.2 (http://
rfmri.org/DPARSF). After the first 10 temporal positions 
of data were discarded, for each remaining piece of tem-
poral position data, slicing timing correction and head 

motion correction were performed and then normalized 
to the MNI space with 3 mm isotropic voxel resampling. 
Preprocessing in the MNI space included smoothing the 
data with 4 mm FWHM (Full-Width-Half-Maximum), 
removing the linear trend of time courses and nuisance 
covariates with global signal regression, and temporally 
filtering with 0.01–0.08 Hz. 

Step 2 was the node value time series calculation. Each 
Brodmann area was considered a node in the brain net-
work. At each temporal position, within each Brodmann 
area, the average BOLD signal was assigned to the node as 
the signal intensity. This was a time series, with each tem-
poral position consisting of values corresponding to each 
Brodmann area. 

Step 3 was the connection matrix calculation. Pearson’s 
correlation coefficient was the covariance of two vari-
ables divided by the product of their standard deviations. 
Pearson’s correlation coefficients between the time series 
were used to measure functional connectivity between two 
nodes in the brain network. That is, correlation coefficients 
were used as weights of edges in the network.

Regions of interest
Regions of interest were positioned at the bilateral primary 
somatosensory cortex (BA1, BA2, BA3), primary motor 
cortex (BA4), somatosensory association cortex (BA5), 
and premotor cortex (BA6), which are areas that have 
connections to the spinal cord via corticospinal and spi-
nothalamic tracts and have been reported to have anatom-
ical structural and functional abnormalities in SCI (Hou 
et al., 2014a,b; Min et al., 2015). We used bilateral BA1, 
BA2, BA3, BA4, BA5, and BA6 as seeds to explore internal 
relationships between anatomical and functional reorgani-
zation in patients with SCI.

Outcome measures
Primary outcome measure
Functional connectivity in sensorimotor areas was the ma-
jor data used to detect functional reorganization. 

Secondary outcome measures 
GMV was minor data used to assess cerebral anatomical 
structure. Demographic data including sex, age, time since 
injury, injury level, and ASIA scale were also minor data. 
Clinical scores including ASIA motor scores, ASIA sen-
sory scores, WISCI II and SCIM were minor data used to 
assess motor function, sensory function, ambulation and 
activity of daily life of SCI patients

Statistical analysis
All data were analyzed using NumPy 1.12.1 software 
(http:// www.numpy.org) and Scipy 0.19.0 software 
(http:// www.scipy.org). Since the GMV, functional con-
nectivity and age were of near normal distribution, their 
quantitative data were expressed as the mean ± SD. Sex 
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was numerical data expressed as a percentage. Two-tailed 
independent sample t-tests were performed to evaluate 
the differences in GMV, functional connectivity and age 
between SCI patients and healthy subjects. Pearson chi-
squared analysis was performed to evaluate sex differences 
between SCI patients and healthy subjects. Spearman’s 
rank correlation was calculated for analyzing the relation-
ship between clinical score rankings and corresponding 
functional connectivity. A P-value of less than 0.05 was 
considered statistically significant for all tests.

Results
Demographics of SCI patients and healthy subjects
No differences were observed between SCI patients and 
healthy subjects in age (40.94 ± 14.10 vs. 37.33 ± 11.79 years; 
t = 0.833, P = 0.411, independent sample t-test) or gender 
(male:female, 7 (38.89%):11 (61.11%) vs. 7 (38.89%):11 
(61.11%), P = 1.000, Pearson chi-squared analysis). Time 
since SCI was 4.28 ± 3.30 months. Demographics and clin-
ical characteristics of 18 SCI patients are listed in Table 1. 
Severity of SCI was defined using ASIA criteria. 

