
Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License  
(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission 

provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/11769351211056298

Cancer Informatics
Volume 20: 1–15
© The Author(s) 2021
DOI: 10.1177/11769351211056298

Author Summary
Regression models are frequently used in cancer genomics, 
where they provide insight into the interactions between 
genes. Sparse regression models were developed to allow mod-
elling of a large set of variables with a small number of samples 
– a scenario encountered frequently in genomics. However, 
evaluation of genomic model structures remains challenging, 
due to uncertainty regarding the true system of interactions. 
Previous studies have compared methods with synthetic data, 
which may not reflect the challenges of real-world data. In this 

study, genomic datasets were identified which contained 
enough samples to provide reasonable estimates of the true 
structures – which were used as ‘gold-standards’. Sparse regres-
sion methods were tasked with estimating the true structure 
given a small proportion of the available samples, allowing for 
comparison against the gold standards.

Our results show that the interaction strengths estimated 
by the L L1 2  penalisation method correspond best with the 
gold standard models. Other penalisation methods, including 
the L L0 2  penalisation method, may be unreliable in noisy 

Sparse Regression in Cancer Genomics:  
Comparing Variable Selection and Predictions  
in Real World Data

Robert J O’Shea1 , Sophia Tsoka2, Gary JR Cook1,3   
and Vicky Goh1,4 
1Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s 
College London, London, UK. 2Department of Informatics, School of Natural and Mathematical 
Sciences, King’s College London, London, UK. 3King’s College London & Guy’s and St Thomas’ 
PET Centre, St Thomas’ Hospital, London, UK. 4Department of Radiology, Guy’s and St Thomas’ 
NHS Foundation Trust, London, UK.

ABSTRACT

BACkGRounD: Evaluation of gene interaction models in cancer genomics is challenging, as the true distribution is uncertain. Previous 
analyses have benchmarked models using synthetic data or databases of experimentally verified interactions – approaches which are sus-
ceptible to misrepresentation and incompleteness, respectively. The objectives of this analysis are to (1) provide a real-world data-driven 
approach for comparing performance of genomic model inference algorithms, (2) compare the performance of LASSO, elastic net, best-
subset selection, L L0 1  penalisation and L L0 2  penalisation in real genomic data and (3) compare algorithmic preselection according to per-
formance in our benchmark datasets to algorithmic selection by internal cross-validation.

MeThoDS: Five large ( )n 4000  genomic datasets were extracted from Gene Expression Omnibus. ‘Gold-standard’ regression models 
were trained on subspaces of these datasets ( n 4000 , p = 500 ). Penalised regression models were trained on small samples from these 
subspaces ( n p∈{ } =25 75 150 500, , , ) and validated against the gold-standard models. Variable selection performance and out-of-sample 
prediction were assessed. Penalty ‘preselection’ according to test performance in the other 4 datasets was compared to selection internal 
cross-validation error minimisation.

ReSulTS: LL1 2 -penalisation achieved the highest cosine similarity between estimated coefficients and those of gold-standard models. 
L L0 2 -penalised models explained the greatest proportion of variance in test responses, though performance was unreliable in low signal:noise 
conditions. L L0 2  also attained the highest overall median variable selection F1 score. Penalty preselection significantly outperformed selec-
tion by internal cross-validation in each of 3 examined metrics.

ConCluSionS: This analysis explores a novel approach for comparisons of model selection approaches in real genomic data from 5 can-
cers. Our benchmarking datasets have been made publicly available for use in future research. Our findings support the use of L L0 2  penali-
sation for structural selection and LL1 2  penalisation for coefficient recovery in genomic data. Evaluation of learning algorithms according to 
observed test performance in external genomic datasets yields valuable insights into actual test performance, providing a data-driven com-
plement to internal cross-validation in genomic regression tasks.
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data. We demonstrate that modelling decision may be sup-
ported by our evaluation method, an approach which may 
complement cross-validation.

Background
Regression models in cancer genomics

High-dimensional regression problems are ubiquitous in mod-
ern oncological research, as datasets often contain fewer obser-
vations than variables.1-7 The tractability of penalised regression 
approaches in this setting has led to a large volume of research 
into their applications.1,7-9 Penalised regression offers robust 
predictions in high dimensional data and mechanistic insights 
through the estimated coefficient vector.1,7 L0  and L1  penal-
ties perform variable selection inherently, by shrinking small 
dependencies to zero.9-11 However, it is difficult to test the 
assumptions which penalised approaches require for valid 
model selection in real world datasets.12,13 Furthermore, stand-
ard model selection approaches such as cross-validation and 
the Bayesian information criterion may be unreliable for model 
selection in the high-dimensional setting.14,15

Penalised regression

The inverse covariance matrix, X XT( )−1 , is undefined if 
n p< , precluding the use of ordinary least squared regres-
sion.13,16 Penalised regression methods facilitate modelling in 
the high-dimensional setting through the addition of bias 
terms. L0 , L1  and L2  penalised linear regression may be gen-
erally formulated such that:
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Here, notation is conventionally abused such that the L0  
‘pseudo-norm’ counts the number of nonzero elements in β .10

