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Abstract

Multi-omic analyses that integrate many high-dimensional datasets often present significant

deficiencies in statistical power and require time consuming computations to execute the

analytical methods. We present SuMO-Fil to remedy against these issues which is a pre-

processing method for Supervised Multi-Omic Filtering that removes variables or features

considered to be irrelevant noise. SuMO-Fil is intended to be performed prior to downstream

analyses that detect supervised gene networks in sparse settings. We accomplish this by

implementing variable filters based on low similarity across the datasets in conjunction with

low similarity with the outcome. This approach can improve accuracy, as well as reduce run

times for a variety of computationally expensive downstream analyses. This method has

applications in a setting where the downstream analysis may include sparse canonical cor-

relation analysis. Filtering methods specifically for cluster and network analysis are intro-

duced and compared by simulating modular networks with known statistical properties. The

SuMO-Fil method performs favorably by eliminating non-network features while maintaining

important biological signal under a variety of different signal settings as compared to popular

filtering techniques based on low means or low variances. We show that the speed and

accuracy of methods such as supervised sparse canonical correlation are increased after

using SuMO-Fil, thus greatly improving the scalability of these approaches.

Introduction

As the costs of high-throughput experiments continue to decrease [1], it is common to assay a

variety of genomic information from large cohorts of patients at the level of single nucleotide

variants (SNVs) [2], gene expression level via ribonucleic acid sequencing (RNA-Seq) [3] and,

perhaps, at the metabolomic and proteomic levels [4]. In this setting, many sets of data are

obtained where each set of variables is considered high-dimensional as it is obtained in a high-

throughput setting. Analysis often proceeds with a combination of pathway, or network, meth-

ods that identify features across different ‘omic’ datasets that relate to each other and an out-

come of interest [5]. It is believed that these integrated approaches of incorporating multiple

layers of ‘omic’ information mimic Systems Biology and motivates the necessity for network

analysis methods. It should be noted that oftentimes the terms “pathways” and “networks” are
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used interchangeably. For example, gene regulatory networks (GRNs) comprise of subsets of

features within a single ‘omic’ dataset that relate to each other [6], but Creixell et al. [7] make a

clear distinction between the two terms where “pathways” refer to within dataset relationships

and “networks” refer to between dataset relationships. The rest of this paper will utilize these

distinctions where network analysis will refer to integrated analyses aimed at identifying fea-

tures spanning across multiple ‘omic’ datasets.

Certain complex diseases or clinical outcomes may be better understood through networks

that span across multiple types of ‘omic’ information, and these networks can elucidate Sys-

tems Biology knowledge regarding the delicate interplay between DNA, DNA methylation,

RNA, etc. For example, Danussi et al. [8] note a particularly interesting network by integrating

copy number variation, gene expression, and gene mutation data obtained from The Cancer

Genome Atlas (TCGA) project [9] where they discovered aggressive glioblastoma (GBM) asso-

ciated with an amplified RHPN2 gene that triggered undesirable molecular events. A multitude

of other network detection studies [10, 11] have resulted from the TCGA project, which has

supported the genomic data collection on approximately 11,000 patients across about 30 dif-

ferent types of tumors. In these studies, numerous data types were obtained through RNA-seq,

MicroRNA sequencing, DNA sequencing, SNP detection, DNA methylation sequencing, and

protein expression [9]. Most data types collected from TCGA studies and many other similar

studies contain a large amount of features per ‘omic’ data type for thousands of subjects. In

joint-level analyses, the dimensionality that results from the integration of multiple high-

dimensional feature sets often produces heavily underpowered situations when attempting to

adjust for multiple testing. To address this, many network detection algorithms that extend

beyond just one type of data have raised the complexity of the analysis, which ultimately intro-

duces limitations due to computational concerns [12]. To avoid the complexity of integrating

the multi-omic data, some approaches analyze each ‘omic’ dataset separately to identify path-

ways within an individual ‘omic’ type and then later identify associated features from other

‘omic’ datasets, as done in Multi-Omic inTagrative Analysis (MOTA) [13].

A challenge with data of this magnitude involves the computationally expensive modeling

of the biological networks that can consume massive amounts of central processing unit

(CPU) time, particularly for re-sampling based procedures such as bagging, boosting, boot-

strapping or permutation which are used in various methods such as the penalized canonical

correlation analysis (PCCA) [14], the supervised sparse canonical correlation analysis (SCCA)

[15], the supervised penalized canonical correlation analysis method [16], and the Decomposi-

tion of Network Summary Matrix via Instability (DNSMI) [17]. PCCA, supervised SCCA,

DNSMI, and many similar methods impose lasso-type constraints on each dimension (e.g.,

each ‘omic’ data type) to produce sparse solutions, and tuning multiple lasso-type hyperpara-

meters exponentiates the tuning process. For example, DNSMI implements an extended ver-

sion of the Stability Approach to Regularization Selection (StARS) [18] that estimates stability

for a grid set of two different lasso-type hyperparameters (e.g., one for each data type) and per-

forms DNSMI on many subsamples of the data to obtain an optimally stable hyperparameter

set. Tuning on stability has shown to produce more sparse solutions with reduced type I error

as compared to popular techniques such as cross validation [18], but when incorporating into

higher order problems, the subsampling schemes drastically increase the computation

required. Many researchers using these network analyses currently have to find creative ways

to remove features due to memory constraints, such as removing genes with unknown location

followed by averaging values across adjacent genes [15] or removing features with low variance

[16]. It should be noted however that removing features due to low variance and/or low means

may sometimes be done when the biological interpretation suggests they contribute little
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information and not due to computational concerns, as done by Meng et al. [19] in their appli-

cation to bladder cancer data obtained from TCGA.

Feature filtering techniques in analyses with only one ‘omic’ type have been previously

explored to address underpowered feature selection after multiple testing adjustments. Bour-

gon et al. [20] demonstrate that filtering features using techniques that are independent of the

underlying test statistics ultimately increased detection power, with favorability in filtering

based on feature variance. Hackstadt and Hess [21] also showed that power was increased in

the underlying analysis after removing features with low variance. Zhang et al. [22] proposed a

feature filtering technique motivated by single ‘omic’ pathway analyses, called NARROMI,

that filters features based on mutual information. Additionally, Tritchler et al. [23] compared

various filtering techniques intended for clustering or single ‘omic’ pathway analysis and

found that filtering based on summed values from the covariance matrix (SUMCOV) per-

formed favorably with less noise in the underlying clustering results.

