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Intracerebral hemorrhage (ICH) is a life-threatening type of stroke that lacks effective
treatments. The inflammatory response following ICH is a vital response that affects brain
repair and organism recovery. The nuclear factor κB (NF-κB) signaling pathway is
considered one of the most important inflammatory response pathways and one of its
response pathways, the noncanonical NF-κB signaling pathway, is known to be
associated with persistent effect and chronic inflammation. NF-κB–inducing kinase
(NIK) via the noncanonical NF-κB signaling plays a key role in controlling inflammation.
Here, we investigated potential effects of the traditional Chinese medicine formula Buyang
Huanwu Decoction (BYHWD) on inflammatory response in a rat model of ICH recovery by
inhibiting the NIK-mediated the noncanonical NF-κB signaling pathway. In the first part,
rats were randomly divided into three groups: the sham group, the ICH group, and the
BYHWD group. ICH was induced in rats by injecting collagenase (type VII) into the right
globus pallidus of rats’ brain. For the BYHWD group, rats were administered BYHWD
(4.36 g/kg) once a day by intragastric administration until they were sacrificed. Neurological
function was evaluated in rats by a modified neurological severity score (mNSS), the corner
turn test, and the foot-fault test. The cerebral edema showed the degree of inflammatory
response by sacrificed brain water content. Western blot and real-time quantitative reverse
transcription PCR tested the activity of inflammatory response and noncanonical NF-κB
signaling. In the second part, siRNA treatment and assessment of inflammation level as
well as alterations in the noncanonical NF-κB signaling were performed to determine
whether the effect of BYHWD on inflammatory response was mediated by suppression of
NIK via the noncanonical NF-κB signaling pathway. We show that BYHWD treated rats
exhibited: (i) better health conditions and better neural functional recovery; (ii) decreased
inflammatory cytokine and the edema; (iii) reduced expression of NIK, a key protein in
unregulated the noncanonical NF-κB signaling pathways; (iv) when compared with
pretreated rats with NIK targeting (NIK siRNAs), showed the same effect of inhibiting
the pathway and decreased inflammatory cytokine. BYHWD can attenuate the
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inflammatory response during ICH recovery in rats by inhibiting the NIK-mediated
noncanonical NF-κB signaling pathway.

Keywords: buyang huanwu decoction, the noncanonical NF-κB pathway, inflammation, NF-κB inducing kinase,
intracerebral hemorrhage

INTRODUCTION

Intracerebral hemorrhage (ICH) is part of the most devastating
types of cerebrovascular disease threatening human health. It
suffers approximately 2 million people globally each year with a
high mortality rate (Cordonnier et al., 2018). Moreover, most of
the survivors must endure varying degrees and kinds of life-long
disabilities that result from both primary and secondary brain
injury. Although the understanding of ICH-induced primary and
secondary brain damage has improved (Wang, 2010; Lan et al.,
2017), ICH therapy for long-term recovery is still eager to explore.

Since therapies focus on the primary injury of ICH have had
limited success, which has led to a center of attention on
secondary injury mechanisms (Feigin et al., 2003).
Inflammatory cytokines are key participants in secondary
injury after ICH. The nuclear factor–κB (NF-κB) signaling
pathway plays an important role in the processes of
inflammation, immunity, cancer, and neural plasticity
(Mattson and Meffert, 2006; O’Sullivan et al., 2010; Perkins,
2007). The NF-κB family of transcription factors is activated
by canonical and noncanonical signaling pathways, which differ
in both signaling components and biological functions. The NF-
κB signaling pathway has been identified as an important
signaling pathway in secondary brain injury, after ICH (Sun,
2017; Zhu et al., 2019). The noncanonical NF-κB signaling
pathway is characterized by selectively slow, persistent, and
specific, strictly relies on phosphorylation of IKK1 by NIK and
then induce p100 processing and nuclear translocation to play a
role (Sun, 2011). Most studies have demonstrated that the
noncanonical NF-κB signaling pathway regulates important
physiological functions such as lymphoid organogenesis, B-cell
survival and maturation, dendritic cell activation, and bone
metabolism (Dejardin, 2006). Besides, dysregulation of this
pathway is associated with different diseases, such as lymphoid
malignancies, immunodeficiency, abnormal hematopoiesis,
metabolic disorders, and vascular injury (Cildir et al., 2016).
Therefore, the regulation of this pathway is important to explore
potential ways to modulate inflammation by targeting key factors
and then to ameliorate inflammatory response and promote
neurological function recovery after ICH. Besides, the NF-κB
pathways have been studied as therapeutic targets in a variety of
acute and chronic brain diseases and the role remains to be
elucidated, especially concerning the noncanonical NF-κB
pathway. Therefore, a better understanding of this mechanism
regulating unregulated NF-κB activation has important
therapeutic value.