β β
0

1

0:= ≠{ }
=
∑
i

p

i  (2)

Ridge regression17 penalises the model by the L2  norm of the 
coefficients ( λ λ0 1 20 0 0= = ≠, , )λ , balancing predictive error 
against coefficient magnitude. The imposed preference for 
smaller coefficients is termed ‘shrinkage’. The magnitude of the 
shrinkage effect is controlled by the λ2  hyperparameter.
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Ridge regression partially alleviates instability under colline-
arity by constraining coefficient magnitude.16 The Least 
Absolute Selection and Shrinkage Operator (LASSO)11 pen-
alty penalises the model by the L1  norm of the coefficients, 
( λ λ λ0 1 20 0 0= ≠ =, , ) .
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The LASSO approach has ‘oracle’ properties under some 
conditions, meaning that predictions are nearly as good as if 
the true set of predictor variables were known.18,19 An addi-
tional benefit of LASSO shrinkage is a tendency to shrink 
small coefficients to zero, leading to a ‘sparse’ β , in which 
non-zero coefficients are deemed predictive. Thus, LASSO 
inherently performs variable selection.11 This behaviour is 
highly useful in bioinformatics, where analytic tasks often 
require the selection of a small number of predictive variables 
given a large candidate set. However, the lasso model struc-
ture is subject to inconsistency under subsampling.12 The 
Elastic Net20 is a combines the sparsity of L1  penalisation 
with the consistency of L2  penalisation (λ λ λ0 1 20 0 0= ≠ ≠, , ), 
with improved results in several bioinformatic studies.1,21 
Penalties of ridge regression, LASSO and elastic net affect 
large coefficients more than small coefficients, biassing coef-
ficient estimates. ‘Best subset selection’ provides a theoretical 
solution to this issue through the selection of the optimal 
model attainable with k∈  or fewer predictor variables, 
such that10:
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Thus, for some λ0 ∈ , we have an equivalent Lagrangian 
expression:
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Best subset selection be may be approximated through L0  
penalisation in some conditions ( , , )λ λ λ0 1 20 0 0≠ = = .10 L0  
penalisation applies no shrinkage to the selected predictors, 
resulting in unbiased coefficient estimates.10 This combination 
of simplicity and unbiasedness has been described as a ‘holy 
grail’ of sparse modelling.9 However, models suffer from incon-
sistency.22 Furthermore, issues such as non-convexity and 
NP-hardness complicate best-subset model selection.9,23 
Recent developments such as mixed integer optimisation10 
have facilitated best subset model learning. Combinations of 
L0  penalties with L1  ( λ λ λ0 1 20 0 0≠ ≠ =, , ) or L2  
( λ λ λ0 1 20 0 0≠ = ≠, , ) have been suggested to increase the 
consistency of best subset selection whilst maintaining mini-
mal bias.24

Assessing variable selection in genomic models

The true generating distribution for observational biological 
data is typically uncertain, complicating validation of estimated 
coefficient vectors. Consequently, many model assessments 
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have employed synthetic9,15,24-27 or semi-synthetic1,10,28-30 data-
sets to assess variable selection performance. Real data analyses 
have focussed primarily on the models’ predictive capacity.31-33 
Accurate predictions may not guarantee correct model struc-
ture, especially in the highly collinear conditions commonly 
encountered in genomics. The representativeness of synthe- 
tic datasets is both uncertain and untestable.29 Further- 
more, results of these studies have been discordant, suggesting 
dependence on the benchmark datasets and validation 
techniques.9,10

Genomic databases such as REACTOME34 and KEGG35 
contain experimentally verified interactions, which may be 
used to externally validate genomic model structure. This 
approach has been used in previous analyses27,29,36,37 and is lim-
ited by the uncertain completeness of such databases. 
Furthermore, the activity profile of interactions between a 
given set of genes may change with experimental conditions 
and unobserved confounders.38,39 Consequently, the set of 
active predictors for a specific dataset may not align exactly 
with a static database. Finally, effect sizes may not be compara-
ble between documented interactions, precluding the assess-
ment of model coefficients by this method. Data-partitioning 
facilitates model validation without ground truth data, by 
assessing model generalisability to unseen observations. As 
training and validation observations are sampled from the 
same data, their distribution is asymptotically identical. 
However, the distribution may be difficult to estimate when 
n p , and data-partitioning favours excessively complex 
models in this setting.14,15

Given the limitations of currently available methods for 
assessment of variable selection performance in genomic data, 
an urgent need exists for a novel approach.

Study objectives

The primary objectives of this study were to:

•	 Provide a real-world data-driven approach for compar-
ing performance of high dimensional model inference 
algorithms in cancer genomics for both prediction and 
variable selection. We evaluate models by simulating 
n p  conditions in real n p>  genomic datasets, allow-
ing for robust evaluation of predictions in large-sample 
test partitions.

•	 Compare the performance of penalised linear regression 
methods for prediction and variable selection.

•	 Compare algorithmic selection by internal cross-valida-
tion to preselection according to performance in external 
test datasets under our validation approach.

These objectives are realised by subsampling real n p>  
genomic datasets to simulate n p  conditions, allowing for 
robust data-driven validation of model structure and predic-
tions in large-sample test partitions.

