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A B S T R A C T   

7-Ketocholesterol, which is one of the earliest cholesterol oxidization products identified, is essentially formed by 
the auto-oxidation of cholesterol. In the body, 7-ketocholesterol is both provided by food and produced 
endogenously. This pro-oxidant and pro-inflammatory molecule, which can activate apoptosis and autophagy at 
high concentrations, is an abundant component of oxidized Low Density Lipoproteins. 7-Ketocholesterol appears 
to significantly contribute to the development of age-related diseases (cardiovascular diseases, age-related 
macular degeneration, and Alzheimer’s disease), chronic inflammatory bowel diseases and to certain cancers. 
Recent studies have also shown that 7-ketocholesterol has anti-viral activities, including on SARS-CoV-2, which 
are, however, lower than those of oxysterols resulting from the oxidation of cholesterol on the side chain. 
Furthermore, 7-ketocholesterol is increased in the serum of moderately and severely affected COVID-19 patients. 
In the case of COVID-19, it can be assumed that the antiviral activity of 7-ketocholesterol could be counter-
balanced by its toxic effects, including pro-oxidant, pro-inflammatory and pro-coagulant activities that might 
promote the induction of cell death in alveolar cells. It is therefore suggested that this oxysterol might be 
involved in the pathophysiology of COVID-19 by contributing to the acute respiratory distress syndrome and 
promoting a deleterious, even fatal outcome. Thus, 7-ketocholesterol could possibly constitute a lipid biomarker 
of COVID-19 outcome and counteracting its toxic effects with adjuvant therapies might have beneficial effects in 
COVID-19 patients.   

1. Origin and metabolism of 7-ketocholesterol 

Cholesterol ((3β)-cholest-5-en-3-ol; C27H46O; molecular weight: 
386.65 g/moL) is a lipid which is both provided by the diet and formed 

endogenously, except in the brain where the cholesterol present is only 
produced by astrocytes [1,2]. After a meal, cholesterol transiting 
through enterocytes is taken up by the enteric capillaries as chylomi-
crons which will transport it to the liver, where it will be distributed to 
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the peripheral organs via low density lipoproteins (LDLs); its return to 
the liver is then ensured by the high density lipoproteins (HDL) [3]. In 
all the cells of the body, acetyl-CoA is the first element involved in the 
biosynthesis of cholesterol. Endogenous cholesterol synthesis involves 
several enzymes which, after conversion of acetyl-CoA into mevalonate 
by the enzyme HMG-CA reductase, will then be converted to squalene, 
which is subsequently metabolised to lanosterol. From lanosterol, which 
contains thirty carbon atoms (C30), the biosynthesis of cholesterol (C27) 
takes two routes: the Bloch pathway and the Kandutsch-Russell 
pathway. The Bloch pathway produces cholesterol precursors ranging 
from 14-demethyl-14-dehydrolanosterol (ff-MAS; C29) to desmosterol 
(C27) and includes zymosterol (C27); the Kandutsch-Russell pathway 
generates products spanning from 24-25-dihydrolanosterol (C30) to 
7-dehydrocholesterol (C27) and includes zymostenol (C27) and lath-
osterol (C27) [4]. These two pathways can generate cholesterol via the 
enzymes 24-dehydrocholesterol reductase (DHCR24) and 7-dhydrocho-
lesterol reductase (DHCR7): the enzyme DHCR24 generates cholesterol 
from desmosterol while the enzyme DHCR7 generates cholesterol from 
7-dehydrocholesterol [5,6]. Whether endogenous or exogenous in 