Although filtering and dimensionality reduction has been studied extensively for single-

omic analyses, little has been explored to handle filtering in multi-omic studies. The authors

Meng et al. [24] summarize dimensionality reduction techniques for integrated multi-omic

data, but the methods presented include variations of CCA and extensions of principal compo-

nent analysis (PCA) which too closely align with the downstream analyses and are not

intended for simple pre-processing to reduce the number of features. The computational

conundrum resulting from multi-omic network detection methods further exacerbates the

need for relevant pre-processing filtering techniques as technological improvements allow for

deeper assaying of ‘omic’ information and larger cohorts of patients are achieved.

Our novel approach addresses this weakness by providing a scalable dimensionality reduc-

tion technique for filtering or removing genes/features that are considered to be “irrelevant”

(e.g., features that are not involved in the network) from the customary downstream super-

vised network analysis approaches. Advantages of this approach include its simple interpreta-

tion and improvement in speed of the downstream network analysis algorithms such as

supervised SCCA. Another advantage is improved accuracy. That is, the biological network

will be more easily discerned if the analysis reduces the amount of irrelevant or unimportant

genes. In summary, specificity in final results may be improved by limiting the number of

noisy features in the data and ultimately in the network selections themselves.

This work extends the filtering technique proposed by Tritchler et al. [23] to accommodate

multiple ‘omic’ types for supervised network analyses by filtering features based on similarity

measures across combinations of the data types and outcome of interest. We first introduce

the Supervised Multi-omic Filtering (SuMO-Fil) algorithm, we then evaluate the performance

of the algorithm under various simulations, and we apply the algorithm to a real world exam-

ple. Our algorithm can be accessed freely in an R package on Github at https://github.com/

lorinmil/SuMOFil. Functions are available to filter features using SuMO-Fil and perform sim-

ulations of a network system.

Materials and methods

Our pre-processing feature filtering method, SuMO-Fil, applies to network analyses that

include two data types and result in a continuous outcome, although simple extensions may be

incorporated to accommodate higher dimensional problems. It is expected that a biological

network will have features within one data type that are related to features within another data

type, which together result in the outcome. For example, suppose a small set of highly methyl-

ated DNA locations leads to changes in gene expression patterns which ultimately result in a

particular disease outcome. This network may be thought of as a causal chain with the
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outcome of interest, where the DNA methylation is the first data type and gene expression is

the second intermediary data type. Furthermore, any features in a given data type that are

independent of all features in the other data type and/or independent of the outcome should

not be included in the network. More formally, this may be expressed as follows:

Let X = {x1, x2, . . ., xp0} and G = {g1, g2, . . ., gq0} denote the set of variables within datasets X
and G that belong to a supervised network with outcome y. Letting xj denote some variable in

X and gk denote some variable in G,

1. If xj?gk, then cov(xj, gk) = 0, xj =2 X, and gk =2 G.

2. If xj?y, then cov(xj, y) = 0 and xj =2 X.

3. If gk?y, then cov(gk, y) = 0 and gk =2 G.

With these network assumptions in mind, SuMO-Fil utilizes estimated similarity matrices

(e.g., Pearson correlation) between the outcome and the data types. A thresholding criteria

(e.g., features within the lowest k-mean similarity cluster) is then applied to the similarities,

and filters are established based on features with the lowest similarities. This essentially

removes any features in each data type that are not related to any features in the other data

type or the outcome. The full description of the algorithm is detailed in Algorithm 1 and sum-

marized in Fig 1.

It should be emphasized that the goals of SuMO-Fil are to remove irrelevant features (e.g.,

those features not involved in the network) within the data types prior to the downstream anal-

ysis and NOT to perform feature selection or network identification. Many network analysis

methods assume that the number of features involved in the network are much smaller than

the total number of features sequenced, an assumption known as sparsity, and the methods uti-

lize constraints and techniques to accommodate this sparsity assumption. Feature selection

would aim at selecting features that are significantly related to the outcome and would likely

eliminate too many features, thus violating the sparsity assumption that is made in many net-

work setting solutions. This filtering process is simply intended for improving the results and

reducing computation time of downstream analyses and not to identify network features

themselves. Fig 2 summarizes the intended workflow including the SuMO-Fil pre-processing

step when performing network analysis.

It should be noted that popular, exploratory techniques such as the supervised SCCA [15]

select network features by estimating weights for each feature and truncating non-network fea-

ture weights to zero. If a feature is either weakly correlated with the outcome or if the feature

has little impact on maximizing correlation with the other data type, its weight will be set to

zero. As a result, since SuMO-Fil removes features that are weakly correlated across datasets

and weakly correlated with the outcome, they would likely have weights set to zero in the

underlying supervised SCCA. When a weight in supervised SCCA is truncated to zero, it will

be essentially ignored when maximizing the correlation across data types, thus implying that

SuMO-Fil will not bias the underlying network results under similar methods. However,

SuMO-Fil may not be appropriate if the downstream analysis includes hypothesis testing since

it would potentially bias the results when incorporating correlation with the outcome as part

of the filtering criteria.

Notation

Suppose there is an observed continuous outcome y for n subjects. Additionally, suppose that

each subject has two ‘omic’ data types collected, denoted as G and X . There are q total features

for each subject within G and p total features for each subject within X , which results in G and
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Fig 1. Filtering algorithm diagram. The filtering algorithm is performed in three phases. The first phase identifies features within the data types that

have weak similarity with the outcome, the second phase identifies features that are weakly similar between the data types by summing the absolute

value of similarities, and the third phase performs the final filtering step by removing any features that were identified as weak from phase 1 and

phase 2. If features are weakly related to the outcome and weakly related with any features in the corresponding data type, then it is unlikely to be

involved in the supervised network, and thus provides the motivation for SuMO-Fil. The phases are described in full detail in Algorithm 1.

https://doi.org/10.1371/journal.pone.0255579.g001
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X being n × q and n × p, respectively. Sub-matrices of sizes n × q0 and n × p0 are contained

within G and X that make up the network features which explain the outcome, where there are

q0 network features in data type G and p0 network features within data type X . In most network

applications, a sparsity assumption is held, which would imply q0 << q and p0 << p.