Traditional Chinese medicine (TCM) as one of the important
treatments for stroke has been used for thousands of years.
Buyang Huanwu decoction (BYHWD), a classical TCM
formula, is the most frequently used for treating stroke

(40.32%) by far (Hung et al., 2015). Evidence shows BYHWD
substantial neuroprotective and function-improving effects in
animal models of focal cerebral ischemia and desirable clinical
efficacy for both hemorrhagic and ischemic stroke (Guo et al.,
2015; Luo et al., 2017; Pan et al., 2017). What’s more, BYHWD
improves long-term motor dysfunctions, swallowing difficulties,
cognitive disorders, and dysarthria, which are tough to be
effective by Western medicine (Zhang et al., 2016a; Xu et al.,
2017). However, the multifaceted regulatory mechanisms of
BYHWD acting on ICH have not been fully clarified.

Here, we expand upon previous studies and explore the effect
of the noncanonical NF-κB pathway in the recovery period of
ICH. Our findings may provide a novel perspective to illustrate
the molecular mechanisms of BYHWD treatment for long-term
neurological function recovery after ICH.

MATERIALS AND METHODS

Animals
Adult male Sprague–Dawley rats weighing 180–220 g were
obtained from the Experimental Animal Center of Central
South University (CSU), Changsha, China. All rats were
maintained under specific pathogen-free (SPF) conditions with
a 12-hour light/dark cycle, a controlled temperature (25°C), a
relative humidity (45–55%), and ad libitum had access to water
and food pellets throughout the study. All procedures were
conducted following the guidelines and approved by the
Institutional Animal Care and Use Committee of CSU (No:
2018sydw0159).

Collagenase Model
The collagenase-induced ICH rat model was an important way
for studying ICH and had been used by various researchers. All
experimental rats were deeply anesthetized intraperitoneally
with 3% pentobarbital sodium (50 mg/kg) and placed in a
stereotaxic frame (Stoelting Co., Chicago, IL, United States).
After disinfection and incision, a hole was drilled in the skull
and collagenase type VII (Sigma-Aldrich, United States, 0.5 U in
2.5 μL of 0.9% sterile saline) was injected slowly (over 2 min) via
microliter syringe into the right globus pallidus, according to the
following coordinates relative to bregma: 1.4 mm posterior,
3.2 mm lateral, and 6 mm ventral to the cortical surface. The
needle stayed for an additional 10 min to prevent reflux then
slowly removed. Sham group rats underwent the same
procedure, except that the syringe contained 2.5 μL of 0.9%
saline solution without collagenase. Due to the practical
operation of the experiment, NIK siRNAs group rats
underwent the same procedure but syringed into the left
globus pallidus.
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Preparation of BYHWD
BYHWD was prepared and subjected to quality control as
previously described (Cui et al., 2015). Astragalus mongholicus
Bunge [Fabaceae; Astragali Radix], Angelica sinensis (Oliv.) Diels
[Apiaceae; Angelica Sinensis Radix], Paeonia lactiflora Pall.
[Paeoniaceae; Paeonia Radix Rubra], Ligusticum Chuanxiong
Hort [Apiaceae; Chuanxiong Rhizoma], Carthamus tinctorius
L. [Asteraceae; Carthami Flos], Prunus persica (L.) Batsch
[Rosaceae; Persicae Semen], and Pheretima aspergillum (E.
Perrier) [Megascolecidae; Pheretima] at a ratio of 60:6:4.5:3:3:
3:3 (dry weight) were used (Table 1). All botanical drugs were
available from the Chinese Medicinal Pharmacy of Xiangya
Hospital, Central South University (Changsha, China). Briefly,
all botanical drugs were immersed in distilled water for 1-h, and
boiled for 30 min at 100°C. Finally, the powder (yield: 11.9%) was
dissolved in distilled water at a concentration of 0.13 g/ml for
intragastric administration.