nature, in a pro-oxidant environment cellular, cholesterol can then give 
oxidized derivatives in positions 4, 5, 6 and 7 [7–9]. Most often radical 
attacks by reactive oxygen or nitrogen species (ROS or RNS) take place 
on carbon 7, because of the weak link between carbon and hydrogen at 
this position [9,10]. This local oxidation at carbon 7 then generates a 
peroxyl radical (ROO•) which, by reacting with hydrogen, forms 
cholesterol hydroperoxide (7α- or 7β− OOHC) [11]. As the hydroper-
oxide bond is very unstable, 7-ketocholesterol (7KC), also named 7-oxo--
cholesterol [12,13], is formed in the majority of cases, and 
7β-hydroxycholesterol and 7α-hydroxycholesterol in smaller quantities 
[11] (Fig. 1). Under certain conditions, it has also been shown that 7KC 
can be formed via the enzyme sterol 7-hydroxylase (CYP7A1) from 
7-dehydrocholesterol (7-DHC) present in large quantities in the plasma 
of patients with Smith Lemli Opitz (SLO) syndrome [4]. In addition, 
11β-hydroxysteroid-dehydrogenase type 2 (11β-HSD2), which converts 
cortisol to cortisone, is also responsible for the conversion of 
7β-hydroxycholesterol to 7KC [14]. 

Overall, 7KC can be detected in the plasma at LDL level or bound to 
albumin as well as in the plasma membrane of the cells of different 

Fig. 1. Biosynthesis of 7-ketocholesterol. The biosynthesis and the metabolism of 7-ketocholesterol (7KC) are described in the detail by Wang et al. [23], Brahmi 
et al. [72], Vejux et al. [14] and Griffiths et al. [24]. For detailed information on the biosynthesis and degradation of 7KC and 7β-hydroxycholesterol, please see the 
review from Nury T et al. [112]. 
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tissues [15]. It is also well established that 7KC can react with different 
molecules (sulfate, fatty acids) via the hydroxyl group (OH) localized on 
C3 in the ring A of the sterane nucleus, which leads to inhibition of its 
toxicity [16,17]. The enzyme sulfotransferase 2B1b (SULT 2B1b) is 
involved in the sulfonation of 7KC [18]. As for the esterification of 7KC, 
a combined action of cytosolic phospholipase A2 alpha (CPLA2 α) and 
sterol-O-acyltransferase (SOAT1) has been reported [19]. In addition, 
Acyl-coenzyme A transferase (ACAT, also abbreviated as SOATs) which 
converts cholesterol into cholesterol ester can use oxysterols as sub-
strates: oxysterols are also substrates for SOAT1 and SOAT2 [20]. The 
lecithin cholesterol acyl-transferase (LCAT) also esterifies oxysterols in 
the plasma [15]. At the moment, it has been described in retinal pigment 
epithelium that 7KC can be metabolised by the enzyme 27-hydroxylase 
cytochrome P450 27A1 (CYP27A1) to form two metabolites, 3β, 
27-dihydroxy-5-cholesten-7-one (7KC-27OHC) and 3β-hydrox-
y-5-cholesten-7-one-26-oic acid (7KC-27COOH), to reduce the toxicity 
of 7KC [21,22]. It is therefore important to know the biological activities 
of 7KC, and of its metabolites which are still not well known [23,24], as 
well as their related signalling pathways, in order to identify therapeutic 
targets and develop drugs acting on them to treat diseases associated 
with high levels of 7KC in tissues and biological fluids. 