Materials and Methods
Data

Five cancer genomics datasets were extracted from Gene 
Expression Omnibus40 with the GEOquery library.41 Local 
institutional review board approval and informed participant 
consent were documented in each data publication.42-46

GSE73002

GSE7300242 contains serum miRNA expression profiles for 
4113 individuals; 1280 with breast cancer, 54 with benign 
breast disease, 63 with non-benign breast disease, 451 with 
various other cancers and 2836 non-cancer controls. 
Participants with breast cancer were recruited through admis-
sions and referrals to the National Cancer Centre Hospital 
Japan between 2008 and 2014. Exclusion criteria were (1) 
administration of medication prior to serum sampling and (2) 
advanced cancer in other organs. Controls were recruited from 
(1) National Cancer Centre Biobank, Yokohama Minoru clinic 
and the Toray Industries staff. Samples from individuals with 
non-benign breast diseases and other cancers were extracted 
from the National Cancer Centre Biobank. miRNA expression 
was measured with was collected on the Toray Industries 
3D-Gene Human miRNA Oligo Chip microarray.

GSE137140

GSE13714043 contains serum miRNA expression profiles for 
lung cancer patients. About 1566 pre-operative and 180 post-
operative samples are available, in addition to 2178 samples 
from patients without cancer, collected from the National 
Cancer Centre Japan and the Yokohama Minoru Clinic. 
Exclusion criteria were (1) miRNA expression quality check 
failure, (2) history of other malignancy, (3) missing clinical 
information, (4) pre-collection therapy and (5) over 180 days 
had passed between collection and surgery. miRNA expression 
was measured with was collected on the Toray Industries 
3D-Gene Human miRNA Oligo Chip microarray.

GSE103322

GSE10332244 contains full length single-cell RNAseq data 
from 5902 cells extracted from 18 patients with stage I to IV 
squamous cell carcinoma (SCC) of the oral cavity at the 
Massachusetts Eye and Ear Infirmary. Tissue samples were 
extracted from surgical biopsies of the primary tumour or 
lymph node. Sequencing was performed on the Illumina 
Nextseq 500 platform and transcript-per-million values 
reported.

GSE146026

GSE14602645 contains single-cell RNAseq data from 22 
ascites samples in 11 patients with high-grade serous ovarian 
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cancer at Brigham and Women’s Hospital and the Dana-
Farber Cancer Institute. About 9609 CD45+ depleted sam-
ples, profiled with 10× were included in this analysis. 
Sequencing was performed on the Illumina NextSeq 500 plat-
form and transcript-per-million values reported.

GSE89567

GSE8956746 contains 6341 single-cell RNAseq profiles from 
patients with isocitrate dehydrogenase mutant astrocytoma at 
Massachusetts General Hospital. Tumour tissue was collected 
from surgical resections and malignancy confirmed under fro-
zen section. Following disaggregation, profiling was performed 
by Smart-seq2. Sequencing was performed on the Illumina 
NextSeq 500 and transcript-per-million values reported.

Data preprocessing

Where datasets had > 5000  variables (GSE103322 and 
GSE146026), subspaces were extracted, retaining the 1000 
variables with the fewest nonzero entries. Datasets were trans-
formed with the Gaussian ECDF function47,48:
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Here Φ ⋅( )  is the standard normal cumulative distribution 
function. To ensure uniqueness of the gold-standard model, 
QR-factorisation was performed, and perfectly collinear varia-
bles were removed.

X QRPT=  (8)

Here Q  is an orthogonal matrix, R  is an upper triangular 
matrix and P  is a permutation matrix. A full-rank subspace 
was extracted from X  using QR factorisation, such that:

X XP i rank X
T: :,= ≤ ( )

 (9)

Experiment setup

In each experiment, 500 design variables and a response were 
randomly selected from the available gene expression variables 
in 1 of the 5 datasets. A small proportion of the observations 
( , , )n∈{ }25 75 150  were randomly selected for training and the 
remainder held out for validation. L L L L L L0 0 1 0 2 1, , ,  and L L1 2  
penalised regression models were fitted using default library 
parameters (Table 1). Regularisation hyperparameters were 
selected by either 5-fold or 10-fold cross-validation on the 
training observations, optimising the mean squared error, a 
typical approach in genomic analyses.1,6,7,49,50 The same cross-
validation folds were employed for each penalisation method in 
a given experiment. Predictive performance and variable 

selection performance were assessed using the remaining test 
observations. Experiments were repeated for 100 different 
training samples, for each of 5 datasets and for both cross-val-
idation routines, yielding 1000 experiments with which to 
compare penalisation methods for each sample size.