Table 1 Demographic data and clinical values of patients with spinal cord injury

Patient No. Sex/age (year) Time since injury  (month) Injury level ASIA scale  ASIA motor score ASIA sensory score WISCI II SCIM

1 Female/41 4 C2 D 62 136 8 60
2 Female/30 3 C4 D 48 136 17 62
3 Female/18 4 C8 D 80 128 0 55
4 Female/65 2 T4 D 58 162 0 33
5 Female/22 11 T5 D 78 176 0 55
6 Female/25 6 C3 D 76 174 8 35
7 Female/34 3 T4 C 73 150 0 44
8 Female/55 6 C2 D 96 177 20 77
9 Female/56 3 T10 D 76 174 0 52
10 Female/39 12 T8 D 90 174 13 82
11 Female/56 2 C5 D 64 216 0 68
12 Male/51 2 T3 D 89 148 13 68
13 Male/62 1 C4 D 69 116 0 37
14 Male/46 3 C2 D 61 65 0 23
15 Male/27 1 T12 C 76 200 0 34
16 Male/39 8 C4 D 72 136 20 81
17 Male/33 6 C3 D 92 188 17 41
18 Male/38 1 T8 D 90 190 1 64

ASIA: American Spinal Injury Association; ASIA C: sensorimotor incomplete with half of the key muscles below the neurologic level with a muscle 
grade less than 3; ASIA D: at least half of the key muscles have a muscle grade of 3 or more; WISCI II: Walking Index for Spinal Cord Injury II (a 
higher WISCI II score represents better ambulation function); SCIM: Spinal Cord Independence Measure (a higher SCIM score represents better 
activity of daily life in SCI patients); C: cervical; T: thoracic. 

Table 2 GMV of sensorimotor areas in SCI patients and healthy subjects

Region of interest Side 

GMV (mm3)

t-value P-valueSCI patients Healthy subjects

BA1 Left 804.39±249.11 792.00±189.84 0.163 0.871
Right 1,060.94±240.44 990.83±239.44 0.852 0.400

BA2 Left 4,295.33±659.45 4,265.94±601.44 0.136 0.893
Right 4,274.28±595.67 4,435.50±604.71 –0.783 0.439

BA3 Left 6,690.67±914.88 6,768.00±867.06 –0.251 0.803
Right 6,717.72±1,073.67 7,048.72±968.23 –0.944 0.352

BA4 Left 10,485.89±1,454.87 10,435.67±1,408.92 0.102 0.919
Right 11,045.11±1,592.85 11,314.83±1,518.53 –0.505 0.617

BA5 Left 4,507.56±595.73 4,462.67±649.10 0.210 0.835
Right 5,247.28±773.79 4,970.78±865.79 0.982 0.333

BA6 Left 29,706.28±3,389.18 29,525.44±3,109.22 0.162 0.872
Right 30,389.94±4,226.43 30,801.00±3,725.94 –0.301 0.765

There was no significant alteration in GMV in the sensorimotor areas between incomplete SCI patients and healthy subjects (mean ± SD, n = 18, 
independent sample t-test). BA1, BA2, BA3: Primary somatosensory cortex; BA4: primary motor cortex; BA5: somatosensory association cortex; 
BA6: premotor cortex; GMV: gray matter volume; SCI: spinal cord injury.
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GMV changes based on Brodmann area in sensorimotor 
brain areas
GMVs in the bilateral BA1, BA2, BA3, BA4, BA5, and 
BA6 were calculated. There was no significant alteration in 
GMV in the sensorimotor areas in incomplete SCI patients 
compared with healthy subjects (Table 2).

Functional connectivity in sensorimotor brain areas
We selected the bilateral BA1, BA2, BA3, BA4, BA5, 
and BA6 as seeds to analyze functional connectivity. In-
tra-hemispheric functional connectivity between left BA1 
and left BA4, and left BA1 and left BA5 was decreased, as 
well as inter-hemispheric functional connectivity between 
left BA1 and right BA4, left BA1 and right BA5, left BA4 
and right BA5. Functional connectivity between both BA4 
areas was also decreased (Table 3 and Figure 1).

Associations between functional connectivity and 
clinical scores in changed sensorimotor areas
A correlation analysis was performed on the strength of 
the functional connectivity in abnormal areas and ASIA 
motor score, ASIA sensory score, WISCI II, and SCIM 
in SCI patients. The decreased functional connectivity 
between the left BA1 and the right BA4 positively correlat-
ed with ASIA sensory score in SCI patients (r = 0.529, P 
= 0.023; Figure 2). Correlation analysis with GMV and 
clinical scores was not performed because of insignificant 
changes in GMV in sensorimotor areas of SCI patients. 

