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ABSTRACT

Protein post-translational modifications (PTMs), in-
cluding phosphorylation, ubiquitination, methyla-
tion, acetylation, glycosylation et al, are very impor-
tant biological processes. PTM changes in some crit-
ical genes, which may be induced by base-pair sub-
stitution, are shown to affect the risk of diseases.
Recently, large-scale exome-wide association stud-
ies found that missense single nucleotide polymor-
phisms (SNPs) play an important role in the sus-
ceptibility for complex diseases or traits. One of
the functional mechanisms of missense SNPs is
that they may affect PTMs and leads to a protein
dysfunction and its downstream signaling pathway
disorder. Here, we constructed a database named
AWESOME (A Website Exhibits SNP On Modification
Event, http://www.awesome-hust.com), which is an
interactive web-based analysis tool that systemati-
cally evaluates the role of SNPs on nearly all kinds of
PTMs based on 20 available tools. We also provided
a well-designed scoring system to compare the per-
formance of different PTM prediction tools and help
users to get a better interpretation of results. Users
can search SNPs, genes or position of interest, filter
with specific modifications or prediction methods, to
get a comprehensive PTM change induced by SNPs.
In summary, our database provides a convenient way
to detect PTM-related SNPs, which may potentially be
pathogenic factors or therapeutic targets.

INTRODUCTION

Germline genetic variants, mostly single nucleotide poly-
morphisms (SNPs), have been shown to significantly asso-

ciate with complex diseases or traits, such as cancer, type
2 diabetes, cardiovascular diseases, heights et al. These sus-
ceptibility genetic polymorphisms could be divided into two
groups: regulatory variants located in noncoding regions
and missense or synonymous variants located in coding re-
gions (1). The regulatory variants have been identified by
genome-wide association studies (GWAS) and many tools
have been built for the annotation of these variants (2,3).
Recently, more and more large-scale exome-wide associ-
ation studies showed the coding variants have also been
significantly correlated with complex diseases or traits, es-
pecially for these low-frequency or rare missense variants
with relatively high effect size (odds ratio > 1.5) (4–8). Sys-
tematic investigation of the functional mechanism under-
lying these missense variants will be the next challenge for
the researchers. It is hypothesized that these missense vari-
ants may alter the amino acid sequences, and thus signif-
icantly influence some critical biological processes by in-
ducing the protein structure disorders (9,10), or disrupt-
ing protein-macromolecules interactions (11), or affecting
post-translational modifications (PTMs) (12,13). However,
useful tools for functional annotation of these coding vari-
ants are still lacking, especially for variants potentially af-
fect PTMs.

PTM refers to the covalent and enzymatic modification
of proteins during or after biosynthesis (14). Such modifi-
cations come in a wide variety of types, such as phospho-
rylation, glycosylation, ubiquitination, methylation, acety-
lation etc. They play a crucial role in many biological pro-
cesses including regulation protein folding (15), cellular dif-
ferentiation (16), protein degradation (17), signalling and
regulatory processes (18,19), regulation of gene expression
(20,21), interaction with ligands or other proteins (22–24),
and protein functional state (25,26). Alterations of these
PTM target sites were found to be directly involved in the
development of diseases. For example, the G553E mutation
(rs118005095) was identified to completely abrogate PTMs
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of huntingtin gene (HTT) and induce cellular toxicity of the
protein (27). The missense mutation of Lys27Met (K27M)
in the gene encoding histones H3.3 (H3F3A) reduces the
overall methylation level of H3K27me3 by inhibiting the
enzymatic activity of polycomb repressive complex 2, and
increases the risk of diffuse intrinsic pontine gliomas (28).
Therefore, identifying and understanding variants that af-
fect PTMs is critical in the study of cell biology, disease
treatment and prevention.

