
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

DOI: 10.1002/minf.201800086

Data Curation can Improve the Prediction Accuracy of
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Abstract: A key consideration at the screening stages of
drug discovery is in vitro metabolic stability, often measured
in human liver microsomes. Computational prediction
models can be built using a large quantity of experimental
data available from public databases, but these databases
typically contain data measured using various protocols in
different laboratories, raising the issue of data quality. In this
study, we retrieved the intrinsic clearance (CLint) measure-
ments from an open database and performed extensive

manual curation. Then, chemical descriptors were calculated
using freely available software, and prediction models were
built using machine learning algorithms. The models trained
on the curated data showed better performance than those
trained on the non-curated data and achieved performance
comparable to previously published models, showing the
importance of manual curation in data preparation. The
curated data were made available, to make our models fully
reproducible.

Keywords: Intrinsic clearance · Drug discovery · Machine learning · Metabolic stability · Molecular modeling

1 Introduction

Various high-throughput screening methods have been
proposed to prioritize compounds in the early stages of
drug discovery. In this process, in vitro metabolic stability in
human liver microsomes (HLMs) is an extremely important
factor to influence the potential of drugs. A key strategy
employed over the last decade is early determination and
prediction of metabolic stability.[1]

Previous studies on the development of in silico models
for metabolic stability shared common features including:
(1) closed datasets (typically derived from a company’s in-
house data), (2) the use of commercial software to calculate
the descriptors of compounds, (3) the target property being
either intrinsic clearance (CLint)

[2–4] or half-life (T1/2)[5–8] and (4)
the resulting models being mostly binary classifiers (stable
or unstable).[2–3,5–8]

While standardized in-house protocols ensure data
quality and can contribute to high performance models,[5]

these models are typically presented with little or no
information about the compounds used for training.
Furthermore, commercial software can be prohibitive for
many academic scientists. These issues make it difficult or
impossible to reproduce published studies. While T1/2, the
time for a compound to reduce to half of its original
amount, depends on experimental conditions, CLint, ex-
pressed in either mL/min/kg (body weight) or mL/min/mg
(microsomal protein weight), represents a value normalized
by key experimental factors and therefore, is a more
suitable property for building predictive models for meta-
bolic stability. Binary classifiers are useful for applying a
quick filter but it is often desirable to retain compounds in
the “moderate category” between stable and unstable, so

that these compounds can be later evaluated more properly
and modified to improve their metabolic stability.

To address these issues, we have built three-class
classifiers for CLint, trained on data collected from a public
source and using freely available software only. A major
challenge was to ensure quality and quantity for data from
public sources; a large number of CLint measurements are
available from public databases but they were obtained in
varying experimental conditions including: microsomal
protein concentration, incubation time, time points, buffer
composition, quality control, and the units of experimental
data.[1] Our solution was to perform extensive manual
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curation and collect data that satisfied a selected set of
criteria. We demonstrate that the use of the curated data
enabled us to build models with higher performance than
those trained on a non-curated dataset.

2 Material and Methods

2.1 Collection of Experimental data

A search against the ChEMBL database (ver. 23)[9] with the
keywords shown in Scheme 1 produced 137,451 hits (for
50,201 compounds). We scanned the descriptions and
removed the entries that lacked experimental values, were
measured in samples different from HLMs, or had non-CLint

units (such as % and min), resulting in 9,543 entries
(8,791 compounds) remaining. We then checked the exper-
imental protocols and retained only those data that were
measured at 37 degrees and pH 7.4, in the absence of
inhibitors, and in the presence of reduced NADPH as a
cofactor. The filtered dataset comprised 9,348 entries
(8,741 compounds). The unit of the collected data was
converted to mL/min/mg using the following equation, as
proposed by Obach et.al.,[10] CLint = (mL incubation)/(mg
microsomes) 3 (45 mg microsomes)/(g liver) 3 (21 g liver)/(kg
body weight) (defined as Equation (1)).

Based on previous studies, we classified the compounds
into three categories: stable if CLint<20 mL/min/mg, moder-
ate if 20�CLint<300 mL/min/mg, and unstable if CLint�
300 mL/min/mg. In this filtered dataset, compounds with

Scheme 1. Procedure used for filtering the data to construct two training sets and a test set. To evaluate the efficacy of manual curation, the
non-curated dataset and the curated dataset were constructed. The test set was prepared to evaluate the performance of the models trained
on the non-curated and curated training sets.
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multiple entries (reports) belonging to more than one
category were removed (Supporting Information). The final
“non-curated dataset” consisted of 7,444 compounds.