Metrics

Model assessment metrics and notation followed previous 
comparative analyses.9,10 As the true coefficient vector, β ∈ p

, was unknown in our experiments, it was estimated by ordinary 
least squares regression (without intercept) on the whole data-
set n p≈ =( )4000 500, , such that:

β β≈ = ( )−* X X X yT T1
 (10)

Thus, β *  represents a noisy gold-standard rather than strict 
ground truth. Here x p

0 ∈  denotes the test observations 
from the design matrix and y0 ∈  denotes the associated 
response. Hastie et al9 measured 3 metrics of predictive perfor-
mance – proportion of variance explained (PVE), relative risk 
(RR) and relative test error (RTE).
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Higher PVE indicates superior fit, and PVE is limited by the 
signal to noise ratio (SNR) such that9:
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Relative risk (RR) was employed as an performance metric in 
Bertsimas’ analysis.10 Optimal relative risk is 0 and nullity is 1.
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Relative test error (RTE) compares error to the noise variance:
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Following calls for model coefficient similarity assessment,9 we 
measured the cosine similarity of β  and β * , such that:

CoefficientSimilarity β
β β
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Active (non-zero) variable selection performance was also esti-
mated under β * .  Coefficient significance of was estimated 
with t-tests:
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Table 1. Penalised regression methods applied in this analysis.

PSEUDONyM NOTATION PENALTy IMPLEMENTATION REFERENCE

Best-subset selection L0 λ λ λ0 1 20 0 0≠ = =, , L0Learn 1.2.024 Hastie et al9 and 
Bertsimas et al10

Loss = ‘SquaredError’

Penalty = ‘L0’

Algorithm = ‘CD’

Nlambda = 100

nGamma = 10

gammaMax = 10

gammaMin = 1e-04

partialSort = TRUE

maxIters = 200

tol = 1e-06

activeset = TRUE

activesetnum = 3

maxswaps = 1000

scaledownFactor = 0.8

screenSize = 1000

autoLambda = TRUE

nFolds = 5

excludeFirstK = 0

intercept = FALSE

L L0 1 L L0 1 λ λ λ0 1 20 0 0≠ ≠ =, ,
L0Learn 1.2.0 Hazimeh and 

Mazumder24

Same as above except: Penalty = ‘L0L1’

L L0 2 L L0 2 λ λ λ0 1 20 0 0≠ = ≠, ,
L0Learn 1.2.0 Hazimeh and 

Mazumder24

Same as above except: Penalty = ‘L0L2’

LASSO L1 λ λ λ0 1 20 0 0= ≠ =, , glmnet 4.2-051,52 Tibshirani11

family = ‘gaussian’

alpha = 1

weights = NULL

offset = NULL

lambda = NULL

lambda.min.ratio = 1e-4

type.measure = ‘mse’

foldid = NULL

alignment = ‘lambda’

grouped = TRUE

relax = FALSE

 (Continued)



6 Cancer Informatics 

 β β
β

β
i n p i

i

i

t
SE

* *
*

*
~=( ) ( ) = ( )−0  (16)

Significance was adjusted for multiple comparisons using false-
discovery-rate (FDR) control53 and predictors were classified 
according to a cutoff α = 0 05. . Precision, recall, F1 score were 
measured. Hereafter, these metrics are referred to collectively as 
the ‘discrete’ variable selection metrics. Undefined variable selec-
tion results (due to division-by-zero errors) were replaced with 
zeros. Figure 1 depicts the variable selection validation method 
graphically.

To evaluate our model validation approach, we deployed it 
as a penalty preselection method, comparing it to traditional 
selection by minimisation of the internal cross-validation 
error. For each experiment, for each of 3 comparison metrics 
(PVE, F1 and coefficient similarity), a penalisation method 

was ‘preselected’ according to performance in experiments of 
equivalent sample size in the other 4 datasets. In each relevant 
experiment, penalisation methods’ performances were ranked 
and the method with the lowest rank aggregate performance 
was selected. The test performance of this method was com-
pared to that of the penalisation method which yielded the 
lowest mean squared error on internal cross-validation. Overall 
performance of preselected penalties was compared to internal 
cross-validation selected penalties using a 2-sided paired t-test 
over all 3000 experiments.

Results
Experiment characteristics

Experiments represented a broad range of signal:noise ratios 
(Median: 0.94, IQR: [0.38, 2.68]), with high SNR in 

PSEUDONyM NOTATION PENALTy IMPLEMENTATION REFERENCE

alpha = 0

parallel = FALSE

Elastic net L L1 2 λ λ λ0 1 20 0 0= ≠ ≠, ,
glmnet 4.2-0 Zou and Hastie20

Same as above except: alpha = {0, 0.11, 
0.22, 0.33, 0.44, 0.56, 0.67, 0.78, 0.89, 
1}

λ  Notation corresponds to the regularisation hyperparameters defined in equation (1).

Table 1. (Continued)

Figure 1. Graphical visualisation of variable selection validation method. ‘Gold-standard’ regression models were trained on subspaces of large genomic 

datasets ( n 4000 , p = 500 ). T-tests were performed on gold standard coefficient estimates and significant coefficients were identified according to a 

false-discovery rate controlled alpha cutoff of .05. Penalised regression models were trained on small samples from these subspaces 

( n p∈{ } =25 75 150 500, , , ) and validated against the gold-standard models.