Qualitative Analysis of BYHWD
We purchased the standard reference materials of amygdalin,
hydroxysafflor yellow A, calycosin, and digoxin from Yuanye
Bio-Technology Co., Ltd. (Shanghai, China). Digoxin is not the
endogenous compound of BYHWD and plasma, and it does not
obviously interfere with the retention times of all three analytes.
Qualitative analysis was carried out using an LC-MS system
(Shimadzu 8050, Kyoto, Japan) in negative ion mode. The
plasma samples were added with digoxin, vortex mixed for
10 s, and then vortex mixed for 1 min and centrifuged for
15 min (13,000 rpm, 4°C) after being added 800 μL
acetonitrile. The obtained supernatants were dried in a
nitrogen dryer, diluted with 10% acetonitrile–water, repeated
the extraction above, and injected into the LC-MS for analysis
(Supplementary Figure S1).

Experimental Design
There were two parts to the entire experiment. In the first part,
rats were randomly divided into three groups: the sham group,
the ICH group, and the BYHWD group. For the BYHWD
group, rats were administered by gastrogavage with BYHWD
once daily for the duration of the experimental observations
after ICH modeling. According to our previous study (Cui et al.,
2015), we chose 4.36 g/kg as the dosage of BYHWD in the
present study. The distilled water with equal volumes was
administered to the sham and ICH groups. Rats were

sacrificed on days 3, 7, and 14, post-ICH after neural tests. In
the second part, intact rats first randomly received a
microinjection of NIK targeting (siNIK) or non-targeting
siRNA (siControl) into the right lateral ventricles at
concentrations of 10 mM. The siNIK group (NIK siRNAs +
ICH) received NIK siRNAs (NIK siRNAs, Cyagen Biosciences,
aCSF, 10 μL, i.c.v.) to inhibit the noncanonical NF-κB. The
control group (siRNAs control + Sham and siRNAs control +
ICH) received scramble siRNAs (siRNAs control, Cyagen
Biosciences, aCSF, 10 μL, i.c.v.). Both were injected
immediately with a cannula implantation system (RWD Life
Science) once per day for 5 days. ICH surgery was conducted
after 5 days of recovery. ICH induction provided a detailed
description in the “collagenase model” previously. The BYHWD
was administered to the ICH BYHWD group as before, and
distilled water with equal volumes was administered to the
siRNAs control + Sham, the siRNAs control + ICH, and the
NIK siRNAs + ICH. Rats were sacrificed at days 7 and 14 after
ICH, respectively.

Behavioral Tests
The modified neurological severity score (mNSS), the corner turn
test, and the foot-fault test were used to assess the neurological
injury at various time points after ICH by two observers who
blinded to the group assignments independently and their scores
were averaged. These tests were detailedly performed in our
previous studies (Narantuya et al., 2010; Cecatto et al., 2014;
Krafft et al., 2014).

mNSS
The modified neurological severity score (mNSS) examined
motor ability, walking ability, sensory ability, balance, reflexes,
and the presence of abnormal movements. And a higher score
meant a more severe injury (normal score: 0; maximal deficit
score: 18).

Corner Turn Test
Rats would proceed into a corner with an angle of 30°degrees. To
exit the corner, individual rats could turn either left or right, and
the direction taken was then recorded. This was repeated 10 times
per animal, with at least 30 s between trials. The percentage of
right turns was calculated. The percentage of right turn in normal
rats was about 50%, while the injured ones would have a higher
percentage.

TABLE 1 | Components of the Buyang Huanwu Decoction.