2.2 Collection of Manually Curated Data

Starting from the filtered dataset above, we performed
extensive manual curation (see Results and Discussion) and
defined the “curated dataset” consisting of 5,278 com-
pounds.

2.3 Descriptors for Predictive Models

We used Mordred[11] to calculate 1,612 2D descriptors for
the collected compounds. Compound-specific properties,
such as physicochemical, molecular modeling, and struc-
tural properties in both the non-curated and the curated
datasets were obtained. To add substructure information,
extended connectivity fingerprints (ECFP) were calculated
using jCompoundMapper.[12–13] In this study, ECFP_4, con-
taining information about all atoms within a diameter of
four chemical bonds, was obtained as 4,096 binary
descriptors using the following parameters: Fingerprint
algorithm = ECFPVariant, and Distance cut-off = 6. Overall,
5,708 descriptors were calculated for each compound. After
removing 816 features with missing values or zero variance,
4,892 features (797 from Mordred and 4,095 from jCom-
poundMapper) were used in our analysis.

2.4 Separation of the Dataset into Training and Test Sets
using WGCNA

For model construction and evaluation, the curated dataset
was divided into two groups: training and test sets. To
evaluate the predictive ability of the models for new
compounds, we selected test compounds with low sim-
ilarity to those in the training set in the following manner.

We used Weighted Gene Co-expression Network Analy-
sis (WGCNA),[14] following the work of Prathipati et al., who
applied WGCNA for the first time to cheminformatics
datasets.[15] The “WGCNA” package in R (https://www.r-
project.org/) was used with the parameters (threshold = 0.9,
corType = “bicor,” networkType = “sigmoid,” power = 25,
minModulesize = 3, and deepSplit = 4).

The WGCNA clustering of the curated dataset produced
three clusters. The largest cluster, including 4,685 com-
pounds (88.8 %), was defined as the “curated training set”.
The remaining 593 compounds (11.2 %) in the two smaller
clusters were combined and used as the “test set”
(Scheme 1). From the non-curated dataset, the compounds
in the test set were removed. The remaining 6,911 com-
pounds were defined as the “non-curated training set”.

Figure 1 shows that all these datasets have similar class
distributions.

2.5 Selection of Descriptors

To select appropriate features, the “Boruta” package[16] was
used in R. 953 and 725 descriptors were selected from the
non-curated training set and curated training set, respec-
tively, as the important descriptors for classifying the
compounds.

2.6 Diversity of the Collected Compounds

To determine the diversity of the compounds in our
datasets, their chemical profiles were compared with those
of the approved drugs. A total of 5,864 approved drugs
were obtained from KEGG DRUG[17] with the filters of
“molecular weight�1,000” and “no inner salt”, as a
representative set of drug-like compounds. These approved
drugs, as well as the compounds in our datasets, were
mapped in the descriptor space created by 797 features
calculated using Mordred, and the principal components
analysis (PCA) was performed using the “prcomp” function
in R. Furthermore, four properties in Lipinski’s rule of five[18]

(molecular weight (MW): <500, logP: <5, hydrogen bond
acceptor count (HBA): <10, and hydrogen bond donor
count (HBD): <5) were used to evaluate the diversity of
these datasets.

Figure 1. Distribution of the data collected in this study. The lower
cut-off value to define the stable class was chosen to be 20 mL/min/
mg, and the upper cut-off value to define the unstable class was
chosen to be 300 mL/min/mg. The bars in blue, green, and yellow
represent the non-curated training set, the curated training set, and
the test set, respectively.
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2.7 Machine Learning Methods

To construct the predictive models, Random Forest (RF),
AdaBoost (AB), Support Vector Machine with the radial
kernel (Radial SVM) and the linear kernel (Linear SVM), were
used in the “caret” package[19] in R. The general training
parameters were as follows: tuneLength = 10, validation
method = “oob” (out-of-bag, for RF) or “10-fold cv” (10-fold
cross-validation, for AB, Radial SVM and Linear SVM), and
“centering and scaling.”

RF is a machine learning method based on an ensemble
of decision trees.[20] In RF classification, bootstrap samples
randomly drawn from the training set are used for training.
The retained samples (out-of-bag) are used for evaluation. A
training parameter, the number of different descriptors tried
at each decision point (mtry), was optimized and the best
values of mtry were 242 for the non-curated training set
and 101 for the curated training set.