Filtering algorithm

Before the phases of the algorithm may be carried out, similarity matrices must first be esti-

mated between G and X , G and y, and X and y. Once all similarity matrices are estimated,

SuMO-Fil is then implemented. Note that the SuMO-Fil algorithm may accommodate any

similarity measure where the smaller the absolute value corresponds to uncorrelated variables,

and Pearson’s Correlation was used as the similarity measure for the simulations and data

application in this manuscript.

The SuMO-Fil method comprises of three phases: Phase 1 gathers a list of features within

both G and X to potentially be filtered based on low similarities with y, Phase 2 gathers a list of

features within both G and X to potentially be filtered based on low similarities between G and

X , and Phase 3 combines the results from Phases 1 and 2 to establish a final set of features to

be filtered based on their intersecting low similarities. Phases 1 and 2 are performed separately,

and Phase 3 will simply collect the intersecting results to construct a final set of features to be

filtered. Note that filters on G and X are performed similarly and conducted independently,

not conjointly. This will allow parallelization between the two data types in obtaining their set

of features to be filtered.

In Phase 1, the absolute value of estimated similarities between y and all features within G
will be captured (resulting in a vector of size q), and a thresholding criteria will be applied to

the similarity vector (e.g., identify all features with a similarity less than a certain threshold).

All G features that with an absolute similarity less than the threshold will be marked for poten-

tial filtration. A similar process would be repeated on all features within X to identify a set of

features under this data type that are also weakly associated with the outcome y.

Phase 1 flags features for removal that are not related to the outcome, but does not address

the association between data types. Hence, the goal of Phase 2 is to identify features within G
that are not related to features within X , and similarly to detect features within X that do not

appear to be related with features within G. The estimated similarity matrix between G and X
is obtained and the absolute value of all estimated similarities is computed. For each feature of

G within this absolute similarity matrix, we sum across all features of X (resulting in a vector

of size q). All features of G with summed similarity less than a specified threshold should be

flagged for potential filtering as those features do not show strong similarity with features of

X . A similar process for X is conducted where the similarities across all G features are summed

and features with values less than a specified threshold are flagged for potential removal.

Phase 3 combines Phases 1 and 2 by identifying the set of features in G and X that were

flagged for potential filtration in both phases. Thus, by filtering out the intersecting features,

Fig 2. Suggested network analysis workflow. The proposed workflow when performing a supervised network analysis

with a filtering step between initial pre-processing (e.g., normalization and quality control measures) and the primary

analysis in order to improve results and reduce run times for downstream network detection methods.

https://doi.org/10.1371/journal.pone.0255579.g002
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we are removing features that are weakly similar to y and weakly similar between the distinct

data types. By definition of the networks of interest, it is expected that the network features are

related with the outcome and related to the other data type. Any features that violate both

assumptions are likely features that will be removed by the SuMO-Fil method.

Establishing a thresholding criteria is not a trivial task, thus throughout this paper, we will

estimate thresholding based on k-means clustering on the similarity vectors. More specifically,

we will perform k-means clustering on a given similarity vector and identify all features con-

tained in the cluster with the smallest cluster mean, resulting in a set of features with the lowest

similarities. The appropriate number of clusters should be selected such that the cluster with

the smallest mean adequately represents a set of features having low similarity with the out-

come (suggesting that it would likely not be detected as a network feature in the subsequent

network analysis). Additionally, the appropriate number of clusters should be small enough

such that it selects a sufficient number of features in order to make an impact on either reduc-

ing the run times or limiting the number of false positives of the underlying analysis. The num-

ber of clusters used for phases 1 and 2 would not necessarily have to be equal and should be

calibrated such that each phase identifies a reasonable amount of features for potential

removal. All results in this manuscript produced reasonable results using 3 clusters for both

phases, but this may need to be modified based on the distributions of the data. For example, if

the similarities are heavily right skewed then a higher number of clusters may be needed in

order to drill down to a smaller set of features for the smallest cluster.

Simulations

Simulations were performed to verify the validity and consistency of the SuMO-Fil algorithm.

The goals for the filtering algorithm are to retain all network features and maintain the sparsity

assumption required for downstream methods while still removing enough features that

would result in significant run time reductions and increased specificity. In addition to verify-

ing the validity, SuMO-Fil will be compared against filtering based on low feature means as

well as low feature variances, since they are popular approaches used in other studies [25–28].

The supervised SCCA method presented by Witten et al. [29] will be applied to the simulations

before and after filtering, and changes in sensitivity and specificity will be compared.

We note many of the downstream network discovery techniques such as supervised SCCA

are based on sparse solutions where many of the variables or features are assigned zero coeffi-

cients. These sparse approaches are reasonable as it is believed only a relatively small set of fea-

tures are involved in these functional network approaches. Thus, we need to strike a balance to

ensure that SuMO-Fil removes enough features to improve speed and accuracy of downstream

methods, but does remove too much such that a sparse solution is no longer appropriate. One

criteria to assure a sparse setting is to examine the measure n/log(p) [30] and ensure that n/log
(p) is much larger than the total number of features within the active network(s), where n is

the number of subjects and p is the total number of features within the data type. Since the

total number of features within a network are not known in practical analyses, this measure is

unobtainable for real data. However, for our simulations, the sparsity assumption is met when

there is little change in the sparsity measure n/log(p) for both G and X when comparing before

and after filtering.

Algorithm 1 SuMO-Fil Algorithm
Require: lX1

> 0; lX2
> 0; lG1

> 0; lG2
> 0;X ;G; y

p ¼ ncolðXÞ
q ¼ ncolðGÞ
for i = 1 to p do
sX,y[i] = |similarity ðX ½; i�; yÞ|
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end for
phase1X ¼ fi : sX;y½i� < lX1

g

for i = 1 to p do
sX,G[i] = 0
for j = 1 to q do
sX,G[i] = sX,G[i] + |similarity ðX½; i�;G½; j�Þ|

end for
end for
phase2X ¼ fi : sX;G½i� < lX2

g

phase3X = phase1X \ phase2X
for j = 1 to q do
sG,y[j] = |similarity ðG½; j�; yÞ|

end for
phase1G ¼ fj : sG;y½j� < lG1

g

for j = 1 to q do
sG,X[j] = 0
for i = 1 to p do
sG,X[j] = sG,X[j] + |similarity ðG½; j�;X ½; i�Þ|

end for
end for
phase2G ¼ fj : sG;X½j� < lG2

g

phase3G = phase1G \ phase2G
return phase3X, phase3G
For each simulation, we simulate matrices G and X with an outcome vector y. G and X are

designed to contain network features which ultimately explain y. In addition to the network

features, there may be other noise-like features within G and X . For example, there may be fea-

tures in G and X that are individually related to y but not part of a network, as well as features

in G and X that are related with each other but not with y. Additionally there may be features

that are purely noise uncorrelated with the outcome and uncorrelated with all other features.