Although there are many excellent SNP interpretation
tools, such as VarCards (29), ANNOVAR (2) and En-
sembl Variant Effect Predictor (VEP) (3), none of which
includes a PTM analysis for exonic variants. The PTM-
related databases either only focus on annotation of ex-
perimental identified PTM sites (PhosphoSitePlus, HPRD,
PTMfunc or ActiveDriverDB) (24,30–32), or only predict
a single type of undiscovered PTM sites (such as NetPhos,
CKSAAP or MePred-RF) (33–35). None of these above
consider the effect of SNPs on PTM systematically, al-
though these SNPs may be pathogenic factors or therapeu-
tic targets. Even though there is a database integrated SNP
and PTM, PhosSNP (36), it only focus on phosphorylation
based on GPS (37). Therefore, a resource for systematically
annotating SNPs on most common types of PTM is needed
to help researchers to easily discover the potential function
of exonic variants.

Here, we constructed a comprehensive platform to col-
lect and integrate SNPs and multiple PTM information. A
total of 1,043,608 germline missense variants from the db-
SNP was used and each SNP was matched with its pro-
tein sequence. We then utilized 24 published database or
tools, including four databases with experimental PTM data
(PhosphoSitePlus, HPRD, dbPTM and Phospho.ELM)
(30,31,38,39), which covers nearly all types of PTM and
20 PTM prediction tools (ReKINect, GPS, PPSP, Musite,
MusiteDeep, NetPhorest, NetPhos, PhosPred-RF, hCK-
SAAP UbSite, UbiProber, UbiSite, UbPred, GPS-MSP,
MePred-RF, NetOGlyc, NetNGlyc, YinOYang, NetAcet,
GPS-PAIL, GPS-SUMO) (33–35,37,40–55), which covers
six common types of PTMs (phosphorylation, ubiquitina-
tion, methylation, glycosylation, acetylation and sumoyla-
tion) to predict whether a SNP could affect protein PTM.
To help users interpret results from different prediction
tools, we have developed a well-designed scoring system to
compare the performance of various bioinformatics tools,
thus allowing the users to have a better and clear overview
of prediction results.

DATA COLLECTION AND PROCESSING

Data collection

A total of 1,043,608 missense SNPs was downloaded from
dbSNP (138) in which both common and rare variants
located in protein coding regions across human genome
were obtained (Figure 1). The SNP information, such as
allele change, amino acid change, chromosome location
(hg19/hg38), gene symbol, protein sequence, minor al-
lele frequency, polyphen2, and SIFT score were annotated
via VEP (3). The mapping of protein sequences and mis-

sense SNPs was achieved by canonical Ensembl Protein
ID (ENSP) and HGVSp. Genomic coordinates of SNPs
were mapped to protein amino acid substitutions using the
VEP (3) and ‘biomaRt’ package in R. Reference nucleotide
sequences (RefSeq) were referred to National Center for
Biotechnology Information (NCBI) nucleotide database
(https://www.ncbi.nlm.nih.gov/nuccore/). Cancer gene list
used for result interpretation was downloaded from Cata-
logue of Somatic Mutations in Cancer (COSMIC).

PTM annotation of SNPs

The PTM changes affected by SNPs were annotated by
experimental data and prediction tools. The experimental
data of protein PTM sites were obtained from Phospho-
SitePlus (30), HPRD (31), dbPTM (38) and Phospho.ELM
(39). It contains not only the six common types of PTM
(phosphorylation, ubiquitination, methylation, glycosyla-
tion, acetylation and sumoylation), but also uncommon
types, such as sulfation, carboxylation, hydroxylation etc.

We used multiple tools to predict whether a SNP could
affect the six common types of PTM. Of which the tools
used for each PTM type are listed below.