Scientific name Chinese name English name Family Medicinal part Batch number

Astragalus mongholicus Bunge Huang Qi Astragali Radix Fabaceae Root 19070913
Angelica sinensis (Oliv.) Diels Dang Gui Angelica Sinensis Radix Apiaceae Rhizome 20190704
Paeonia lactiflora Pall. Chi Shao Paeonia Radix Rubra Paeoniaceae Root 19062607
Ligusticum Chuanxiong Hort Chuan Xiong Chuanxiong Rhizoma Apiaceae Root 1906290
Carthamus tinctorius L. Hong Hua Carthami Flos Asteraceae Flower 19050804
Prunus persica (L.) Batsch Tao Ren Persicae Semen Rosaceae Seed 19061010
Pheretima aspergillum (E. Perrier) Di Long Pheretima Megascolecidae Whole animal 19051802

Above listed botanical drugs were combined in a 60:6:4.5:3:3:3:3 ratio (dry weight). All plant names or species were validated using http://www.worldfloraonline.org/or https://mpns.
science.kew.org/mpns-portal/searchName or https://www.drugfuture.com/standard/.
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Foot-Fault Test
Rats were tested for placement dysfunction of forelimbs with the
modified foot-fault test. Rats were set on an elevated grid surface
(85.8 × 2.5 cm2, with grids of different sizes) and placed their
paws on the wire while moving along the grid. With each weight-
bearing step, the paw may fall or slip between the wire, which was
recorded as a foot fault. The total number of steps (movement of
each forelimb) that the rats used to cross the grid was counted,
and the total number of foot faults for the left forelimb was
recorded. Data are presented as the percentage of foot faults per
the total number of steps (normal score: 0%; maximal deficit
score: 100%).

Sample Preparation
Rats were deeply anesthetized with 3% pentobarbital sodium
(50 mg/kg, i.p.). For molecular biology experiments, including
Western blot and quantitative real-time polymerase chain
reaction (RT-qPCR), rats were perfused with 0.9% saline, and
brain samples around the hematoma were collected in ice-cold
saline. They were immediately stored in liquid nitrogen to ensure
brain tissue staying fresh then stored at −80°C until analysis.

Brain Water Content
Rats were sacrificed at days 3, 7, and 14 after ICH induction, and
the intact brain tissues were removed immediately. Brain tissues
were divided into two hemispheres along the midline and the
ipsilateral hemisphere divided into three parts by stainless steel
brain matrices. The hematoma area brain tissue was weighed
using an electronic analytical balance. After drying in an oven at
95°C for 72 h, until the sample weights were nearly consistent, the
dry weight was obtained and calculated as follows: water content
of brain tissues (%) � (wet weight–dry weight)/(wet
weight) × 100%.

Western Blot Analysis
Collected fresh samples were homogenized in RIPA lysis buffer
with a protease inhibitor. The homogenate was centrifuged at
12,000 rpm for 30 min at 4 °C. The supernatants were collected
immediately. Protein samples were separated by SDS-PAGE gels
and transferred onto PVDF membranes (Millipore,
United States). The membranes were blocked with 5% BSA for
2 h at room temperature and then probed with primary
antibodies overnight with gentle shaking at 4°C. After three
washes in PBS-T, the membranes were subsequently incubated
with horseradish peroxidase–conjugated anti-mouse IgG (1:5000,
Proteintech, United States) or anti-rabbit IgG (1:6000,
Proteintech, United States) secondary antibodies for 2 h at
room temperature. Membranes were washed again, and the
protein bands were visualized using enhanced
chemiluminescence (ECL). The exposed films were scanned
and analyzed by Quantity One analysis software.

The primary antibodies used were the following: rabbit anti-
NIK (1:200, Abcam, United Kingdom); rabbit anti-IKKα (1:1000,
Cell Signaling Technology, United States); rabbit anti-NF-κB
p100/52 (1:1000, Cell Signaling Technology, United States);
mouse anti-β-actin (1:5000, proteintech, United States); rabbit
anti-Histone H3 (1:1000, Cell Signaling Technology,

United States); rabbit anti-TNF-α (1 ug/ml, Abcam,
United Kingdom); and rabbit anti-IL-β (0.2 ug/ml, Abcam,
United Kingdom).

RT-qPCR
Total RNA was extracted with a TRIzol reagent (Invitrogen,
Carlsbad, CA, United States) following the manufacturer’s
instructions. Amplification was performed using SYBR Green
All-in-one TM qPCR Mix (GeneCopoeia) on a ViiATM7 RT-
qPCR system (Applied Biosystems). The following thermocycling
protocol was used: 95°C for 10 min, 40 cycles of 15 s at 95°C, 50 s
at 60°C, and melting was done at 60°C. The primers for IL-1β,
TNF-α, and β-actin were designed with Premier 5.0 software for
rats. The sequences of the primers are shown in Table 2. Melting
curves of all the samples were generated as controls for specificity.
The expression data were normalized to the expression of β-actin
with the 2−ΔΔCt method.