Discussion
In this study, we did not find significant alterations in 
GMV in sensorimotor areas following incomplete SCI. 
Intra-hemispheric functional connectivity and inter-hemi-
spheric functional connectivity in sensorimotor brain ar-
eas were decreased in SCI patients compared with healthy 
subjects. We also observed the decreased functional con-
nectivity between the left BA1 and the right BA4 positively 
correlated with ASIA sensory score in SCI patients. Our 
findings provide evidence that alterations of cortical an-
atomic structure and network functional integration in 

sensorimotor areas were non-concomitant in patients with 
incomplete SCI. The strength of functional connectivity 
within sensorimotor areas could serve as a potential im-
aging biomarker for assessment and prediction of sensory 
function in incomplete SCI patients.

After SCI, cerebral reorganization including structural 
and functional changes has been shown (Freund et al., 
2013a,b; Hou et al., 2014a,b; Moxon, et al., 2014; Sabre et 
al., 2016). However, the correlation between anatomical 
structure and network function after SCI is unclear. Hen-
derson et al. (2011) found that functional reorganization 
of the primary somatosensory area was associated with 
anatomic changes following SCI. However, alterations of 
anatomic structure in sensorimotor brain areas were in-
consistent in previous studies of SCI (Freund et al., 2011, 
2013a,b; Lundell et al., 2011; Villiger et al., 2015), which 
do not seem to support the mechanism that functional 
changes are associated with structural changes. Gray mat-
ter atrophy in sensorimotor brain areas was observed in 
complete SCI patients or complete mixed incomplete SCI 
patients (Freund et al., 2011, 2013a,b; Hou et al., 2014a,b). 
A few studies reported no structural changes in sensorim-
otor brain areas following incomplete SCI (Lundell et al., 
2011; Villiger et al., 2015), which are consistent with our 
results. In our study, sixteen patients had incomplete SCI 
with ASIA D, while the other two patients had ASIA C. 
SCI duration was 4.28 ± 3.30 months. We speculate that 
the duration and severity of SCI may affect cortical struc-
ture. The time since SCI was relatively short in our study. 
Patients received rehabilitation therapy for motor and sen-
sory functional recovery. These reasons may contribute to 
sustaining the normal structure of sensorimotor areas. In 
our study, alterations of cortical anatomical structure and 
network function in sensorimotor areas were non-con-
comitant. Therefore, we speculate that network functional 
changes in sensorimotor areas may not be dependent on 
anatomic structure following incomplete SCI.

To our knowledge, few studies have combined cerebral 
structural and functional MRI data when exploring the 
brain reorganization mechanism after SCI. The combined 

Table 3 Functional connectivity of sensorimotor brain areas

Seed area Connected region 

Functional connectivity

t-value P-valuePatients Healthy subjects

BA1L BA4L 0.474±0.156 0.611±0.128 –2.798 0.0084
BA1L BA4R 0.345±0.199 0.495±0.202 –2.182 0.0361
BA1L BA5L 0.342±0.188 0.581±0.147 –4.103 0.0002
BA1L BA5R 0.245±0.173 0.480±0.152 –4.222 0.0001
BA4L BA4R 0.678±0.184 0.799±0.075 –2.502 0.0173
BA4L BA5R 0.242±0.181 0.362±0.145 –2.149 0.0389

Intra-hemispheric functional connectivity between left BA1 and left BA4, left BA1 and left BA5 wass decreased, as well as inter-hemispheric 
functional connectivity between left BA1 and right BA4, left BA1 and right BA5, left BA4 and right BA5. Functional connectivity between both 
BA4s was decreased (independent sample t-test). BA1L: Left primary somatosensory cortex; BA4L: left primary motor cortex; BA4R: right primary 
motor cortex; BA5L: left somatosensory association cortex; BA5R: right somatosensory association cortex.
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analysis of MRI data, called multimodality fusion, has been 
proven to be more informative in understanding of brain 
activity and disorders (Sui et al., 2012). Some studies based 
on combined structural and functional connectivity data 
demonstrated potentially important variations that were 
only partially detected by each modality alone. The com-
bination uncovered previously hidden information (Dou-
cet et al., 2016; Hao et al., 2016). In our study, combined 
structural and network functional MRI data contributed to 
exploration of the internal relationship between anatom-
ical and functional reorganization. Multimodality fusion 
could not only be combined with brain structural and 
functional MRI data, but also with spinal cord and brain 
MRI information. Rao et al. (2013) reported that there 
were significant correlations between spinal cord atrophy, 
the degree of contralateral primary somatosensory cortex 
reorganization, and the time after SCI. The combined as-
sessment of spinal cord and cerebral structure along with 
functional reorganization and neurological deficits could 
be a potential tool to further understand neural plasticity 
in SCI.