Ultimately, Fig 3 shows the types of features and correlation relationships that are contained in

G and X . As there are numerous types of relationships indicated in Fig 3, there will be numer-

ous parameters to set in each simulation. In short, we construct a global covariance structure

for the latent variables, where the simulation parameters help define the strength of the covari-

ance values. Then, for each simulated “subject”, latent values are simulated based on a multi-

variate normal distribution with zero mean and the global latent covariance structure. Finally,

using the “subject’s” latent value as the mean and the global latent variance, feature values are

simulated based on a normal distribution. Note that the simulations used in this paper mimic

the network simulations used by Zhang et al. [17]. Further theoretical details on the simula-

tions may be found in S1 Appendix.

Parameter selection. The parameters used in the mathematical models to generate the

simulations were adjusted to consider various levels of signal strength and various quantities

of features. The parameters for establishing weak, moderate, and strong network signal

strength mimic the parameters used by Zhang et al. [17]. The same number of subjects were

used in all simulations with a sample size of 1000. The signal strengths were each generated for

a small, medium, and large number of total features (approximately 5000, 10000, and 20000

features within each data type, respectively). The number of features within the networks were

kept small in order to accommodate the sparsity assumption and selected to reflect similar

numbers described by Chin et al. [12]. Simulations were repeated 500 times under each setting

to confirm reproducibility. As noted previously, thresholding was based on k-means through-

out this paper, and k = 3 clusters were used under each phase for the SuMO-Fil method. Addi-

tionally, Pearson’s Correlation was used as the similarity measure for the SuMO-Fil method.

To remain comparable in the number of filtered features, the competing methods of filtering

PLOS ONE Filtering prior to performing network analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0255579 August 3, 2021 8 / 20

https://doi.org/10.1371/journal.pone.0255579


based on low feature means and low variances was also based on thresholds set by k-means

with k0 = 9 clusters. Note that k0 was set to 9 instead of 3 since SuMO-Fil is based on the inter-

section of low thresholds as opposed to the feature means and feature variances which filter

based solely on one threshold. Refer to Table 1 for the details on the total number of features

used for the simulations.

Results

Simulation results

The SuMO-Fil method, along with the competing filtering methods based on low feature

means and low feature variances, were applied to each of the simulations under all parameter

settings. For each simulation, we examined the change in n/log(p) before and after filtering

and the sensitivity of what was filtered. The reduction in computation time for executing

supervised SCCA, changes in sensitivity, and changes in specificity were also assessed on a sub-

set of the simulations before and after each of the filtering methods.

Table 2 summarizes the average number of network features that were erroneously

removed across all filtering techniques, along with the total number of features removed. Fil-

tering based on low variances outperformed the other methods under weak network signal

strength, but it performed poorly under moderate and strong network signal strengths. In fact,

filtering by low variance often erroneously filtered all network features under the moderate

and strong network signal strengths. The SuMO-Fil method outperformed filtering by low

Fig 3. Diagram of latent variables in a network system with the outcome y. Each of the latent variables (S, H, X, G,

X0, G0, and Noise) describe a subset of features within data types G and X with their corresponding relationships. S

describes the set of features within X that are related to y but not any features in G; H describes the set of features

within G that are related to y but not any features in X ; X describes the network features within X which is related to

the network features within G and y (note that there are p0 features in this subset); G describes the network features

within G which is related to the network features within X and y (note that there are q0 features in this subset); X0

describes the set of features within X that are related to a set of features within G but not related to y; G0 describes the

set of features within G that are related to a set of features within X but not related to y; and Noise describes the

features within X and G that are not related to each other or y. The variables within the respective dotted boxes

summarize the various components contained within each of the data types, and the arrows signify a relationship and

imply correlation between the corresponding components. SuMO-Fil thus describes “irrelevant” features as those

belonging to components S, H, X0, G0, and Noise. Note that this figure was adapted from [17].

https://doi.org/10.1371/journal.pone.0255579.g003
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means under most simulation settings, with the exception for network features within X
under the moderate network signal strength setting. Additionally, under all simulation set-

tings, the SuMO-Fil method removed more total features than by filtering based on means or

variances.

The SuMO-Fil method removed between 10 and 37 percent of features in both X and G
under all simulation settings with an average of 5 percent change in n/log(p), as summarized in

Fig 4. Since the changes in this sparsity measure were minimal, it suggests that the sparsity

assumption has been maintained after filtration. The low mean and low variance filtering

methods generated smaller changes to the n/log(p) measure as compared to the SuMO-Fil

method since they did not remove as many features.

All simulations with strong signal did not remove any network features under the SuMO-

Fil method, and the weak and moderate signal strength simulations erroneously removed less

than one network feature on average from both X and G. Fig 5 displays representative simula-

tions under the various signal strengths with a large number of features.

To assess the reduction in run times for downstream analysis due to the filters using

SuMO-Fil, the supervised SCCA method [15] was employed on 64-bit Windows 10 with Intel

Core i7–7700HQ, CPU of 2.80GHz, and 8.00 GB of RAM. Run times were collected for 5 sim-

ulations under each simulation setting. Table 3 summarizes the run times, changes in sensitiv-

ity, and changes in specificity of the network selections before and after filtering. SuMO-Fil

took longer to execute than the other filtering methods, however, it resulted in the largest

reduction in execution of supervised SCCA. Also, results were drastically improved in regards

to sensitivity and specificity under most simulation settings after applying SuMO-Fil as

opposed to performing the supervised SCCA either on the unfiltered data or the data with fil-

ters based on low means and low variance.

Table 1. Summary of simulations.