The potential change of phosphorylation affected by
SNPs was predicted by 8 tools: ReKINect (40), PPSP (41),
NetPhos (33), GPS (37), Musite (42), MusiteDeep (43),
PhosPred-RF (46) and NetPhorest (44,45). These predic-
tion tools were based on different methods. The ReKINect
(40) is a computational framework that predicts the func-
tionality of mutation. The PPSP (41), NetPhos (33), Net-
Phorest (44,45) and GPS (37) are developed by using
Bayesian decision theory, ensembles of neural networks,
neural networks and group-based phosphorylation scoring
method, respectively. The Musite (42), MusiteDeep (43) and
PhosPred-RF (46) are machine learning-based phosphory-
lation site prediction tools. For ReKINect, we inputted ±15
amino acids (aa) around the SNP and run the script locally.
After the reference and mutant sequences were submitted,
the ‘destruction of phosphorylation site’ was seen for PTM-
related SNPs. For GPS, we inputted ±25 aa around the
SNP and selected all kinases with ‘high threshold’ to pre-
dict kinase-specific phosphorylation sites on local software.
For Musite and MusiteDeep, we performed a human gen-
eral phosphorylation site prediction using provided mod-
els with ±40 aa (Musite) and ±17 aa (MusiteDeep) around
the SNP as input. For the other four tools, we inputted ±31
aa (NetPhos), ±5 aa (NetPhorest and PPSP) and ±12 aa
(PhosPred-RF) around the SNP, respectively, with default
setting and computed in local server or at websites.

The potential change of ubiquitination affected by SNPs
was predicted by four tools, which cover all bioinformat-
ics methods available. The UbPred (49) is a random forest-
based predictor. The UbiProber (47), UbiSite (48) and
hCKSAAP UbSite (34) use support vector machine to
make predictions. For UbiSite, we inputted ±6 aa around
the SNP with specificity level as ‘low threshold (85%)’. For
UbiProber, we used ‘H.sapiens model’ and set specificity as
zero to get scores of all sites with ±13 aa around the SNP
input. For the other two tools, we inputted ±17 aa (hCK-

https://www.ncbi.nlm.nih.gov/nuccore/
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Figure 1. Overview and workflow of AWESOME. The database integrates genomic information and PTM database/tools to annotate missense SNPs
that potentially affect PTM. We downloaded all missense SNPs from dbSNP (138), then mapped these SNPs to canonical protein sequence via VEP and
‘biomaRt’ package in R. Four experimental PTM database were applied to annotate PTM-related SNPs. Twenty bioinformatics tools were applied to
predict PTM-related SNPs. All of the results were rearranged and scored, and then presented at the website.

SAAP UbSite) and ±40 aa (UbPred) around the SNP, re-
spectively, with default settings.

The potential change of glycosylation affected by SNPs
was predicted by three tools, which cover three most com-
mon types of glycosylation in humans: N-linked glycosy-
lation and O-linked glycosylation, with the later includes
two types of sugar: O-N-acetylgalactosamine (O-GalNAc)
and O-N-acetylglucosamine (O-GlcNAc). The NetNGlyc
server predicts N-glycosylation sites in human proteins us-
ing artificial neural networks that examine the sequence
context of Asn-Xaa-Ser/Thr sequons. The NetOGlyc (51)
server produces neural network predictions of mucin type
GalNAc O-glycosylation sites in mammalian proteins. The
YinOYang (52) predicts O-ß-GlcNAc attachment sites by
using neural network as well. We inputted ±50 aa around
the SNP (YinOYang and NetNGlyc) and full length of pro-
tein (NetOGlyc) with default settings for these three tools,
respectively.

The potential change of methylation affected by SNPs
was predicted by two tools. The GPS-MSP (50) is a
methyl-group specific predictor for the prediction of protein
methylation modifications. We performed all methylation
(R.mono, R.di, K.mono, K.di, K.tri) predictions with the
lowest threshold for ±25 aa around the SNP. The MePred-
RF (35) is based on machine learning and can identify po-
tential methylation sites within the input proteins. We in-
putted ±5 aa around the SNP with default settings.

The potential change of acetylation affected by SNPs was
predicted by two tools, which cover two types of acetylation
modification widely occurred in proteins: N-terminal acety-
lation and lysine acetylation. The NetAcet (53) was used to
predict N-terminal acetylation and the GPS-PAIL (54) was
carried out to predict lysine acetylation. We inputted an N-
terminal 20 aa (NetAcet) and ±20 aa (GPS-PAIL) around
the SNP, respectively, with default settings.
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Figure 2. Statistical results of PTM-related SNPs in AWESOME. (A, B) The prevalence of genes that have at least one SNP that causes PTM loss/gain
for at least one type of modification. (C, D) The percentage of predicted phosphorylation/glycosylation-related cancer associated SNPs and non-cancer
SNPs. (E, H) The percentage of experimental data validated PTM-related SNPs in different prediction score ranges.

