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Abstract

A key assumption underpinning major models of sexual selection is the expectation that male sexual attractiveness is
heritable. Surprisingly, however, empirical tests of this assumption are relatively scarce. Here we use a paternal full-
sib/half-sib breeding design to examine genetic and environmental variation in male mating latency (a proxy for
sexual attractiveness) and copulation duration in a natural population of Drosophila melanogaster. As our
experimental design also involved the manipulation of the social environment within each full-sibling family, we were
able to further test for the presence of genotype-by-environment interactions (GEIs) in these traits, which have the
potential to compromise mate choice for genetic benefits. Our experimental manipulation of the social environment
revealed plastic expression of both traits; males exposed to a rival male during the sensitive period of adult sexual
maturation exhibited shorter mating latencies and longer copulation durations than those who matured in isolation.
However, we found no evidence for GEIs, and no significant additive genetic variation underlying these traits in either
environment. These results undermine the notion that the evolution of female choice rests on covariance between
female preference and male displays, an expectation that underpins indirect benefit models such as the good genes
and sexy sons hypotheses. However, our results may also indicate depletion of genetic variance in these traits in the
natural population studied, thus supporting the expectation that traits closely aligned with reproductive fitness can
exhibit low levels of additive genetic variance.
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Introduction

Sexual selection is often thought to favour the evolution of
elaborate traits that provide honest signals of (usually male)
genetic quality [1,2]. According to this idea, secondary sexual
traits are expected to convey reliable information about genetic
quality, thus generating a correlation between signal
attractiveness and the genetic benefits of choice (production of
offspring of high genetic quality) which underpin good genes
explanations for the evolution of female preferences [1-3]. A
correlation between attractiveness and female preferences is
also expected, regardless of the relationship between
attractiveness and genetic quality, as long as attractive males
father attractive sons; choosy females can therefore obtain
genetic benefits in the form of sexy sons [4-7]. Furthermore, if
attractiveness is understood as the ability of males to

manipulate females into mating, models based on sexual
conflict also predict that attractive males should father
attractive sons [8]. Thus, a critical assumption of good genes,
sexy sons, and sexual conflict models is that attractiveness
should be heritable. Accordingly, sexual selection research has
focused on estimating the heritability of male traits upon which
female choice is based, and there is now ample support for the
notion that these traits can harbour significant levels of additive
genetic variation [1,9-12]. However, determining whether
attractiveness itself (e.g. the probability that a male is chosen
as a mate) is heritable has received far less empirical attention
[13]. Ultimately we largely lack data to support this key
assumption underlying models of sexual selection.

An important complication when assessing the genetic basis
of sexual signals is that their expression can depend on the
social and/or physical environment in which they are expressed
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[14-16], such that the reliability of sexual signals in different
mating contexts may be compromised [17,18]. Thus, a given
genotype may express different phenotypes when expressed in
different environments. Theory [19] and evidence [20-22]
suggest that such genotype-by-environment interactions (GEIs)
have the potential to disrupt the reliability of sexual signals in
heterogeneous environments, thus potentially compromising
mate choice for genetic benefits [17,19].

There is compelling evidence for the implication of indirect
selection on female choice in Drosophila [13,23-28], and in
several Drosophila species male sexual attractiveness –
measured from mating latency – has been shown to be
heritable [13,24,29]. However, these studies were conducted
under homogeneous environmental conditions and therefore
the influence of environmental variation on patterns of genetic
variance in male mating latency is presently unknown. Yet
phenotypic studies that have manipulated social environments
have revealed considerable plasticity in courtship, copulation
duration, and ejaculate size according to the presence/absence
of rival males, which effectively manipulates the likelihood of
both pre- and post- copulatory competition (i.e. mating success
and sperm competition) [30-32]. A general pattern found across
taxa is that males that encounter rival males either during or
prior to mating respond by decreasing the time spent in
courtship, increasing the length of time engaged in copulation,
and increasing ejaculate size [33]. Nevertheless, it is currently
unknown whether there is genetic variation underlying the
plasticity of such traits in response to rival males, and thus the
extent of GEIs arising from heterogeneity in social
environments is presently unresolved.