2. Pathologies associated with 7-ketocholesterol 

Large amounts of oxysterols formed by auto-oxidation, particularly 
7KC, have been initially detected in oxidized LDL (LDLox) and in 
atheromatous plaques. Since there is a positive correlation between the 
content of oxysterol-rich LDLox and induction of cell death, it has been 
suggested that 7KC may play a crucial role in atherosclerosis and car-
diovascular diseases [25,26]. Moreover, analogies between atheroscle-
rosis and the development of age-related macular degeneration (AMD) 
(significant presence of 7KC in lipid deposits called drüsens located 
between the Bruch membrane and the monolayer of retinal epithelial 
cells) also indicate involvement of 7KC in the pathophysiology of this 
disease [27,28]. A potential involvement of 7KC in the pathophysiology 
of cataract, which affects one person in five from the age of 65, and more 
than 60 % of people aged 85 and over, is also suspected [29]. Thus, the 
exposure of membranes isolated from transparent human lenses to 2, 
2′-azobis(2-amidinopropane) hydrochloride, a free radical generator, 
promotes the production of 7KC (74 %) as the main cholesterol oxida-
tion product [30]. In addition, cataract lenses contain quantifiable 
amounts of 7KC (4.2 +/- 0.32 mmol / mol of cholesterol), whereas clear 
lenses from cataract-free subjects do not contain detectable amounts 
[30]. Moreover, the presence of high levels of 7KC in the brain lesions of 
Alzheimer’s disease patients suggests an involvement of 7KC in this 
prevalent neurodegenerative disease [31,32]. 7KC also appears to be 
involved in chronic inflammatory bowel diseases [33] as well as in some 
rare diseases of lipid metabolism, such as X-linked adrenoleukodystro-
phy (X-ALD) [11,34]. High levels of 7KC have also been described in 
non-infectious but severe inflammatory lung diseases such as silicosis 
[35,36]. In addition, air pollution which affects the respiratory system 
by promoting oxidative stress, increases the production of 7KC and 
promotes atherosclerosis by activating CD-36 positive macrophages 
[37]. Currently, several ozone-oxidized cholesterol products have been 
identified and can be considered as a new class of oxysterols [10,38]. 
The common denominators of 7KC-associated diseases are high levels of 
oxidative stress and inflammation which can in turn amplify the for-
mation of 7KC, as well as organelle dysfunction (of mitochondria, per-
oxisomes, lysosomes, endoplasmic reticulum) [39] and subsequently 
contribute to the amplification of this stress [40]. Furthermore, organ-
elle oxidative stress, mainly at the mitochondrial and peroxisomal level, 
could favour the formation of 7KC, which is itself strongly pro-oxidative 
and pro-inflammatory [41–43]. 

Beside age-related diseases, increases in 7KC have also been 
described in the context of viral infections. For example, in patients with 
type 2 diabetes who are co-infected with herpes virus type 8 (HHV8), 

significant increases in plasma levels of 7KC have been observed 
possibly amplifying diabetic complications [44]. It is hypothesized that 
the HHV8-infection may contribute to ROS overproduction which would 
trigger lipid peroxidation and cholesterol autoxidation, leading to 7KC 
formation [44]. Similarly, elevated plasma levels of 7KC have also been 
measured in patients infected with influenza A virus [45]. In patients 
infected by the SARS-CoV-2 coronavirus with severe forms of COVID-19 
(COrona VIrus Disease - 2019), a potentially fatal acute respiratory 
distress syndrome due to a bilateral pneumonia, elevated plasma levels 
of 7KC were observed whereas 27-hydroxycholesterol (also known for 
its strong anti-viral activity) [46–49] was simultaneously significantly 
decreased compared to the control group, reaching a marked 50 % 
reduction in severe COVID-19 cases [49]. SARS-CoV-2 is an enveloped 
RNA virus; its genome encodes for fifteen genes including a surface 
protein, the Spike protein, which allows it to enter and to infect the 
target cells at the level of vital organs [50]. Thus, this Spike protein 
binds to the angiotensin-converting enzyme 2 (ACE-2) receptor 
expressed in almost all tissues and abundant in the lungs, kidneys, brain 
stem, adipose tissue, heart, vasculature, stomach, liver, nasal and oral 
mucosa [51]. The innate immune cells (neutrophils, monocytes) and 
adaptive immune cells (T cells) are involved in the response to 
COVID-19 infection [52,53]. In a retrospective study realized on 175 
patients, it was noted that the highest co-morbidity has been observed in 
COVID-19 patients with cardiovascular diseases [54] in whom it is well 
known that the level of oxysterols formed by auto-oxidation, including 
7KC, is already high [11]. An increased prevalence of fungal and Pseu-
domonas aeruginosa colonization has also been observed in patients with 
severe forms of COVID-19, suggesting that this association may be the 
result of a failure in the regulation of immune defenses against patho-
gens other than SARS-CoV-2, in the case of co-infection [55]. From a 
clinical point of view, atherosclerosis, AMD, cataract, and Alzheimer’s 
disease are age-related diseases [42,56]. At the beginning of the 
pandemic, COVID-19 could be considered as an emerging age-related 
disease. This concept is no longer relevant as it is well established that 
children, adolescents and young adults can also be infected [57,58]. 
However, severe forms of COVID-19 most often affect people over 65 
years of age due to a combination of several parameters, including 
nutritional aspects but especially age-related immunological and meta-
bolic alterations [59,60]. About the cardiovascular diseases, it can be 
assumed that the presence of high concentrations of 7KC in the elderly 
could be a risk factor that may promote co-morbidity in the case of 
infection with the SARS-CoV-2. A possible involvement of the 7KC in the 
pathophysiology and in the fatal or non-fatal outcome of severe forms of 
COVID-19, would strengthen the interest for this oxysterol in the context 
of viral diseases. 