The potential change of sumoylation affected by SNPs
was predicted by GPS-PAIL (54). We used three different
thresholds (‘low’, ‘medium’ and ‘high’) with ±20 aa around
the SNP as input options.

For all the above PTM prediction tools, the reference and
mutant sequences were submitted separately to predict the
gain or loss of PTM sites. All the predicted PTM sites were
marked with protein ID and mutation position, of which
the results were then rearranged and all of the modification
sites were matched to corresponding missense SNPs.

PTM prediction performance evaluation by a score system

To evaluate the prediction performance of different meth-
ods and estimate specificity under various thresholds, we
performed validation tests. For each type of PTM, we chose
a list of genes that were well-studied previously as a pos-
itive control (Supplementary Data 1). Receiver operating
characteristic (ROC) curves were plotted and the Area Un-
der the Curves (AUC) were calculated by taking different
thresholds for each PTM prediction tool. The minimal dis-
tance between ROC curve and point (0,1) was used to deter-
minate the optimal cut-off point. For some methods with-
out comparable scores, like ReKINect (40), PPSP (41) and
GPS (37), we also reported the specificity and sensitivity
value by using a default threshold. We then presented a cu-
mulative scoring system for three types of PTM with more
than one prediction method: phosphorylation, ubiquitina-
tion and methylation.

The scores were calculated as below: First, we defined an
optimal cut-off value for each method as mentioned above.
Second, we calculated the specificity under the cut-off value
as a score. If a SNP is predicted to gain a PTM site, it will
be added to the score. If lost, the score will be deducted.

If it isn’t a PTM-related SNP, a score of zero will be given.
Finally, we summed all the values given from each method
to get a final score.

Website building

The current version of AWESOME has been developed
using MongoDB 3.6.5 (https://www.mongodb.com/) and
runs on a Linux-based Nginx Web server. NodeJS 8.10.0
(https://nodejs.org/en/) is used for server-side scripting. We
designed and built the interactive interface using ReactJS
(https://reactjs.org/), a modern JavaScript library for build-
ing user interfaces. We recommend using a modern web
browser such as Google Chrome (preferred), Firefox or Sa-
fari to achieve the best display effect.

DATABASE CONTENT AND USAGE

Data summary

The current version of AWESOME consists of six types of
PTM from prediction tools and nearly all types of PTM
from experimental data. A total of 481,557 missense SNPs
in 17,578 genes were predicted to alter at least one type
of PTM (Figure 2A and B). These PTM-related SNPs
were nearly 50% of all missense SNPs (36% SNPs affected
phosphorylation, 16% SNPs affected ubiquitination, 21%
SNPs affected methylation, 37% SNPs affected glycosyla-
tion, 11% SNPs affected acetylation, respectively). We then
tested whether these PTM-related SNPs were enriched in
some key genes involved in the development of diseases. We
found that SNPs in cancer-related genes (from the COS-
MIC database) are more likely to affect their protein phos-
phorylation (chi-test P < 0.0001) and glycosylation (chi-test

https://www.mongodb.com/
https://nodejs.org/en/
https://reactjs.org/
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Figure 3. Examples of some key elements of AWESOME’s user interface. (A) the single search page and the batch search page; (B) The ‘SNP Search’ page
presents ‘Self-Modification’ results, including SNP basic information and PTM annotation results with an extended box displays detailed results; (C) The
‘SNP Search’ page presents ‘Para-Modification’ results, including SNP basic information and PTM annotation results for SNPs near a PTM sites; (D) The
filter page for setting custom options.

P < 0.0001) (Figure 2C and D). It reflected that protein
phosphorylation alterations may play an important role in
the development of cancer, which is consistent with previ-
ous studies (56).