Item Small Medium Large

Subjects 1000 1000 1000

Features in X 5165 15165 25165

Features in S 50 50 50

Features in X 15 15 15

Features in X0 100 100 100

Noise Features in X 5000 15000 25000

Features in G 5140 10140 20140

Features in H 30 30 30

Features in G 10 10 10

Features in G0 100 100 100

Noise Features in G 5000 10000 20000

The number of features across the simulations for the small, medium, and large number of features are summarized

in the table. The same parameters for weak, moderate, and strong signal strengths were generated across each

number of features for a total of 9 (3 × 3) different simulations, where each simulation contained 500 replications.

The relationships between each of the components within X and G are described in Fig 3. In summary, S denotes the

features within X that are related to the outcome but not related to features within G; X denotes the network features

within X that are related to some features within G and related to the outcome; and X0 denotes the features within X
that are related to some features within G but not related to the outcome. Similar relationships within G are described

by H, G, and G0.

https://doi.org/10.1371/journal.pone.0255579.t001
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Application

Uterine Corpus Endometrial Carcinoma (UCEC) is the fourth most common cancer amongst

women in the United States with about 50,000 new cases reported and approximately 8000

deaths in 2013 alone [31]. Due to the extensive prior research of UCEC data and sufficiently

large obtainable sample size, UCEC was selected as one of the tumor types assessed in the Pan-

Cancer analysis project within the TCGA database where mutation, copy number, gene

expression, DNA methylation, MicroRNA, and RPPA were collected from the tumor samples

[32].

It has been shown from prior studies that the p53 pathway is associated with many cancers,

where p53 can be indirectly inactivated when MDM2 is overexpressed, PTEN or INK4A/ARF
is mutated, the Akt pathway is deregulated, and other events occur [33]. We focus on chromo-

some 10, as it contains the PTEN gene and will utilize DNA methylation as one data type and

gene expression as the other data type. Furthermore, prior research has shown that myometrial

invasion is associated with tumor grade and patient survival [34], thus percent tumor invasion

will be used as an outcome for this application. The percentage of positive lymph nodes has

also been shown to relate to patient survival [35–37], so total pelvic lymph node ratio (LNR)

will be used as a secondary outcome.

Table 2. Summary of simulation filtering results.

Simulation Settings Total # Features Removed Avg # Network Features Removed

Signal Total # Data Technique Technique

Strength Features Type SuMO-Fil Low Mean Low Variance SuMO-Fil Low Mean Low Variance

Weak 45305 X 3376 1091 904 0.34 0.76 0

Weak 45305 G 2704 876 720 0.22 0.53 0.00

Moderate 45305 X 3515 1315 165 0 0 15

Moderate 45305 G 2684 1062 135 0 0.28 9.2

Strong 45305 X 7339 1088 165 0 0 15

Strong 45305 G 6364 878 140 0 0.11 10

Weak 25305 X 2089 671 547 0.34 0.78 0

Weak 25305 G 1389 448 375 0.21 0.46 0

Moderate 25305 X 2245 820 165 0.01 0 15

Moderate 25305 G 1507 558 130 0.01 0.34 9.1

Strong 25305 X 5791 659 165 0 0 15

Strong 25305 G 3729 441 140 0 0.10 10

Weak 15305 X 841 232 196 0.40 0.81 0.01

Weak 15305 G 835 228 192 0.15 0.45 0

Moderate 15305 X 1278 280 162 0.02 0 14.7

Moderate 15305 G 1263 274 124 0.01 0.33 8.8

Strong 15305 X 2242 229 161 0 0 14.7

Strong 15305 G 2132 229 138 0 0.11 9.9

The total number of features removed and the number network features erroneously removed are averaged across 500 simulations under each setting accounting for

various number of total features and network signal strengths. The simulations contained 15 network features within data type X and 10 network features within data

type G. An ideal filtering technique would eliminate no network features to maintain signal for the primary analysis. Additionally, an ideal filtering technique would

remove enough features to make an impact on run times for the primary analysis while maintaining sparsity assumptions. The results indicate that the variance filtering

technique performs favorably for weak network signals, but performs poorly for the moderate and strong signal strengths in regards to both the number of features

removed and the number of network features erroneously removed. The SuMO-Fil performs favorably compared to both the mean and variance filtering techniques

under most simulation settings.

https://doi.org/10.1371/journal.pone.0255579.t002
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The data collected within TCGA for UCEC contained 587 subjects with 485577 DNA meth-

ylation features and 56830 gene expression features, and after focusing on chromosome 10 the

data resulted in 24109 DNA methylation features and 2156 gene expression features. For each

outcome, SuMO-Fil was applied using k-means for the thresholding with k = 3 clusters for

each phase, and Pearson’s correlation was used for the similarity measure. The competing fil-

tering methods involving low mean and low variance filtering were also applied using thresh-

olds based on the sets of features in the lowest k-means cluster using k = 9 clusters. The

supervised SCCA proposed by Witten and Tibshirani [15] was applied on the unfiltered data

and on the data after each of the competing filtering techniques. Each feature was scaled to

zero mean and unit variance prior to performing SuMO-Fil and supervised SCCA, but low

mean and low variance filtering were performed on the unscaled data to maintain their natural

interpretation.

Hamming distance captures the total number of discrepancies between two sets [38] and

was calculated to compare the overlapping network node results across the different methods.

The network’s node selections from either percent tumor invasion or pelvic LNR are

Fig 4. Percent change in sparsity. The average percent change in n/log(p) before and after removing features across the simulations from the nine different

settings and the corresponding confidence interval bars. The points on each line correspond to small, medium, and large simulations from left to right. Also

note that the total number of features is the number of features within both X and G combined, prior to any removing of features. Due to the high number

of simulations, the confidence interval bars are very tight.

https://doi.org/10.1371/journal.pone.0255579.g004
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summarized in S1 File, along with whether the features were removed by any of the filtering

techniques.