3. Anti-viral activities of 7-ketocholesterol 

Currently, there is evidence that several oxysterols have antiviral 
effects against both enveloped and non-enveloped viruses. An in-depth 
review of the literature on this topic was carried out in 2016 by 
Lembo et al. [61]. In addition, several studies have shown the ability of 
certain cholesterol and oxysterol metabolites to regulate both intrinsi-
c/innate immunity and adaptive immunity, each of which may be 
involved in bacterial and viral infections [62]. Among the oxysterols 
with strong anti-viral properties are mainly those derived from choles-
terol oxidation on the aliphatic side chain such as 25-hydroxycholesterol 
and 27-hydroxycholesterol, which could act both by inhibiting viral 
replication and by activating the immune response [63,46,64,65]. 7α, 
25-hydroxycholesterol generated by cholesterol by the sequential action 
of cholesterol 25 hydroxylase (CH25H) and 7-alpha-hydroxylase 
(CYP7B1) also has anti-viral activities, and acts as chemo-attractant 
for cells expressing the cell surface receptor GPR183 present on den-
dritic and B cells, as well as type 3 innate lymphoid cells (ILC3) [66,67]. 
Less potent antiviral activities have been reported with 7β-hydrox-
ycholesterol and 7KC [61]. However, 7KC shows anti-viral activities 
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(inhibition of viral replication, viral inactivation) on three enveloped 
viruses (human papillomavirus-16 (HPV16), human rotavirus (HRoV), 
human rhinovirus (HRhV)) [46]. In addition, in cultures of green 
monkey kidney cells (Vero cells) and differentiated human nerve cells 
(hNP1 cells), 7KC reduces the viral titer of the Zika virus, which is an 
emerging African virus characterized by significant neurotropism, 
without affecting cell viability: 7KC reduces the number and infectivity 
of viral particles released into the culture medium [68]. In Ver-
oE6/TMPRSS2 cells inoculated with SARS-CoV-2, weak anti-viral ac-
tivities were demonstrated with 7KC, 22(R)-hydroxycholesterol and 22 
(S)-hydroxycholesterol; the latter are weak inhibitors of viral replica-
tion, in contrast to 27-hydroxycholesterol and 24(S)-hydroxycholesterol 
[69]. These observations led to the development of semi-synthetic 
oxysterols with anti-SARS-CoV-2 activity when administered orally to 
mice which are named Oxy210 (3S,8S,9S,10R,13S,14S, 
17S)-17-((R)-2-hydroxy-4-(pyridin-3-yl)butan-2-yl)-10,13-dimethyl-2, 
3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a] 
phenanthren-3-ol) and Oxy232 ((3S,5S,8R,9S,10S,13S,14S, 
17S)-17-((R)-3-hydroxy-1-(pyridin-3-yl)pentan-3-yl)-10,13-dime-
thylhexadecahydro-1H-cyclopenta[a]phenanthren-3-ol) [69]. These 
different results suggest that 7KC has generally weak anti-viral activ-
ities; however, this oxysterol could nevertheless contribute to the im-
mune response due to its pro-inflammatory properties including 
stimulation of IL-8 and IL-1β production [70,71]. 