In this study we determine the level of genetic variation in
mating latency and copulation duration in D. melanogaster
under varying social conditions. Specifically, we used a
paternal full-sib/half-sib breeding design to generate pairs of
full-sibling males that were exposed to one of two social
environments; males were kept in isolation or in the company
of another male during the period of early adulthood in which
they reach sexual maturity. Our ensuing quantitative genetic
analyses enabled us to test for genetic and environmental
sources of variance underlying the expression of these traits,
and for the presence of GEIs by assessing the interaction
between social context and sire genotype.

Methods

Ethics statement
There are no ethical issues for this non-invasive study of an

invertebrate species. This species is not an endangered or
protected species. Adult flies were collected on private land
with the permission of Howard Park and Houghton’s wineries
and then returned to the laboratory.

Flies
Adult Drosophila melanogaster were collected in the Swan

Valley region of Western Australia in May 2009 and maintained
in the laboratory in mass populations of over 500 individuals
with overlapping generations until the start of our experiment in
January 2010. Populations were fed on a Drosophila medium

containing water, oats, sugar, agar and baker’s yeast, with a
sprinkling of dry yeast. Populations were kept on a 12:12hr
light: dark cycle at 26°C. To generate the paternal full-sib/half-
sib families for the experiment, we collected 100 virgin sires
from the stock population and mated each of them to three
virgin females at two-day intervals. Virgin flies were collected
within 12 hours of eclosing from pupal cases and kept in
separate vials for each sex for three days before the first
mating. Each dam was removed from her respective laying vial
three days after she had mated. From each full-sib family we
collected four sons within 12 hours of eclosion and split them
into two social environment treatments. These males (hereafter
‘focal males’) were either housed alone, or with an unrelated
sexually mature (5-7 days old) ‘rival’ male from the stock
population. All focal males were maintained in their respective
social treatments for seven days during the sensitive period of
adult sexual maturation. We then removed the rival male and
transferred each focal male to a fresh vial with a 3-4 day old
sexually mature virgin female from the stock population. We
presented focal males individually to a single female to avoid
potentially confounding effects of direct male-male competition
on the traits measured (see below) [32]. Mating trials took
place over four hours in the morning from first light, and four
hours in the evening prior to dark. Siblings from both
treatments were tested during the same time period to reduce
variation due to time of day. All pairs of focal males were then
observed continuously until copulation occurred, up to a
maximum of 3 hours. A minimum of 80% of males mated within
this time. For each successful copulation, we recorded the
mating latency (time taken to initiate copulation) and copulation
duration. Within the context of our experiment, we are
interested only in the effect of perceived competition from rival
males during the sexual maturation phase, rather than the
effects of specific individuals on focal male mating success per
se (sensu ‘interacting phenotypes’ approach [34]) and so we
did not measure these behaviours in rival males.

Our final analysis comprised data from 91 sires, 194 dams
and 663 sons (mean 2.1 dams per sire; mean 3.4 sons per
dam). The effects of social environment on genetic variation in
male mating behaviour were examined with general linear
mixed-effects models using Type III sums of squares in
STATISTICA 8.0 [35]. Sire, and dam nested within sire, were
included as random factors, and social environment as a fixed
factor. Interactions involving random terms were also coded as
random effects. We used the interaction between social
environment and dam (nested within sire) as the error term for
testing the significance of the sire-by-environment (i.e. GEI)
interaction [36] and followed Satterthwaite’s method of
denominator synthesis to account for unequal sample sizes of
offspring [37]. Copulation duration was normally distributed but
mating latency deviated from normality and was log-
transformed prior to evaluating the sire-by-social environment
interactions. We removed data for two sons as they alone
generated a significant sire-by-social environment interaction
for copulation duration. When we re-ran the analysis with these
two males excluded from the dataset, the interaction term was
no longer significant (see Results).

Male Mating Behaviour and the Social Environment
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To estimate genetic parameters (including heritabilities) of
the behavioural traits we conducted separate analyses within
each social environment treatment group. For hypothesis
testing, we used a mixed-model nested ANOVA with Type III
sums of squares. Variance component estimation and
subsequent analyses of genetic variation were conducted using
restricted maximum-likelihood (REML) in a mixed-model fitted
with the lmer function (package lme4 [38]; in R 3.0.0 [39]. We
used untransformed variables to analyse genetic variation [40].
We calculated narrow-sense heritabilities due to sires,
heritabilities due to dams, and the genotypic (mean) estimate
of heritability [41]. We calculated evolvability measures (IA and
the coefficient of additive genetic variation, CVA) [40,42,43] and
coefficients of phenotypic and residual variation (CVP and CVR,

respectively) following methods described in [40], where CVA =
√VA / Ẋ. Finally, we calculated standard errors for heritabilities,
variance components and evolvability estimates using the jack-
knife procedure [41,44].