AB is an ensemble classification method based on the
boosting algorithm.[21] The parameters to be optimized
were as follows: the number of iterations for which
boosting is run or the number of trees to use (mfinal), the
depth of the max tree (maxdepth), and the weight updating
coefficient type (coeflearn) selected from Breiman, Freund,
or Zhu. The values obtained after the optimization were:
mfinal = 450, maxdepth = 10, and coeflearn = Freund for the
non-curated training set and mfinal = 500, maxdepth = 9,
and coeflearn = Breiman.

SVM is a method based on statistical learning theory.[22]

In this study, both the radial kernel and the linear kernel
were used. For Radial SVM, two parameters were needed to
be optimized: in-sensitive loss function (sigma) and the cost
of constraints violation (cost). The cost parameter was
needed to be optimized for Linear SVM. After the
optimization of Radial SVM, sigma = 0.0006384086 and
cost = 4 were obtained for the non-curated training set. This
Radial SVM model was trained on 4,529 support vectors.
The values of sigma = 0.0009252766 and cost = 16 were
obtained based on 3,036 support vectors in the curated
training set. For Linear SVM, cost = 1 was used as the
optimized parameters for both the non-curated and curated
training sets. The numbers of support vectors used for
training were 3,791 for the non-curated dataset and 2,736
for the curated dataset.

2.8 Performance Evaluation

To compare the performance between different models, the
prediction results were represented as a confusion matrix
and statistical parameters were calculated.[23] A value of
kappa (true accuracy as the agreement by chance is
corrected) greater than 0.4 is considered to be indicative of
a model with useful predictive power.[3] Each score defined
by the equations in Supporting Information was calculated
using the “train” or “confusionMatrix” functions in “caret.”

3 Results and Discussion

3.1 Construction of the Training and Test Sets

By examining previous studies,[2,3] we defined three classes
for the metabolic stability of a compound: “stable (CLint<
20 mL/min/mg),” “moderate (20 mL/min/mg�CLint<300 mL/
min/mg),” and “unstable (CLint�300 mL/min/mg)”. The ra-
tionale behind this definition is the following.

If we assume molecules to be in equilibrium between
the plasma and blood cells and no binding to liver
microsomes, the hepatic clearance (CLh) and the hepatic
availability (Fh) of a drug are shown as: CLh = (Qh 3 fup 3 CLint)/
(Qh + fup 3 CLint) (Equation (2)) and Fh = Qh/(Qh + fup 3 CLint)
(Equation (3)), where Qh is the blood flow in the liver, and fup

is the fraction of free drug in the plasma.
The impacts of CLint on both CLh and Fh are shown in

Figure 2. CLh and Fh were calculated using Equations 2 and
3 by setting Qh = 21.215 mL/min/kg (based on the values of
5.2 L/min for cardiac output, 26.0 % for percent cardiac
output of blood flow distribution in the liver, and 64 kg for
the average body weight, all in humans).[24] If a compound
has CLint = 20 mL/min/mg, Fh>0.9 with fup = 0.1, and even
with fup = 1.0, Fh is still greater than 0.5. In other words,
more than half of the drug reaches the systemic circulation
and therefore, it would be reasonable to call such a drug
metabolically stable. On the other hand, a compound with
CLint = 300 mL/min/mg would have the Fh values of 0.428,
0.130, and 0.070 for fup = 0.1, 0.5, and 1.0, respectively. This
compound can be judged to be unstable and thus,
unsuitable as a drug candidate.

We constructed the datasets as described in Material
and Methods. Some compounds were associated with two
or more measurements belonging to different classes or
had a range of values such as “CLint>20 mL/min/mg”. Since
these compounds were not classified unambiguously,
1,297 compounds (1,347 entries) were removed from the
filtered dataset. Each of the remaining 7,444 compounds
was associated with one class only (Supporting Information)
and this collection was defined as a “non-curated dataset”.