4. Potential role of 7-ketocholesterol in the pathophysiology of 
COVID-19 

Although 7KC has weak anti-viral activities, it has strong cytotoxic 
activities. Indeed, there are several data that favour the pro-oxidative 
and pro-inflammatory activities of 7KC that may be associated with a 
type of death defined as oxiapoptophagy (OXIdative 
stress + APOPTOsis + autoPHAGY), due to the ability of 7KC (at high 
concentration) to induce oxidative stress and an apoptotic mode of cell 
death associated with autophagy criteria [14,72,73]. In several cells 
from different types and from different species, i) oxidative stress is 
characterized by ROS overproduction including at the mitochondrial 
level, protein carbonylation, lipid peroxidation and decrease and/or 
enhancement of anti-oxidant enzymes (catalase, superoxide dismutases 
(SODs), glutathione peroxidase (GPx), ii) apoptosis is associated by an 
activation of the mitochondrial pathway leading to a loss of trans-
membrane mitochondrial potential (ΔΨm), an externalization of phos-
phatidylserine, an increase of plasma membrane rigidity associated with 
an increased cell permeability contributing to an altered packing of the 
lipid bilayer, a cytoplasmic release of cytochrome c, a caspase cascade 
activation (caspases-3,-7,-8 and -9), poly-ADP ribose (PARP) fragmen-
tation and an internucleosomal DNA fragmentation associated with 
condensation and/or fragmentation of the nuclei and iii) autophagy is 
characterized by the presence the presence of autophagosomes and 
autophagolysosomes revealed by transmission electron microscopy as 
well as activation of LC3-I into LC3-II [73,74]. In addition, 7KC-induced 
oxiapoptophagy is associated with a production of inflammatory cyto-
kines (IL-1β, IL-8) [72,14]. Noteworthy, 7KC, together with 
7β-hydroxycholesterol (7β− OHC), was significantly increased in the 
plasma collected from COVID-19 patients compared to age matched 
healthy controls [49]. A progressive positive trend was found together 
with the severity of the disease: the highest 7KC and 7β− OHC concen-
trations were observed in severe COVID-19 patients. In these patients, it 
was also observed a progressive reduction of the plasma concentrations 
of lanosterol, lathosterol, and desmosterol, markers of cholesterol syn-
thesis and of the 27-hydroxycholesterol, which has antiviral and 
immunomodulatory activities against SARS-CoV-2 [49,69]. The rise of 
7KC and 7β− OHC was related to the increased oxidative stress caused by 
respiratory distress [49]. 

In the case of COVID-19, high serum levels of 7KC were observed: in 
male/female control subjects of the same age range as COVID-19 