Results and Discussion

GEIs and sexual selection
Males exposed to a rival male during sexual maturity

exhibited significantly shorter mating latencies than those who
matured in isolation (mean ± SE mating latencies: exposed to a
rival male 46.53 ± 2.25 min., N = 341; in isolation = 62.45 ±2.74
min., N = 322; see Table 1 for supporting statistics and Figure
1). Furthermore, males exposed to a rival male had
significantly longer copulation durations than males who
matured in isolation (mean ± SE copulation duration: exposed
to a rival male 19.97 ± 0.24 min., N = 341; in isolation = 17.69 ±
0.25 min., N = 322; Table 1 & Figure 2). Thus, we found
evidence for plastic expression of these traits according to the
social environment. Despite these treatment effects, we
detected no significant sire effects, or additive genetic variation
underlying any of the traits examined (discussed below). By
contrast, we found significant variation attributable to dams for
copulation duration (Table 1), but as this effect likely
encompasses maternal and common environmental effects we
do not interpret this finding further. There was no evidence for
GEIs for either mating latency or copulation duration (see sire-
by-social environment interaction; see Table 1).

We found a significant effect of the social environment on
both mating latency and copulation duration. Males that were
exposed to a rival male during the period between eclosion and
sexual maturity were more attractive to females and
significantly increased their copulation duration compared to
those reared in isolation. This effect was evident despite all
males being tested individually in a single male mating arena
with a random virgin female. The phenomenon of increased
copulation duration in response to a rival male in the rearing or
mating arena has been reported across many insect taxa and
has been most commonly interpreted as a behavioural
response to increased risk of sperm competition [32,33,45,46].
In a recent study, Lize et al. [47] compared mating latency and
copulation duration under ‘single’ or ‘competitor’ mating
conditions in four species of Drosophila. They reported that
increased copulation duration in response to a competitor was

a consistent response across the four species studied, but
ruled out sperm competition as the selective factor underlying
this response as two of the four species had extremely low
levels of remating.

One way in which males might decrease their latency to
mating is to increase the effort and time spent engaged in
direct courtship behaviour towards females. Previous work in
D. melanogaster and its sibling species, D. simulans, has
shown that males spend considerable amounts of time
engaged in courtship, even to the detriment of female survival
[48-50]. Another possibility is that males decreased mating
latency by increasing their production of cuticular hydrocarbons
[51-54]. Consistent with this idea, in Australian field crickets,
Teleogryllus oceanicus, subdominant males have been shown
to compensate for their lower status by up-regulating their
investment in short-range cuticular hydrocarbons, which
directly increases their mating success [55,56].

Genetic variation in mating latency and copulation
duration

We partitioned total phenotypic variance into its genetic and
environmental components and estimated the heritability and
evolvability of mating latency and copulation duration. We
found no significant additive genetic variation underlying mating
latency or copulation duration in either treatment (Tables 2 and
3). The sire and dam estimates of heritability for the two traits
analysed were not significantly different from each other, and
genotypic estimates were generally moderate in magnitude
although not significantly different from zero. These results may
seem surprising given that previous studies have found

Table 1. Mixed-model nested univariate ANOVAs for male
mating latency and copulation duration.

Trait Source of variance d.f. MS d.f. (denominator)F p
Mating Sire 90 0.195 38.78 1.049 .445
latency Dam (Sire) 103 0.209 96.15 1.31 .091
 Social environment 1 3.214 101.19 23.23 .000

 
Sire x Social
environment

88 0.137 95.65 0.86 .759

 
Dam (Sire) x Social
environment

95 0.159 285 1.108 .261

 Error 285 0.144    
Copulation Sire 90 33.1 70.21 1.31 .119
duration Dam (Sire) 103 23.6 96.89 1.92 .000
 Social environment 1 850.7 100.52 60.93 .000