To improve the quality of the dataset, we performed
extensive manual curation as follows. First, the experimental
protocols were checked and any measurements obtained with
protocols different from that we decided to focus on in this
study were excluded from the filtered dataset (3,767 entries
for 3,298 compounds removed; see Material and Methods for
more details). Second, the values and units obtained from the
ChEMBL database were cross-checked with those in the
original publications. After visual inspection, we noted that
some values were likely to be recorded erroneously in ChEMBL
and they were replaced with those reported in the original
publications (405 entries for 392 compounds corrected). When
ChEMBL used a unit different from that in the original
publications, almost all of these entries were associated with
incorrectly converted values. These values were recalculated
by using equation (1) (3,821 entries for 3,708 compounds
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corrected). From the remaining 5,581 entries (for 5,443 com-
pounds), 147 compounds were removed, due to the lack of
unambiguous class assignments as above. As in the non-
curated dataset, each of the remaining 5,278 compounds was
assigned to a single class; this collection was defined as the
“curated dataset.”

The curated dataset was clustered using WGCNA, resulting
in three clusters (see Material and Methods for details). We
defined the largest cluster as the “curated training set”
(4,685 compounds; 88.8 %). The remaining 593 compounds
(11.2 %) in the two smaller clusters comprised the “test set”
(Scheme 1). From the non-curated dataset, the compounds in
the test set were removed, and the remaining 6,911 com-
pounds were defined as the “non-curated training set”. As
shown in Figure 1, the non-curated training set included
considerably more unstable compounds than the curated
dataset. This difference was largely due to erroneous records
in ChEMBL; for example, the entry ChEMBL1924026 is
associated with a value of 42 mL/min/g, which was automati-
cally converted (by using equation 1) to 933.3 mL/min/mg in
the non-curated training set and was labelled unstable.
However, the correct value, as in the original publication, was
42 mL/min/mg,[25] and this compound was classified as
moderate in the curated dataset. We made similar corrections
for 2,256 entries. This observation suggests that without the
manual curation, we would have overestimated the CLint

values for many entries in ChEMBL.

3.2 Distribution of the Collected Dataset

Figure 3 shows a two-dimensional PCA plot of the approved
drug set, non-curated training set, curated training set, and
test set for 797 physicochemical descriptors. The first two
principal components explain 33.8 % of variance. The com-
pounds in all of our datasets showed distributions broadly
similar to that of the approved drugs. Figure 4 shows that the

Figure 2. (A) The relationships between fup and CLh. The solid lines represent those with CLint = 20 and 300 mL/min/mg, respectively. The
broken lines represent those with CLint = 10, 100 and 500 mL/min/mg, respectively. (B) The relationships between fup and Fh. The solid lines
represent those with CLint = 20 and 300 mL/min/mg, and the broken lines with CLint = 10, 100 and 500 mL/min/mg, respectively.

Figure 3. Principal component analysis (PCA) of 797 physicochem-
ical descriptors, representing the chemical space covered by the
compounds in the non-curated training set (6,911 compounds;
blue), curated training set (4,685 compounds; green), and test set
(593 compounds; yellow), along with a representative set of
approved drugs from KEGG DRUG (5,864 compounds; black).
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distributions of physicochemical properties (as used in
Lipinski’s rule of five) for our datasets are similar to those for
the approved drugs. These observations suggest that our
training and test sets are appropriate for building and
evaluating prediction models for drug-like compounds.

3.3 Classification Performance with Cross-Validation

We cross-validated the prediction models trained using the
selected set of 953 descriptors on the 6,911 compounds in
the non-curated training set (see Material and Methods).
The Radial SVM model produced the highest performance,
followed by AB and RF (Table 1).

We also evaluated the prediction models trained with
725 descriptors on the 4,685 compounds in the curated

training set. The AB and Radial SVM models showed the
highest performance for accuracy and kappa, respectively.

Using the same learning algorithm, the model trained
on the non-curated training set performed better than that
trained on the curated training set in all the cases. The
Linear SVM model showed the lowest predictability with
both the non-curated and curated training sets (Table 1). As
Table 2 shows, descriptors that had a high contribution to
the RF prediction included physicochemical properties such
as SLogP and TopoPSA. The metabolic stability of com-
pounds depends on complex factors involving their phys-
icochemical properties and interactions with enzymes such
as cytochrome P450 isoforms. It appears that ensemble or
nonlinear learning algorithms (RF, AB and Radial SVM)
capture these factors better than the linear method (Linear
SVM) in the current analysis.