patients (70 ± 10 years old), the serum level of 7KC is about 20 μg/L 
whereas the serum level of 7KC was increased by a factor of 2–3.5 and of 
2–5 in moderate and severe COVID-19 patients, respectively [49]. 
Similarly, while the serum level of 7β− OHC is about 8 μg/L in control 
subjects, this later was increased by a factor of 1.5–2.5 and of 1.5–5 in 
moderate and severe COVID-19 patients, respectively [49]. As patients 
with severe forms of COVID-19 may have the same 7KC and 7β− OHC 
levels as patients with moderate forms, this suggests that increased 
serum levels of these oxysterols are not indicative of disease severity. On 
the other hand, the very high serum levels of 7KC observed in some 
patients with severe COVID-19 - which may be a consequence of the 
infection and result from an exacerbated immune response - may 
contribute to the deterioration of the patients’ condition. Thus, it can be 
assumed that the anti-viral activity of 7KC should be outweighed by its 
toxic effects, which could contribute to cytokine storm [12,75] and also 
to the activation of coagulation in the capillaries of the pulmonary 
alveoli [76], and to the deterioration of alveolar epithelial cells [77]. It is 
assumed that the organism, with the contribution of 7KC, is over-
whelmed by a storm of cytokines that have a deleterious impact on host 
cells, particularly alveolar epithelial cells, and is therefore unable to 
inhibit and destroy the SARS-CoV-2. Through its cytotoxic activities 
associated with oxiapoptophagy, it is hypothesized that 7KC could 
contribute to the progression and outcome of COVID-19 pathophysi-
ology at different levels: a) by activating the TLR4 receptor which would 
contribute to increased secretion of pro-inflammatory cytokines (IL-1β, 
IL-8) [78]; b) by promoting the externalization of phosphatidylserine at 
the level of endothelial cells of the alveolar capillaries [79] and the 
eryptosis of red blood cells [80] as well as platelet aggregation [76] 
which would activate coagulation and the induction of thrombosis c) by 
altering the viability of the epithelial alveolar cells (oxidative stress, 
induction of cell death) [77] which would have the consequence of 
favouring acute respiratory distress syndrome. In addition, elevated 
plasma levels of 7KC could have systemic effects by altering mitochon-
drial function [81] with a consequent decrease in ATP production and 
general exhaustion of the patient. In addition, mitochondrial dysfunc-
tion could lead to peroxisomal alterations with subsequent amplification 
of oxidative stress, deregulation of non-cytokine-mediated inflammation 
due to the fact that leukotrienes, some of which are also pro-coagulants, 
are catabolized at the peroxisome level [82–85]. Furthermore, the 
activation of autophagy by 7KC could also have consequences on the 
infection. Indeed, autophagy initially considered as anti-viral also seems 
capable of promoting infection by acting at the level of viral replication 
and viral cycle [86,87]. Given the toxic characteristics of 7KC, its high 
level in COVID-19 patients could contribute to cytokine storm, throm-
bosis and respiratory distress (Fig. 2). To better understand the 
involvement of 7KC in the pathophysiology of COVID-19, rapid and easy 
to use analytical tests are a necessity. These could include ELISA tests 
using anti-7KC mouse monoclonal antibodies [88] or dried blood tests 
[89] associated with gas chromatography or liquid chromatography 
coupled with mass spectrometry allowing the simultaneous identifica-
tion and quantification of several oxysterols and of their metabolites 
[90,24]. 

5. 7-Ketocholesterol-modifying drugs in COVID-19 

Depending on the risk factors presented by SARS-CoV-2 infected 
patients, the infection may cause an acute respiratory distress syndrome, 
and multiple organ failure, which can be fatal. To prevent and/or cure 
COVID-19, the vaccine strategy seems the most promising approach 
whereas conventional drugs can provide potential alternative treat-
ments as adjuvants [91,92]. These alternative approaches using drugs 
acting on the viral cycle and/or on the cytopathic effects of SARS-CoV-2 
should not be neglected. As cholesterol is essential for the assembly, 
replication and infectivity of enveloped viruses such as SARS-CoV-2, 
several cholesterol-modifying drugs could alter the SARS-CoV-2 life 
cycle [93]. In addition, as cholesterol is also a major component of 
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immune cell membranes, excess cholesterol levels in patients with 
obesity and/or cardiovascular diseases could contribute to dysregulate 
acquire immunity and promote abnormal inflammatory responses [93]. 
Moreover, as cholesterol oxidation under the effect of ROS or RNS or 
through the intermediary of enzymes can lead to the formation of oxy-
sterols [94], and in particular 7KC, which can impact the redox status, 
inflammation, coagulation, and cell viability, cholesterol-modifying 
drugs could be of interest to target the side effects of 7KC in the man-
agement of SARS-CoV-2 infection [95]. 