 
Sire x Social
environment

88 13.9 96.07 1.13 .274

 
Dam (Sire) x Social
environment

95 12.3 285 0.67 .987

 Error 285 18.2    

GxEs are tested via the Sire x Social environment interaction (where Dam (Sire) x
Social environment term provides the error degrees of freedom). Results
significant at alpha <.001 are in bold. Observed power for all tests >.84 (mating
latency) and >.93 (copulation duration) (alpha = 0.05).
doi: 10.1371/journal.pone.0077347.t001

Male Mating Behaviour and the Social Environment

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e77347



significant levels of genetic variation for these traits in this and
in other species of Drosophila [13,29]. Nevertheless, Hoffman
[29] points out that in Drosophila, mating speed and courtship
behaviour can exhibit either low or undetectable heritabilities
due to “single event testing”, where the traits in focal individuals
are measured just once rather than repeatedly. However, in
their meta-analysis of repeatability of animal behaviours, Bell et
al. [57] report no relationship between repeatability and the
number of times behaviour such as courtship was measured.

The problem of a potential underestimation of heritabilities
may be further compounded when we consider that in order to
measure focal male mating latency and copulation duration we
used a random sample of females with which to measure these
traits. Thus, any genetic or phenotypic variance in female
preferences or female condition as well as sampling error
surrounding the choice of females may inflate estimates of
phenotypic variance in the traits investigated in the focal males,
hence leading to an underestimation of heritability (see [58,59]

for a full exposition of a similar problem in the case of
estimating the heritability of sperm competitiveness). Whether
this ‘noise’ is strong enough to mask the detection of significant
heritability in mating latency and copulation duration in the
population studied warrants further investigation, but we found
consistently low levels of additive genetic variation, including
mean-standardized measures of evolvability, which unlike
heritability measures are independent of phenotypic variance.
We also note that the sample size in our study (around 90 sire
families) is similar to, or even larger than, those employed in
other studies using the full-sib/half-sib design that either
reported significant additive genetic variance for these traits
[13,24] or were calculated as sufficient to detect significant
heritability of 0.2 [60]. Finally, as our study characterises
patterns of genetic variance in a natural population of D.
melanogaster, our ensuing estimates of heritability and
coefficients of additive genetic variance may reflect both high
environmental variance and low additive genetic variance in

Figure 1.  Males decrease their mating latency after being exposed to a rival male.  Mean ± SE of mating latency of males in
two different social environments.
doi: 10.1371/journal.pone.0077347.g001
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natural populations compared to their lab-adapted
counterparts. Conner et al. [61], for example, reported that in
wild radish plants, estimates of heritability and additive genetic
variance in floral traits were significantly lower in field samples

compared to those coming from the laboratory. A possibility in
our case is that genetic variance in male mating behaviour may
have been eroded by selection in the natural population, but
future studies are needed to further investigate this possibility.

Figure 2.  Males increase their copulation duration after being exposed to a rival male.  Mean ± SE of copulation duration of
males in two different social environments.
doi: 10.1371/journal.pone.0077347.g002

Table 2. Phenotypic and genetic variation in mating latency (minutes) in males exposed to different social environments.

Social environment Mean (SE) VA (SE) VP (SE) h2sire (SE) h2dam (SE) h2 genotypic (SE) IA (SE) CVA (SE) CVP (SE) CVR (SE)
Isolation 62.45 2.81x10-11 2414.21 1.16x10-14 0.63 0.31 7.21x10-15 8.49x10-8 0.78 0.78
 (2.74) (3.72 x10-7) (236.92) (1.53 x10-10) (0.38) (0.19) (9.51 x10-11) (9.65 x10-6) (0.03) (0.03)
With rival male 46.53 75.93 1788.42 0.04 0.58 0.31 0.035 0.18 0.90 0.87
 (2.25) (273.30) (234.35) (0.16) (0.57) (0.29) (0.126) (0.45) (0.04) (0.08)

Coefficients of additive, phenotypic and residual variation are calculated without a 100 multiplier. Standard errors (SE) of genetic statistics were obtained by jackknifing
across sires. Sample sizes for the “isolation” environment: n sires = 90, n dams = 187, n sons = 322; sample sizes for the “with rival male” environment: n sires = 90, n dams
= 191, n sons = 341. Significance values are not shown as all p > 0.05.
doi: 10.1371/journal.pone.0077347.t002
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