Figure 4. Distribution of physicochemical properties of the collected data compared with a representative set of approved drugs in terms of
Lipinski’s rule of five. The properties, calculated using Mordred, include molecular weight (MW), calculated logP (logP), the number of
hydrogen bond acceptors (HBA), and the number of hydrogen bond donors (HBD). The bars in black, blue, and green represent approved
drugs, non-curated training set, and curated training set, respectively.
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3.4 External Validation with Test Set

External validation on the test set was performed for each
model. Table 1 shows the accuracy and kappa values
calculated on the test set and compared them with the
cross-validation results described above. The complete set
of statistical scores are shown in Figure 5.

Irrespective of the learning algorithm used, the models
trained on the non-curated training set tended to over-
predict the unstable class (Table 3). On the other hand, the
classifiers trained on the curated training set more correctly

classified the test data in each category. The Radial SVM
model trained on the curated training set produced the
highest scores in terms of both accuracy and kappa for the
test set. The scores of accuracy and kappa in the external
validation were similar to those in the cross-validation. The
RF, AB and Radial SVM models showed high accuracy and
kappa compared to the Linear SVM models, confirming the
observations described above.

We defined the critical mis-prediction as: (the number of
unstable compounds predicted to be stable) + (the number
of stable compounds predicted to be unstable)/(the total
number of the test compounds) (Table 3). The critical mis-
prediction was lower on the curated data; all the models
trained on the non-curated training set predicted many of
the stable compounds as unstable, likely due to the
erroneous records in ChEMBL.

Overall, the models on the curated training set had
higher prediction capabilities than those on the non-
curated training set against the test set (Table 1, Figure 5).
Even after removing the effects of unequal class distribu-
tions between the curated and non-curated training sets,
the models trained on the curated training set still
produced considerably better prediction results (Supporting
Information). To our knowledge, this result is the first
explicit demonstration of how manual curation can improve
the performance of prediction models. Presumably, the
manual curation reduced the noise, for example, in the
forms of experimental measurements with different proto-
cols, incorrect unit conversion, and erroneous recordings,
and contributed to more effective learning.

Table 1. Performance summary of the models trained on the non-
curated and curated training sets using different machine learning
methods.

Training set Method Accuracy Kappa

RF 0.781 0.631
AB 0.754 0.577

Non-curated Radial SVM 0.780 0.634
Linear SVM 0.711 0.523

Cross validation RF 0.757 0.560
AB 0.766 0.574

Curated Radial SVM 0.764 0.576
Liner SVM 0.715 0.487
RF 0.300 0.114
AB 0.317 0.106

Non-curated Radial SVM 0.331 0.103
Linear SVM 0.3575 0.113

Test set RF 0.723 0.492
AB 0.729 0.498

Curated Radial SVM 0.771 0.588
Linear SVM 0.697 0.455

Table 2. A list of the most important descriptors with the ten highest feature importance scores are shown out of the 953 (non-curated
training set) and 725 (curated training set) descriptors from the RF models.

Symbol Description Scaled importance in
non-curated model
(%)a

Scaled importance
in
curated model (%)a

SLogP Wildman-Crippen LogP 100 100
NsssCH Number of sssCH 83.91 0.744b

JGI8 8-orderd mean topological charge 77.51 6.60b

JGI4 4-orderd mean topological charge 74.27 6.63 b

SdssC Sum of dssC in Atom Type of EState 66.88 27.47
ATS8v Moreau-broto autocorrelation of lag 7 weighted by vdw volume 65.97 19.85
TopoPSA
(NO)

Topological polar surface area (use only nitrogen and oxygen) 52.62 27.07

Xch-7dv 7-orderd Chi chain weighted by valence electrons 49.54 6.46b

PEOE_VSA6 MOE charge VSA Descriptor 9 49.51 18.36
nAcid Acidic group count 48.02 17.51
AATSC3pe Averaged and centered moreau-broto autocorrelation of lag 3 weighted by

sanderson EN
20.57b 19.06

AATSC3se Averaged and centered moreau-broto autocorrelation of lag 3 weighted by
sanderson EN

27.98b 18.84

Sd0 Sum of dO 39.67b 18.54
TopoPSA Topological polar surface area 31.07b 16.84

a The scaled importance of the descriptors was calculated using the RF model. b Indicating a descriptor outside the top 10 list.
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3.5 Comparison with Other Classification Models

It is difficult to directly compare our models with other
models from the literature, because neither the program
nor the detailed training set are available in most cases. In
general, the performance of the models depends on the
number, diversity, and composition of the training data
compounds. Furthermore, the published models adopted
different cut-off values for classification, because they were
developed for different purposes. Thus, we simply quote

accuracy and kappa for the test set to place our models in
the context of published studies (Table 4).