≈
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experiments sampled from GSE73002 (Median: 12.03, IQR: 
[4.69, 28.34]), intermediate SNR in GSE137140 (Median: 
1.58, IQR: [1.16, 2.41]) and low SNRs in GSE103322 
(Median: 0.47, IQR: [0.31, 0.85]), GSE146026 (Median: 0.39, 
IQR: [0.23, 0.77]) and GSE89567 (Median: 0.44, IQR: [0.31, 
0.71]). The number of significant coefficients in each experi-
ment was typically small (Median: 7.00, IQR: [1.00, 17.00]) 
and followed a right-skewed distribution (95th Quantile: 
40.00, Max: 106.00). This is consistent with the scale-free 
property of genomic networks, in which a small number of 
genes have many interactions.

Predictive performance

Predictive performance metrics are provided in Figure 2 and Table 
2. L L0 2 -penalised models achieved the highest PVE overall 
(Median: 0.23, IQR: [0.04, 0.52]). However, this penalty per-
formed unreliably in the n = 25 experiments, demonstrating 
strongly negative PVE values (ie, worse-than-random perfor-
mance) in some cases (Min: −1.32, 5th Quantile: −0.33). Similarly, 
L L0 1 -penalised models exhibited strong overall PVE (Median: 
0.17, IQR: [−0.00, 0.50]) and variable performance in the n = 25 

setting (Min: −1.70, 5th Quantile: −0.39). L1L2 penalised models 
achieved comparable overall PVE (Median: 0.19, IQR: [−0.00, 
0.49]), with superior worst-case reliability in the n = 25 experi-
ments (Min: −0.71, 5th Quantile: −0.01). Likewise, L1  penalisa-
tion provided moderate overall PVE (Median: 0.13, IQR: [−0.00, 
0.47]) and robust worst-case PVE scores in the n = 25 experiments 
(Min: −0.35, 5th Quantile: −0.01). L0  penalisation selected null 
models in most experiments, returning null PVE (Median: 0.01, 
IQR: [−0.01, 0.40]). PVE was highly associated with SNR (: 0.61, 
95% CI: [0.6, 0.62], P < 2e-16. PVE:SNR curves (Figure 3) dem-
onstrate that L L0 1  and L L0 2  underperformance was mainly lim-
ited to the noisiest cases. L1  and L L1 2  penalisation were 
infrequently negative, even in noisy experiments. Conversely, L1  
and L L1 2  penalisation demonstrated poorer PVE reliability than 
L L0 1  and L L0 2  penalisation in moderate SNR conditions. 
Relative risk performance distributions reflected those of PVE, 
with the best overall median performance observed in L L0 2  
(Median: 0.48, IQR: [0.24, 0.81]) and L L0 1 -penalised models 
(Median: 0.58, IQR: [0.28, 1.00]), despite unreliable worst-case 
performance observed in n = 25 settings. Moderate relative risk 
performance was achieved through L1  (Median: 0.68, IQR: [0.31, 
1.00]) and L L1 2  penalisation (Median: 0.23, IQR: [0.04, 0.52]), 

Figure 2. Test predictive performance. Medians are represented by boxplot centrelines; first and third quartiles by hinges; and minima and maxima by 

whiskers.
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Table 2. Predictive performance of each penalisation method.

PENALTy N METRIC MEDIAN IQR

L0 25 Proportion of variance explained 0 [0.00, 0.00]

L0L1 25 Proportion of variance explained 0 [0.00, 0.06]

L0L2 25 Proportion of variance explained 0 [0.00, 0.08]

L1 25 Proportion of variance explained 0 [0.00, 0.00]

L1L2 25 Proportion of variance explained 0 [0.00, 0.06]

L0 75 Proportion of variance explained 0 [0.00, 0.20]

L0L1 75 Proportion of variance explained 0 [0.00, 0.16]

L0L2 75 Proportion of variance explained 0.02 [0.00, 0.14]

L1 75 Proportion of variance explained 0 [0.00, 0.22]

L1L2 75 Proportion of variance explained 0.02 [0.00, 0.09]

L0 150 Proportion of variance explained 0 [0.00, 0.33]

L0L1 150 Proportion of variance explained 0.05 [0.00, 0.20]

L0L2 150 Proportion of variance explained 0.05 [0.00, 0.18]

L1 150 Proportion of variance explained 0.07 [0.00, 0.29]

L1L2 150 Proportion of variance explained 0.02 [0.00, 0.10]

L0 25 Relative risk 1 [0.75, 1.75]

L0L1 25 Relative risk 0.94 [0.45, 1.07]

L0L2 25 Relative risk 0.67 [0.36, 1.04]

L1 25 Relative risk 1 [0.48, 1.00]

L1L2 25 Relative risk 0.75 [0.39, 1.00]

L0 75 Relative risk 0.87 [0.40, 1.00]

L0L1 75 Relative risk 0.56 [0.26, 1.00]

L0L2 75 Relative risk 0.46 [0.23, 0.78]

L1 75 Relative risk 0.63 [0.29, 1.00]

L1L2 75 Relative risk 0.52 [0.26, 1.00]

L0 150 Relative risk 0.62 [0.31, 1.00]

L0L1 150 Relative risk 0.44 [0.20, 0.75]

L0L2 150 Relative risk 0.37 [0.19, 0.61]