Another important feature of AWESOME is that the
scoring system that we built has an effective way to esti-
mate the prediction results. PTM-related SNPs with the val-
idated experimental PTM data have a higher score. With the
increase of the score, more experimental validated PTM-
related SNPs are shown (Figure 2E–H). About 80% of
SNPs with phosphorylation score >4 are based on exper-
imental validated PTM sites. Other PTM predictions have
similar performance.

Web design and interface

The AWESOME website (http://www.awesome-hust.com)
features a user-friendly query interface and a set of custom
filter function that provides a comprehensive overview of
PTM change related SNPs. Users can input gene symbol,
SNP rsID, chromosome position (hg19/hg38), Ensembl
Protein ID, SWISSPROT ID, HGVSc ID and HGVSp ID
to retrieve the results. We have shown examples for each in-

put format available under the query box. A batch search
option will be available on the SNP search page to help users
search and download multiple variants data quickly (Figure
3A).

Once the query is submitted and processed, the AWE-
SOME will provide two tabular summary results for all
queried SNPs (Figure 3B). The ‘Self-Modification’ part
shows result for SNPs that locate just at the PTM site and
may directly make gene gain or loss a PTM. It also con-
tains SNP basic information, including SNP rsID, chro-
mosome position, gene symbol, Ensmbl Protein ID, amino
acid change. The PTM results are divided into two major
columns named ‘PTM Prediction’ and ‘PTM Experiment’
for results based on prediction and experimental PTM data,
respectively. For each type of PTM, a score is given to
show whether the SNP could lead to a loss of PTM (pos-
itive value), a gain of PTM (negative value) or no change
(zero). Users can obtain details for the PTM results (from
each tool) by clicking on the score (Figure 3B). Further-
more, users can sort specific column in alphabetical or-
der or value order by clicking on the column name. The
‘Para-Modification’ annotates SNPs that locates upstream
or downstream (±7 amino acids) of the experimental vali-

http://www.awesome-hust.com


Nucleic Acids Research, 2019, Vol. 47, Database issue D879

dated PTM sites. Those SNPs may affect the PTM level. A
schematic diagram for the position of SNP site and PTM
site can be viewed in the last column of PTM result (Figure
3C).

At the bottom of the result page, a filter box with 3 cate-
gories is available (Figure 3D). Users can (i) filter with the
type of PTM or prediction method with custom threshold;
(ii) filter with four experimental databases and can select
one or more databases to get custom results; (iii) filter with
SNP information including chromosome location (hg38),
PolyPhen score, SIFT score, HGVSc ID, HGVSp ID and
the minor allele frequency for specific populations. Once
the options in SNP information category are checked, new
columns with additional data will be added to the end re-
sults immediately.

DISCUSSION

Protein post-translational modifications, including phos-
phorylation, ubiquitination, methylation, acetylation, gly-
cosylation, are involved in the development of many dis-
eases. Therefore, understanding the PTMs affected by SNPs
will help researchers to explore the function of suscepti-
bility coding variants identified by large-scale association
studies. In our project, we provide a systematic annotation
for the potential protein PTM affected by germline coding
variants. All the properties are transparently mapped onto
the present version profile via an easy-to-use and interactive
user interface.

Compared with other annotation tools for coding vari-
ants, the AWESOME has the following advantages. (i)
AWESOME integrates nearly all kinds of common post-
translational modifications. (ii) AWESOME integrates
1,043,608 coding SNPs that cover both common and rare
variants. (iii) AWESOME annotates with multiple tools
based on both prediction and experimental data. (iv) AWE-
SOME makes a well-designed scoring system, which helps
users to find the most possible PTM-related SNPs. (v)
AWESOME has a user-friendly interface that supports
query by gene, rsID or chromosome location etc. and a
batch query and download.

CONCLUSION

The AWESOME provides useful information on PTM-
related variants to help researchers interpret the disease-
related coding variants by PTM function. It will be continu-
ally updated whenever new PTM prediction tools or exper-
imental data are released in public.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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