In previous studies, Lee et al. proposed an RF classifier
to classify in-house compounds into two categories using
ADME keys,[2] with the best performance of accuracy = 0.82
and kappa = 0.64. Sakiyama et al. also used in-house library
compounds to classify test compounds into two groups
with Molecular Operating Environment for descriptors
calculation.[3] The RF yielded the highest scores: accuracy =
0.72 and kappa = 0.71. A three-class model was developed
by Gupta et al,[4] and the compounds collected from an in-

Figure 5. The complete set of performance metrics on the test set for the models trained on different datasets and using different machine
learning methods. The following learning algorithms were used: RF, AB, Radial SVM and Linear SVM. The hatched and solid bars represent
the results of the non-curated and the curated training sets, respectively.
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house project were used to train and evaluate it (kappa =
0.43) by using Chemistry Developers Kit. These previous
studies indicate that accuracy >0.72 and kappa >0.43
constitute acceptable performance for metabolic stability
prediction. Our Radial SVM model on the curated training
set had accuracy = 0.771 and kappa = 0.588 and thus
satisfied both the accuracy and kappa criteria.

4 Conclusions

In this paper, we proposed metabolic stability prediction
models for classifying compounds into three categories
based on CLint. In all our analysis, the CLint data used were
collected from an open data source. By curating the
collected data carefully, we were able to build effective
classifiers that are on par with or had better performance
than previously published models. The curated data have
been made available as supporting information to help
reproduce our study widely.

This is the first study to investigate the effect of manual
curation of data obtained from an open data source. This
result can open the possibility for broad research commun-
ities to access high-quality pharmacokinetic datasets and
build their own models.

Supplementary Materials

1) Supporting Information_Details_Esaki et al.pdf: The PDF
file involves the details of removing compounds because of
the unambiguous class assignments (S-2). The confusion
matrix and equations for calculating each statistical score
(S-3) and the results of models trained on the sampled non-
curated data set (S-4 and S-5) also are included.

2) Supporting Information_Structural data_Esaki et al.sdf:
Structure data file of the curated data set includes the
information of ChEMBL ID, Compound name, Dataset (training
or test sets), Observed and Predicted classes with Radial SVM
model trained on the curated training set.
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Table 3. Confusion matrix of each model (trained on the non-
curated training set (the upper table) and on the curated training
set (the lower table)) evaluated using the test compounds.

Non-
curated

Obs. Pred.
Stable

Pred.
Moderate

Pred.
Unstable

Critical
mis-predictio
n (%)a

RF Stable 69 41 134 22.77
Moderate 8 71 223
Unstable 1 8 38

AB Stable 70 64 110 18.72
Moderate 7 82 213
Unstable 1 10 36

Radial SVM Stable 83 60 101 17.20
Moderate 16 79 207
Unstable 1 16 30

Linear SVM Stable 91 73 80 14.17
Moderate 29 90 183
Unstable 4 12 31

RF Stable 181 63 0 0.51
Moderate 67 233 2
Unstable 3 29 15

AB Stable 170 74 0 0.34
Moderate 52 247 3
Unstable 2 30 15

Radial SVM Stable 190 54 0 0.34
Moderate 52 241 9
Unstable 2 19 26

Linear SVM Stable 166 76 2 0.51
Moderate 61 225 16
Unstable 1 24 22

a The rightmost column in these tables shows the percentage of
critical mis-prediction, defined as: (the number of unstable
compounds predicted to be stable) + (the number of stable
compounds predicted to be unstable)/(the total number of the
test compounds).

Table 4. Comparison with previous studies.

Modelsa Cut-off
Values

Number of
Training set

Accuracycb Kappab

P. H. Lee [2] 20 mL/
min/mg

11,646
(In-house data)

0.82 0.64

Y. Sakiyama
[3]

20 mL/
min/kg
(21.164 mL/min/
mg)

1,952
(In-house data)

0.72 0.71

R.R. Gupta
[4]

13 mL/
min/mg
50 mL/
min/mg

49,968
(In-house data)

(no data) 0.43

Curated
Radial SVM
(This study)

20 mL/
min/mg
300 mL/
min/mg

4,685
(curated
data from
ChEMBL)

0.771 0.588

a The two upper models are two-classification models, other two
lower are three-classification models. b The accuracy and kappa of
previous studies were taken from the literature, and those from our
models were the test set results.
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