L1 150 Relative risk 0.52 [0.24, 0.93]

L1L2 150 Relative risk 0.44 [0.22, 0.77]

L0 25 Relative test error 0 [−0.30, 0.17]

L0L1 25 Relative test error 0.02 [−0.03, 0.38]

L0L2 25 Relative test error 0.13 [−0.02, 0.44]

L1 25 Relative test error 0 [−0.00, 0.34]

L1L2 25 Relative test error 0.1 [−0.00, 0.41]

L0 75 Relative test error 0.06 [−0.00, 0.42]

 (Continued)
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PENALTy N METRIC MEDIAN IQR

L0L1 75 Relative test error 0.21 [−0.00, 0.52]

L0L2 75 Relative test error 0.25 [0.05, 0.53]

L1 75 Relative test error 0.18 [−0.00, 0.49]

L1L2 75 Relative test error 0.22 [−0.00, 0.51]

L0 150 Relative test error 0.18 [−0.00, 0.48]

L0L1 150 Relative test error 0.26 [0.07, 0.56]

L0L2 150 Relative test error 0.28 [0.10, 0.57]

L1 150 Relative test error 0.22 [0.02, 0.52]

L1L2 150 Relative test error 0.26 [0.06, 0.54]

Abbreviation: IQR, interquartile range.
For each sample size, 100 experiments were sampled from each of 5 datasets, for each of 2 cross-validation routines. IQR denotes interquartile range.

Table 2. (Continued)

Figure 3. Proportion of variance explained in test observations versus signal:noise ratio. Signal:noise ratio was estimated by the residuals of the gold 

standard models fitted to the complete dataset (n 4000 ) with ordinary least squares regression. Medians are represented by boxplot centrelines; first 

and third quartiles by hinges; and minima and maxima by whiskers.

≈
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with superior worst-case reliability. RTE performance highlighted 
the shortcomings of L0 penalisation (Median: 1.79, IQR: [1.45, 
2.33]).

Variable selection

Variable selection performance metrics are provided in 
Figure 4 and Table 3. L L1 2 -penalised models achieved high 
coefficient similarity overall (Median: 0.17, IQR: [0.09, 
0.24]), although many nonzero coefficients were included 
(Median: 59.50, IQR: [11.00, 500.00]). Consequently, in 
n = 75 experiments, strong recall (Median: 0.33, IQR: [0.00, 
1.00]) and poor precision were observed (Median: 0.33, 
IQR: [0.00, 1.00]). L L0 2 -penalisation also achieved high 
coefficient similarity (Median: 0.13, IQR: [0.06, 0.20]), with 

fewer nonzero coefficients (Median: 25.00, IQR: [6.00, 
67.00]). L L0 2  penalisation achieved the highest F1 score in 
n = 75 (Median: 0.04, IQR: [0.00, 0.14]) and n = 150 experi-
ments (Median: 0.07, IQR: [0.00, 0.19]). L L0 1 -penalised 
models performed similarly in terms of coefficient similarity 
(Median: 0.08, IQR: [0.02, 0.15]) using fewer nonzero 
parameters (Median: 8.00, IQR: [2.00, 19.00]). Moderate F1 
scores were achieved in n = 75 and (Median: 0.00, IQR: [0.00, 
0.12]) and n = 150 experiments (Median: 0.07, IQR: [0.00, 
0.18]) L1 -penalised models achieved moderate coefficient 
similarity (Median: 0.05, IQR: [0.00, 0.15]) through models 
with very few nonzero coefficients (Median: 5.00, IQR: 
[0.00, 10.00]). Although L1 -penalisation achieved moderate 
F1 score in n = 150 experiments (Median: 0.08, IQR: [0.00, 
0.21]), it underperformed in n = 75 experiments (Median: 

Figure 4. Variable selection performance. Gold standard coefficient vectors were extracted from ordinary least squares regression models fitted to the 

full dataset ( )n 4000 . Coefficient significance was estimated with t-tests and true predictors were defined by FDR-α < 0 05. . Medians are represented by 

boxplot centrelines; first and third quartiles by hinges; and minima and maxima by whiskers.
≈
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Table 3. Variable selection performance of each penalisation method.

PENALTy N METRIC MEDIAN IQR

L0 25 Coefficient similarity 2 [0.00, 3.00]

L0L1 25 Coefficient similarity 6 [1.00, 16.00]

L0L2 25 Coefficient similarity 16 [4.00, 42.00]

L1 25 Coefficient similarity 1 [0.00, 6.00]

L1L2 25 Coefficient similarity 25.5 [4.00, 500.00]

L0 75 Coefficient similarity 2 [0.00, 3.00]

L0L1 75 Coefficient similarity 8 [2.00, 20.00]

L0L2 75 Coefficient similarity 27.5 [6.00, 75.00]

L1 75 Coefficient similarity 5 [0.00, 10.00]

L1L2 75 Coefficient similarity 98.5 [13.00, 500.00]

L0 150 Coefficient similarity 3 [1.00, 4.00]

L0L1 150 Coefficient similarity 12 [3.00, 23.00]

L0L2 150 Coefficient similarity 35 [10.00, 79.00]