To have a more targeted activity against 7KC, natural and synthetic 
cytoprotective molecules have been identified and some of them could 
be used [72,73,85]. Among the natural molecules, fatty acids that can be 
used as a basis for the design of synthetic analogues, making it possible 
to neutralise 7KC by esterifying it at the level of the hydroxyl residue on 
carbon 3 of the A ring of the sterane nucleus, and/or by acting on its 
signalling pathways, are promising molecules [96,72]. Natural poly-
phenols [72,73] and derivatives, such as aza- and azo-stilbenes, which 
are bio-isosteric analogues of resveratrol [97], could be also of interest, 
as well as tocopherols which have strong anti-oxidant properties and 
prevent the accumulation of 7KC in the lipid rafts to trigger several 
signalling pathways [98,99]. In addition, the phospholipid bis(mono-
acylglycero)phosphate (BMP) is a structural isomer of phosphatidyl-
glycerol that exhibits an unusual sn1:sn1′ stereoconfiguration based on 
the position of the phosphate moiety of its two glycerol units [100]. BMP 
prevents the formation of 7KC in murine macrophagic RAW264.7 cells 
[101]. Recently, it has been suggested that BMP could be useful in the 
prevention of SARS-CoV-2 infection [102]. It is hypothesized that BMP, 
which is present in the endosomes and is involved in the intracellular 
cholesterol trafficking, could act on the SARS-CoV-2 viral cycle and 
reduce virus production. 

Among the synthetic molecules, dimethyl-fumarate (DMF), which is 
marketed under the name Tecfidera (Biogen) for the treatment of mul-
tiple sclerosis and psoriasis, exerts anti-inflammatory activities on T and 
B cells, as well as on dendritic cells via an inhibitory effect on nuclear 
factor kappa B (NF-κB) [103] and anti-oxidant activities by activating 
the erythroid 2-related factor 2 (Nrf2) signalling pathway. This induces 
the expression of several anti-oxidant enzymes (hemeoxigenase 1 
(HO-1), catalase (CAT), superoxide dismutases (SODs), glutathione 
peroxidase (GPx)), the expression of phase II detoxifying enzymes, such 
as glutathione S-transferase (GST), and enzymes responsible for 

glutathione (GSH) synthesis, such as glutamine-cysteine ligase (GCL) 
and glutathione synthetase (GS) [104,105]. However, as the suppression 
of pyroptosis by DMF is independent of Nrf2, this supports that several 
signalling pathways can be activated by this molecule [106]. DMF also 
attenuates in vitro oxidative stress and cell death induction triggered by 
7KC on 158N oligodendrocytes [107,108]. Noteworthy, it is currently 
reported that DMF could reduce lung alveolar cells damage in COVID-19 
patients [109]. 

As 7KC accumulates in the lysosome, a strategy based on the use of 
bacterial enzymes targeting this organelle, defined as medical biore-
mediation, could also be used to inactivate 7KC and to prevent 7KC- 
induced cytotoxic activities [110,111]. 

6. Conclusion 

Compared to oxysterols derived from oxidation on the alkyl chain of 
cholesterol, 7KC has weak anti-viral activities. In severe and often fatal 
forms of COVID-19, it is hypothesized that 7KC could be a predictive 
biomarker for assessing the severity of the disease and its progression to 
a fatal outcome. Indeed, while 7KC has slight antiviral activities, its 
cytotoxic activities can be considered dominant in many diseases asso-
ciated with high levels of this oxysterol. These include age-related dis-
eases, among which COVID-19 could be included. It can be assumed that 
decreasing the amount of 7KC by promoting its degradation and 
inhibiting or mitigating its toxicity could constitute adjuvant therapies 
that would if not eliminate, at least reduce, mortality and morbidity 
associated with COVID-19 infection. Due to the severity of the 
pandemic, it is reasonable to consider all hypotheses and explore all 
avenues to treat patients with COVID-19, especially those with poten-
tially fatal outcomes. Therefore, given the biological activities of 7KC, 
adjuvant treatment with drugs that reduce 7KC toxicity could help to 
reduce the number of patients with severe forms of COVID-19 and thus 
reduce the number of patients on respiratory support in emergency 
departments. 
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