Percent tumor invasion. After removing any subjects with either a missing/out of range

(e.g., values not between 0 and 100) percent tumor invasion and any DNA methylation or

gene expression features with less than 5 distinct values, the data resulted in 386 subjects with

18933 DNA methylation features and 2050 gene expression features. Table 4 summarizes the

filtering and network selection results. SuMO-Fil is the only filtering method that did not

remove any previously selected network features under the unfiltered data. In fact, both low

mean and low variance filtering removed all of the previously selected gene expression features

from the unfiltered data. This is likely attributed to the high number of features removed due

to the highly right skewed feature means and variances which resulted in a large cluster to be

removed. After applying SuMO-Fil, the supervised SCCA identified 3 new gene expression fea-

tures that were previously missed in the unfiltered data. Of these includes miR-4296 which has

been shown to be related to cell death functions [39], as well as the RF00019 gene which

belongs to the Y_RNA family. Y_RNA’s are non-coding RNA’s, but they are believed to associ-

ate with endocrine-related cancers [40]. After applying low mean and low variance filtering,

many more DNA methylation features were selected as compared to the unfiltered analysis,

one of which (cg02307823) corresponds to the PTEN gene.

Table 5 displays the Hamming distances between the supervised SCCA results using the

unfiltered data versus the filtered data. The supervised SCCA results are most comparable

Fig 5. Representative simulations. This figure shows representative simulations for weak, moderate, and strong signal strength under the simulations with

a large number of features (45305). The black points represent the features that belong to the network. The dashed lines within each plot represents the k-

means cluster threshold obtained from the SuMO-Fil method, where all points within the bottom left quadrant of each plot represent the features that will

be removed. Plots (A) and (D) correspond to the correlation measures for X and G, respectively, for a representative simulation under the weak signal

setting; plots (B) and (E) correspond to the correlation measures for X and G, respectively, for a representative simulation under the moderate signal

setting; plots (C) and (F) correspond to the correlation measures for X and G, respectively, for a representative simulation under the strong signal setting.

In (A), we see 1 point (network feature) in the bottom left quadrant that would be erroneously removed from the SuMO-Fil method.

https://doi.org/10.1371/journal.pone.0255579.g005
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Table 3. Changes in network selections.

Simulation Settings Technique Sensitivity Specificity # Selected Filtering+SCCA Run time (min)

Signal Strength Total # Features

Weak 45305 No Filter 0.32 0.993 x = 203, g = 103 31.7

Weak 45305 SuMO-Fil 0.80 0.996 x = 118, g = 100 14.4 + 28.8

Weak 45305 Low Means 0.04 0.995 x = 118, g = 94 <0.1 + 35.7

Weak 45305 Low Variance 0.20 0.994 x = 194, g = 95 0.3 + 39.2

Moderate 45305 No Filter 0.92 0.991 x = 237, g = 215 30.9

Moderate 45305 SuMO-Fil 0.92 0.992 x = 188, g = 190 15.1 + 31.1

Moderate 45305 Low Means 0.92 0.991 x = 219, g = 199 <0.1 + 33.9

Moderate 45305 Low Variance 0 0.989 x = 293, g = 226 0.2 + 37.2

Strong 45305 No Filter 1 0.972 x = 706, g = 576 32.3

Strong 45305 SuMO-Fil 1 0.980 x = 499, g = 409 15.8 + 21.8

Strong 45305 Low Means 1 0.973 x = 676, g = 551 0.1 + 38.7

Strong 45305 Low Variance 0 0.898 x = 2576, g = 2036 0.2 + 40.6

Weak 25305 No Filter 0 0.996 x = 72, g = 42 17.8

Weak 25305 SuMO-Fil 0 0.996 x = 62, g = 50 4.3 + 13.4

Weak 25305 Low Means 0 0.995 x = 70, g = 52 <0.1 + 15.6

Weak 25305 Low Variance 0 0.995 x = 72, g = 56 <0.1 + 16.0

Moderate 25305 No Filter 1 0.993 x = 114, g = 93 16.6

Moderate 25305 SuMO-Fil 0.96 0.994 x = 96, g = 74 4.3 + 13.0

Moderate 25305 Low Means 0.96 0.994 x = 107, g = 90 <0.1 + 15.7

Moderate 25305 Low Variance 0 0.967 x = 504, g = 336 <0.1 + 16.3

Strong 25305 No Filter 1 0.977 x = 356, g = 254 17.0

Strong 25305 SuMO-Fil 1 0.992 x = 117, g = 99 4.3 + 9.2

Strong 25305 Low Means 1 0.978 x = 329, g = 241 <0.1 + 16.1

Strong 25305 Low Variance 0 0.979 x = 315, g = 215 <0.1 + 16.4

Weak 15305 No Filter 0 0.996 x = 17, g = 19 6.5

Weak 15305 SuMO-Fil 0 0.997 x = 14, g = 17 0.7 + 5.0

Weak 15305 Low Means 0 0.997 x = 17, g = 18 <0.1 + 6.1

Weak 15305 Low Variance 0 0.997 x = 17, g = 18 <0.1 + 6.0

Moderate 15305 No Filter 0.920 0.999 x = 14, g = 23 6.6

Moderate 15305 SuMO-Fil 1 0.987 x = 64, g = 78 0.7 + 4.5

Moderate 15305 Low Means 0.92 0.981 x = 84, g = 107 <0.1 + 6.0

Moderate 15305 Low Variance 0.04 0.954 x = 242, g = 238 <0.1 + 6.2

Strong 15305 No Filter 0 0.997 x = 15, g = 19 6.7

Strong 15305 SuMO-Fil 0.720 1 x = 10, g = 9 0.7 + 3.6

Strong 15305 Low Means 0 0.998 x = 14, g = 12 <0.1 + 6.2

Strong 15305 Low Variance 0 0.861 x = 722, g = 709 <0.1 + 6.0

The median network results after applying supervised SCCA [15] to 5 simulations under each simulation setting. Supervised SCCA was applied to the simulations before

filtering and after filtering based on SuMO-Fil, low means, and low variance. Under the simulations with 45305 total features, SuMO-Fil at minimum maintained

sensitivity (while improving sensitivity under weak signal strength) and increased specificity by reducing the amount of noise in the network selections. SuMO-Fil also

maintained or increased specificity under simulations with 25305 total features, although sensitivity was decreased under both SuMO-Fil and low mean filters with

moderate signal strength. SuMO-Fil maintained or increased sensitivity under simulations with 15305 total features, although specificity was decreased under moderate

network signal. Filtering based on low variance often decreased sensitivity to 0 while drastically increasing the number of noise selected and increasing run times.