L1 150 Coefficient similarity 8 [1.00, 13.00]

L1L2 150 Coefficient similarity 500 [20.00, 500.00]

L0 25 F1 score 0.01 [0.00, 0.06]

L0L1 25 F1 score 0.03 [0.00, 0.08]

L0L2 25 F1 score 0.07 [0.02, 0.12]

L1 25 F1 score 0 [0.00, 0.07]

L1L2 25 F1 score 0.1 [0.02, 0.16]

L0 75 F1 score 0.04 [0.00, 0.11]

L0L1 75 F1 score 0.08 [0.03, 0.15]

L0L2 75 F1 score 0.13 [0.08, 0.20]

L1 75 F1 score 0.07 [0.00, 0.16]

L1L2 75 F1 score 0.17 [0.11, 0.24]

L0 150 F1 score 0.07 [0.00, 0.15]

L0L1 150 F1 score 0.13 [0.07, 0.21]

L0L2 150 F1 score 0.19 [0.12, 0.26]

L1 150 F1 score 0.11 [0.00, 0.21]

L1L2 150 F1 score 0.22 [0.16, 0.30]

L0 25 Precision 0 [0.00, 0.00]

L0L1 25 Precision 0 [0.00, 0.05]

L0L2 25 Precision 0 [0.00, 0.12]

L1 25 Precision 0 [0.00, 0.00]

L1L2 25 Precision 0.08 [0.00, 1.00]

L0 75 Precision 0 [0.00, 0.04]

 (Continued)
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0.00, IQR: [0.00, 0.16]). L0 -only penalisation produced 
highly parsimonious models, with very few nonzero coeffi-
cients (Max: 67.00, 95th Quantile: 10.05). However, variable 
selection performance was poor by every metric. Test perfor-
mance summaries for prediction and variable selection are 
provided in Supplemental Table S1.

Comparing preselection to internal validation

Penalty preselection led to small, yet significant, performance 
gains in PVE ( t2999 : 8.66, µ: 0.016, 95% CI: [0.012, 0.020], 
P  < 10−16), F1 score ( t2999 : 4.66, µ: 0.016, 95% CI: 0.006 
[0.003, 0.008], P = 3.3 × 10−6) and coefficient similarity ( t2999 :
15.99, µ: 0.02, 95% CI: [0.018, 0.023], P  < 10−16) when com-
pared to selection by internal cross-validation. In many cases 

the same penalisation method was selected under preselection 
and internal validation, leading to equivalent performance. 
Although aggregated improvements under preselection were 
statistically significant, internal validation outperformed in 
some experiments (Figure 5). Cumulative distribution func-
tions of the performance improvements yielded under prese-
lection are provided in (Figure 5). In other experiments 
internal validation outperformed preselection (Table 4).

Discussion
The optimal penalisation method for a particular dataset 
depends upon the project objectives, data distribution and 
noise levels. In most applications, reliability is paramount – the 
strong median predictive performance provided by L L0 1  and 
L L0 2  penalisation is unlikely to compensate for their  

PENALTy N METRIC MEDIAN IQR

L0L1 75 Precision 0 [0.00, 0.12]

L0L2 75 Precision 0.09 [0.00, 0.31]

L1 75 Precision 0 [0.00, 0.12]

L1L2 75 Precision 0.33 [0.00, 1.00]

L0 150 Precision 0 [0.00, 0.07]

L0L1 150 Precision 0.07 [0.00, 0.25]

L0L2 150 Precision 0.17 [0.00, 0.43]

L1 150 Precision 0.06 [0.00, 0.22]

L1L2 150 Precision 0.5 [0.05, 1.00]

L0 25 Recall 0 [0.00, 0.00]

L0L1 25 Recall 0 [0.00, 0.06]

L0L2 25 Recall 0 [0.00, 0.08]

L1 25 Recall 0 [0.00, 0.00]

L1L2 25 Recall 0.01 [0.00, 0.09]

L0 75 Recall 0 [0.00, 0.06]

L0L1 75 Recall 0 [0.00, 0.12]

L0L2 75 Recall 0.04 [0.00, 0.14]

L1 75 Recall 0 [0.00, 0.16]

L1L2 75 Recall 0.04 [0.00, 0.12]

L0 150 Recall 0 [0.00, 0.12]

L0L1 150 Recall 0.07 [0.00, 0.18]

L0L2 150 Recall 0.07 [0.00, 0.19]

L1 150 Recall 0.08 [0.00, 0.21]

L1L2 150 Recall 0.04 [0.00, 0.15]

Abbreviation: IQR, interquartile range.
For each sample size, 100 experiments were sampled from each of 5 datasets, for each of 2 cross-validation routines, yielding 1000 experiments for each comparison.

Table 3. (Continued)
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Table 4. Paired-tests of mean performance difference using preselection compared to selection by internal cross-validation. Penalisation routines 
were ‘preselected’ according to performance in the other 4 datasets. Mean difference refers to preselected performance minus internal cross-
validation performance. About 3000 experiments were included in the comparison.