In our study, we observed decreased intra-hemispheric 
and inter-hemispheric functional connectivity in senso-
rimotor areas in incomplete SCI patients. We speculate 
that the decreased functional connectivity implies de-
creased efficiency of information transfer and collabora-
tion within sensorimotor areas because of injured afferent 
and efferent spinal pathways. In addition, we observed that 
the strength of functional connectivity between inter-hemi-
spheric sensorimotor areas was positively correlated with 
ASIA sensory score in SCI patients. This finding indicates 
that patients with incomplete SCI with diminished func-
tional connectivity within inter-hemispheric sensorimotor 
areas may display more significant sensory disability. To 
our knowledge, ASIA scales are most commonly used to 
quantify the motor and sensory function of SCI patients in 
the clinic (Marino et al., 2003; Steeves et al., 2012). Howev-
er, it is insensitive for assessing slight changes of neurolog-
ical function (Kirshblum et al., 2014; Kumru et al., 2016) 
and could be affected by different examiners. The associa-
tion between network function and neurologic disabilities 
contributes to providing more sensitive and accurate MRI 
imaging biomarkers for assessment of disability and reha-
bilitation intervention. 

However, cerebral functional reorganization could be 
dynamic, with variability depending on the extent of the 
lesion, disease duration, and exposure to rehabilitation. 
Aguilar et al., (2010) reported that deafferentation due to 
SCI can immediately (within minutes) change the state of 
large cortical networks. Hou et al. (2014a,b) reported that 
there was decreased inter-hemispheric functional connec-
tivity between the bilateral primary sensorimotor cortex 
and increased intra-hemispheric functional connectivity 
within the motor network. Moreover, they found that in-
creased functional connectivity within the sensorimotor 
cortex and cerebellum negatively correlated with ASIA 

motor scores. Although there are different insults in asso-
ciation with functional connectivity within sensorimotor 
areas and neurologic disabilities following SCI, current 
studies provide evidence that the characteristics of neuro-
nal functional reorganization provided by fMRI could be 
a promising tool for assessment of prognosis and inter-
vention. Further experiments are needed to explore more 
characteristics of the neuronal network in incomplete SCI 
and to understand the mechanism of functional reorgani-
zation and its value in functional recovery.

This study has several limitations. Firstly, the duration of 
SCI in patients was between 1 and 12 months. Such a long 
time span and differences in rehabilitation could affect 
GMV. We plan to compare similar patients with regards 
to injury time and rehabilitation to avoid these biases. 
Secondly, we analyzed structural and functional connec-
tivity with the Brodmann template, which did not include 
the brain stem and cerebellum. Therefore, we likely over-
looked brain stem and cerebellar information, which is an 
important region for motor recovery and working memo-
ry. Further studies should consider the brain stem and cer-
ebellum to reveal their changes after SCI. Thirdly, we only 
combined structural and functional connectivity MRI data 
to explore brain organization in SCI patients. Multimo-
dality fusion could be developed with more modalities to 
take maximal advantage of cross-information. Multi-level 
brain networks, including intra-region and inter-region 
networks based on the graph theory approach should be 
considered to further study brain activity.

Alterations of cortical anatomical structure and network 
function in sensorimotor areas were non-concomitant 
in patients with incomplete SCI. The network functional 
changes in sensorimotor areas may not be dependent on 
anatomic structure following incomplete SCI. The strength 
of the functional connectivity within inter-hemispheric 
sensorimotor areas could serve as a potential imaging bio-
marker for assessment and prediction of sensory function 
in incomplete SCI patients.
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