Performing supervised SCCA after SuMO-Fil produced the shortest run times under most simulation settings.

https://doi.org/10.1371/journal.pone.0255579.t003
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between the unfiltered data and the SuMO-Fil filtered data. The distances in network results

after applying low mean or low variance filters are all high which is likely due to the much

higher number of features selected. Interestingly, the Hamming distances are also high

between results after applying low mean and low variance filtering, suggesting that they are

selecting different high-dimensional sets of variables.

Pelvic lymph node ratio. After removing subjects with a missing pelvic LNR and any

DNA methylation or gene expression features with less than 5 non-zero values, there were 458

remaining subjects with 18901 DNA methylation features and 2066 gene expression features.

Table 6 summarizes the number of features filtered by each method, the number of network

features selected, and the run times. SuMO-Fil removed the least amount of features compared

to low mean and low variance filtering, but it was the only method to retain all previously

selected features under the unfiltered data. Since the feature means and variances were heavily

right skewed, obtaining a set of low mean/variance features resulted in a large collection to be

removed. SuMO-Fil reduced the number of selected features while maintaining a consistent

Table 4. Network selection summaries for percent tumor invasion.

Filtering

Technique

# Features Filtered (# Selected in Unfiltered

Network)

# Network Features Selected (# Selected in Unfiltered

Network)

Filtering+SCCA Run time

(mins)

Unfiltered M = 290, R = 19 0 + 6.9

SuMO-Fil M = 4225(0), R = 407(0) M = 98(98), R = 5(2) 0.5 + 4.6

Low Means M = 4643(27), R = 1579(19) M = 1413(205), R = 45(0) <0.1 + 4.1

Low Variance M = 6902(56), R = 1862(19) M = 1725(92), R = 28(0) 0.1 + 3.0

Supervised SCCA [15] was performed on the unfiltered data, after SuMO-Fil, after low mean filtering, and after low variance filtering. Run times and the number of

features are summarized. Let M denote DNA methylation and R denote gene expression.

https://doi.org/10.1371/journal.pone.0255579.t004

Table 5. Hamming distance for percent tumor invasion results.

SuMO-Fil Low Means Low Variance

Unfiltered M = 192, R = 20 M = 1293, R = 64 M = 1831, R = 47

SuMO-Fil M = 1375, R = 50 M = 1763, R = 31

Low Means M = 2094, R = 53

Supervised SCCA [15] was performed on the unfiltered data, after SuMO-Fil, after low mean filtering, and after low variance filtering. This table presents the Hamming

distance which counts the number of discrepancies between network selections. The larger the Hamming distance suggests the selections are more different from each

other. Let M denote DNA methylation and R denote gene expression.

https://doi.org/10.1371/journal.pone.0255579.t005

Table 6. Network selection summaries for pelvic lymph node ratio.

# Features Filtered # Network Features Selected Filtering+SCCA

Filtering Technique (# Selected in Unfiltered Network) (# Selected in Unfiltered Network) Run time (mins)

Unfiltered M = 1607, R = 174 0+ 7.3

SuMO-Fil M = 3554(0), R = 466(0) M = 648(648), R = 79(79) 0.5+ 5.3

Low Means M = 4668(226), R = 1594(105) M = 548(59), R = 20(20) <0.1+ 4.6

Low Variance M = 6749(531), R = 1933(166) M = 927(686), R = 9(7) <0.1+ 3.3

Supervised SCCA [15] was performed on the unfiltered data, after SuMO-Fil, after low mean filtering, and after low variance filtering. Run times and the number of

features are summarized. Let M denote DNA methylation and R denote gene expression.

https://doi.org/10.1371/journal.pone.0255579.t006
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subset from what was previously selected before filtering, and while low mean and low vari-

ance filtering reduced the number of features selected, the DNA methylation results were not

as consistent with the unfiltered results. Although the low variance filtering removed many

previously selected features, it selected two new gene expression features, ANAPC16 and

TIMM23 which were not selected by any other method. The TIMM23 gene has been shown to

be downregulated for Endometriosis [41], and ANAPC16 has potentially higher rates of alter-

ations in certain cancers [42]. PTEN and KLLN genes are both associated with endometrial

cancers [43], and SuMO-Fil retained one of the DNA methylation feature selections

(cg08859916) corresponding to those genes that were also selected in the unfiltered data. How-

ever, there were 3 other PTEN DNA methylation features that were previously selected in the

unfiltered data that were missed after applying SuMO-Fil (cg02307823, cg06947206, and

cg23149470). Although low mean filtering removed 3 PTEN DNA methylation features that

were previously selected in the unfiltered data, it did recover one DNA methylation feature

(cg09254926) that was not discovered by any other method.

Table 7 shows the Hamming distances between the network results under the different

methods. Since the unfiltered data selected many more features than the filtered data, the

Hamming distances are all high compared to the filtered results since Hamming distance

counts the total number of discrepancies.

Discussion

Network analysis techniques such as DNSMI [17] and supervised SCCA [15] are critical for

the understanding of large collections of datasets such as TCGA project. However, they can be

either computationally intensive or select massive amounts of features and as such would

greatly benefit from dimensionality reduction such as gene filtering. We note the SuMO-Fil

approach improves computation times and accuracy while also maintaining a sparse setting

required for most downstream penalization based network discovery algorithms. Additionally,

we found that the SuMO-Fil approach outperforms popular filtering techniques used in sin-

gle-omic studies based on maintaining signal. By reducing run times, more resources can be

spent on the formal analysis while still maintaining consistent results and assumptions. Addi-

tionally, improved results may be achieved by limiting the amount of noise in the underlying

data. To our knowledge, no pre-processing filtering methods have been published expressly

for multi-omic data. We note that other software packages such as Sklearn in Python are very

flexible and useful and may be adaptable for this purpose, however, SuMO-Fil has been cus-

tomized to be mated in R which mates with algorithms such as SCCA and DNSMI [44].

Our simulations suggest that the SuMO-Fil method removes more features while maintain-

ing sparsity and maintaining network signal as compared to the low mean and low variance fil-

tering approaches. However, the thresholding criteria was based on k-means clustering to

better match the thresholding criteria set for the SuMO-Fil method and additional

Table 7. Hamming distance for pelvic lymph node ratio results.