METRIC T-SCORE 
(df = 2999)

MEAN PERFORMANCE GAIN 
UNDER PRESELECTION

95% CI P-VALUE 
(2-SIDED)

Proportion of variance explained 8.66 0.016 [0.012, 0.020] < −10 16

F1 4.66 0.006 [0.003, 0.008] 3 3 10 6. × −

Coefficient similarity 15.99 0.020 [0.018, 0.023] < −10 16

worst-case performance, which may be undetectable in appli-
cation. L1 2L  penalisation offered strong coefficient similarity, 
though few coefficients are shrunk to zero, limiting its utility 
for the selection of parsimonious model structures. L1  and 
L L1 2  penalties also offered reliable test predictions in noisy 
data. L1  is simpler to implement than combined penalties, 
requiring tuning of a single hyperparameter. Furthermore, the 
theory surrounding L1  penalisation in the n p  setting is 
well studied.1,7,12,54 Various computational implementations of 
this method are available, and it is the fundamental building 
block for graph inference methods such as the graphical 
LASSO55 and the nodewise LASSO.56 L0  penalisation 
resulted in weakly predictive models and poor variable selection, 
due primary to inadequate recall. These limitations overshad-
owed any potential advantage of theoretical unbiasedness.10

Penalty preselection yielded small, yet significant improve-
ments over internal cross-validation based selection in each 
examined metric, demonstrating the value of external data-
driven preselection of model learning algorithms for n p  

datasets. This approach may serve as a complementary meth-
odological validation measure for genomic datasets.

Related work

Bertsimas et al10 found that L0  penalisation outperformed the 
L1  and forward stepwise regression in their comparisons. 
However, this result was contested in the comparisons of 
Hastie et al,9 who concluded that L1  outperformed L0  in all 
but high signal-to-noise conditions. Hazimeh and Mazumder24 
found that L L0 1  and L L0 2  penalties typically outperformed 
L1 ,24 a finding which concurs with our experiments.

Limitations

The primary limitation of this analysis is uncertainty regarding 
the true generating distributions of the datasets. In place of 
ground truth, a ‘gold-standard’ was set using a much larger 
number of observations. Thus, our analysis evaluates its capac-
ity to recover the model which would have been found in a 

Figure 5. Cumulative distribution functions for performance improvement under penalty preselection compared with comparison to selection by internal 

cross-validation. For each experiment and each comparison metric, the penalisation method was selected with the best test performance in the other 4 

datasets. This ‘preselected’ penalisation method was compared to that which minimised the mean squared error in internal cross-validation. About 3000 

experiments were included in the comparison.
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much larger study of the same population, a reasonable objec-
tive in many clinical studies. As the gold standard models were 
fitted to a finite number of observations, they were susceptible 
to some degree of overfitting.

Observations were not strictly partitioned on a patient-dis-
joint basis. In the typical clinical modelling scenario, estima-
tion of model generalisability to new patients would require 
patient-disjoint partitioning and validation.57 However, distri-
butional identicality of the training and test data would not 
have been guaranteed in such conditions, biassing assessment 
metrics in favour of underfitted models.

Bertsimas and Hastie both considered which SNR ranges 
were ‘realistic’; Bertsimas generated tasks with SNR ∈[ , ]2 10  
and Hastie examined the SNR ∈[ . , ]0 05 6  setting.9,10 Our esti-
mated SNRs align with those of Hastie. In the case that the 
gold standard models overfitted, noise levels would have been 
underestimated. Therefore, SNR estimates in this analysis are 
positively biassed. Nonzero coefficients were defined according 
to a traditional, yet arbitrary significance cutoff – therefore 
small effects may have been omitted erroneously. Likewise, 
some spuriously large coefficients may have been included.

Discrete variable selection metrics (precision, recall and F1 
score) lacked the graduation required to compare penalisation 
methods at the n = 25 level. This limitation was particularly 
important in the setting of active variables estimated according to 
a sharp significance cutoff. The coefficient similarity metric 
proved useful in this regard, as it was continuous and independent 
of any significance cutoff. However, coefficient similarity provides 
little insight into on model complexity, a central aspect of genomic 
network inference. Indeed, although L L1 2  penalisation opti-
mised the coefficient similarity metric, it selected extremely com-
plex models in most experiments, resulting in weak precision.

Real-world genomic datasets were employed in this analy-
sis. Accordingly, our results are expected to be more representa-
tive of actual experimental modelling conditions. Data-driven 
model assessment was facilitated by the large number of obser-
vations available in these datasets. However, our results may 
not generalise to datasets with incomparably distributed signal 
or noise. Logistic and Cox regression tasks present addition 
challenges such as class imbalance and censoring, which are 
beyond the scope of this analysis.

Conclusions
L L0 2 -penalised model provided the best test predictions, 
though performance was unreliable in noisy data. L L0 2  also 
optimised discrete variable selection metrics. L L1 2 -penalisation 
returned offered reliable test predictions in all settings and supe-
rior coefficient similarity. Further research is required to estab-
lish the performance of the penalties in classification and survival 
tasks. Evaluation of learning algorithms according to observed 
test performance in external genomic datasets yields valuable 
insights into actual test performance, providing a data-driven 
complement to internal cross-validation in genomic regression 
tasks.
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