SuMO-Fil Low Means Low Variance

Unfiltered M = 959, R = 95 M = 2037, R = 154 M = 1162, R = 169

SuMO-Fil M = 1148, R = 59 M = 657, R = 78

Low Means M = 1409, R = 27

Supervised SCCA [15] was performed on the unfiltered data, after SuMO-Fil, after low mean filtering, and after low variance filtering. This table presents the Hamming

distance which counts the number of discrepancies between network selections. The larger the Hamming distance suggests the selections are more different from each

other. Let M denote DNA methylation and R denote gene expression.

https://doi.org/10.1371/journal.pone.0255579.t007
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thresholding parameters may be tuned for less conservative filtering. Although, despite the

conservations set by the thresholding criteria, the competing choices still removed more net-

work features on average. It should also be noted that the low variance feature filtering pro-

duced highly unstable results, thus further motivating a more robust filtering scheme for more

complex multi-omic data. Real life examples also showed favorable results for the SuMO-Fil

method because it largely maintained network signal discovered prior to filtering while unveil-

ing novel genes previously undetected in the unfiltered data.

SuMO-Fil filters based solely on similarity, and any low variance features that are correlated

with other features or the outcome will still survive the SuMO-Fil filters. Benchmarking

SuMO-Fil assumed the downstream analysis utilized correlation between features and the out-

come, but some research questions may involve differences in variance [45]. Additional work

should explore SuMO-Fil’s performance and impact on variance-based downstream analyses.

SuMO-Fil also does not consider within dataset correlation, but methods handling a single

‘omic’ type often identify modules of associated features based on the within dataset correla-

tion, as done in a method presented by Miecznikowski et al. [46]. Although SuMO-Fil requires

removed features to be weakly correlated with the outcome and weakly correlated with the cor-

responding data type, any method that utilizes within dataset correlation or similarities should

be used with caution when using SuMO-Fil.

The second phase of SuMO-Fil takes the summation of the absolute similarity across all var-

iables in the other dataset. This could potentially be diluted in situations where a feature is

highly correlated with a small subset of features in the other dataset, and other summary mea-

sures should be considered. See S2 Appendix for results using median as opposed to summa-

tion for the second phase of SuMO-Fil. It should be noted that filtering based on means would

be equivalent to filtering based on summation since the mean would just be the summation

divided by the same constant for each feature.

There are several extensions of the SuMO-Fil method for consideration in future work.

SuMO-Fil is currently limited to two data types and is currently not dynamic to handle addi-

tional data types. In a setting with more than two data types, one approach to consider would

be to calculate similarity matrices between each of the data types and apply filters where the

relationships are expected. This approach would become more complex as the number of data

types increases and would require prior network relationship knowledge. We also caution that

our approach should not be combined with downstream testing based approaches as our

supervised approach will introduce a bias that could violate multiple testing corrections

designed to control the Type I error.

The SuMO-Fil method also does not model for additional subject covariates that may be

available for analysis. One ad hoc approach in this setting may be to compute residuals from a

model involving the outcome and additional covariates. These residuals can then serve as the

“outcome” in our filtering method. We are exploring this approach in a future manuscript.

Additionally, SuMO-Fil requires an outcome of interest for the multi-omic filtering, and

future work should explore multi-omic filtering for unsupervised settings. One possible solu-

tion could involve filtering based solely on the sum of the absolute correlations between the

data types, as done in Phase 2 of SuMO-Fil.

We note that the estimate of run time reduction and changes in sensitivity/specificity in

Table 3 are based on simulations of modest size and not the entire 500 simulations as

employed for the other simulation estimates. This is due to the amount of resources required

per deployment of the supervised SCCA procedure. In addition, our method was applied and

tested in R version 3.4.4 [47]. Due to memory constraints in R, it cannot allocate extremely

large matrices. This poses a problem when calculating correlation matrices where the number

of features within G and X are large. To accommodate these constraints, the SuMO-Fil method
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may be applied on a row by row basis which significantly slows down run times for executing

SuMO-Fil. Although the filtering method would only need to be applied once, other tech-

niques and programming languages may be considered in obtaining the correlation matrices

in order to avoid the memory limitations in R.

In summary, implementing SuMO-Fil as a pre-processing step prior to performing super-

vised network analyses may reduce run times while also reducing the amount of type I/type II

errors in the network results.
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45. Paré G, Cook NR, Ridker PM, Chasman DI. On the Use of Variance per Genotype as a Tool to Identify

Quantitative Trait Interaction Effects: A Report from the Women’s Genome Health Study. PLoS Genet-

ics. 2010; 6(6):e1000981. https://doi.org/10.1371/journal.pgen.1000981

46. Miecznikowski JC, Gaile DP, Chen X, Tritchler DL. Identification of Consistent Functional Genetic Mod-

ules. Statistical Applications in Genetics and Molecular Biology. 2016; 15(1):1–18. https://doi.org/10.

1515/sagmb-2015-0026

47. R Core Team. R: A Language and Environment for Statistical Computing; 2018. Available from: https://

www.R-project.org/.

PLOS ONE Filtering prior to performing network analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0255579 August 3, 2021 20 / 20

https://doi.org/10.1093/biostatistics/kxp008
https://doi.org/10.1093/biostatistics/kxp008
https://doi.org/10.1109/TIT.2009.2016018
https://doi.org/10.1038/nature12113
http://www.ncbi.nlm.nih.gov/pubmed/23636398
https://doi.org/10.1038/ng.2764
https://doi.org/10.1038/ng.2764
http://www.ncbi.nlm.nih.gov/pubmed/24071849
http://www.ncbi.nlm.nih.gov/pubmed/6728365
https://doi.org/10.3802/jgo.2018.29.e48
http://www.ncbi.nlm.nih.gov/pubmed/29770619
https://doi.org/10.1038/sj.bjc.6603898
http://www.ncbi.nlm.nih.gov/pubmed/17667929
https://doi.org/10.1002/ijgo.13309
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.17582/journal.pjz/20191019021035
https://doi.org/10.17582/journal.pjz/20191019021035
https://doi.org/10.1016/j.mce.2015.08.026
https://doi.org/10.1016/j.mce.2015.08.026
https://doi.org/10.1002/gcc.22820
https://doi.org/10.1002/gcc.22820
https://doi.org/10.1002/cncr.29106
https://doi.org/10.1371/journal.pgen.1000981
https://doi.org/10.1515/sagmb-2015-0026
https://doi.org/10.1515/sagmb-2015-0026
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1371/journal.pone.0255579