In Vivo Lateral Ventricles Injection
NIK targeting (NIK siRNAs) or non-targeting siRNA (siRNAs
control) was injected into the right lateral ventricles of rats
according to the following coordinates relative to bregma:
1 mm posterior, 1.5 mm lateral, and 4 mm ventral to the
cortical surface at concentrations of 10 mM. 10 µL of either
the NIK siRNAs or siRNAs control were injected into the
lateral ventricle at 1 μL/min. The siNIK group (NIK siRNAs +
ICH) received NIK siRNAs (NIK siRNAs, Cyagen Biosciences,
aCSF, 10 μL, i.c.v.) to inhibit the noncanonical NF-κB. The
control group (siRNAs control + sham and siRNAs control +
ICH) received scramble siRNAs (siRNAs control, Cyagen
Biosciences, aCSF, 10 μL, i.c.v.). Both were injected
immediately with a cannula implantation system (RWD Life
Science) once per day for 5 days. The inhibitory effect of NIK
siRNA is shown in Supplementary Figure S2. The rat Map3k14
shRNA design and siRNAs control target sequences (NIK
siRNAs) were: CCTTGGAAAGGAGAATATAAA and
scramble-shRNA-PGK (siRNA control): CCTAAGGTTAAG
TCGCCCTCG.

Statistical Analysis
Results were presented as the mean ± SEM. One-way analysis of
variance (ANOVA) was used for comparing differences. A
Levene test was used to test the variance congruence of the
data. Post hoc tests for multiple comparisons, using the LSD
or the Bonferroni test if the variance is equal, or Tamhane’s test if
the variance is not equal. A p-value of <0.05 by SPSS 24 software
was considered as statistically significant.

RESULTS

BYHWD Attenuated Neurological Recovery
Impairment After ICH
To define the effects of BYHWD in neurological behavioral
impairment after ICH, we recorded the body weight and
performed behavioral testing 1 h before sacrifice at each time
point. Recovery of neurological function after ICH was achieved
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by BYHWD treatment; all results are shown in Figure 1. All rats
were observed to be healthy and with normal body functions
before modeling. Day 3 after ICH, there was little weight gain in
collagenase-induced rats (ICH and BYHWD groups), while the
sham group grew normally (Figure 1D). Meanwhile, the ICH
and BYHWD group rats had severe neurological behavioral
impairment compared to the sham group, which also showed
the success of ICH modeling. Substantially higher scores of
mNSS showed from the ICH (p < 0.01) and BYHWD groups,
respectively (Figure 1A). Similarly, the percentages of the ICH
and BYHWD groups were notably higher than the sham in the
corner turn test (Figure 1B) and the foot-fault test (Figure 1C).

Day 7 after ICH, the test scores of ICH rats were still higher than
sham in mNSS (p < 0.001), the corner turn test (p < 0.01), and
the foot-fault test (p < 0.001), while the scores of BYHWD rats
were gradually decreasing. Day 14 after ICH, the test scores of
ICH rats had remained unchanged as before and were still
higher than sham in mNSS (p < 0.001, Figure 1A), the corner
turn test (p < 0.01, Figure 1B), and the foot-fault test (p < 0.001,
Figure 1C). However, after 14-day treatment with BYHWD, the
neurological function impairment of the BYHWD group was
ameliorated at varying degrees in mNSS (Figure 1A), the corner
turn test (Figure 1B), and the foot-fault test (Figure 1C).
Additionally, for weight change (Figure 1D), the ICH group

TABLE 2 | The RT-qPCR sequences of primers.

Gene Primer Sequence (59 to 39) PCR Product length (bp)

NIK Forward TCATCGCGGGGTCACAGCAGTACA 156
Reverse ACTTCGACCTCCTCTTCCTACGTT

TNF-α Forward AAAGCATGATCCGAGATGTGGAA 142
Reverse AGTAGACAGAAGAGCGTGGTGGC

IL-1β Forward ACTTGGGCTGTCCAGATGAG 114
Reverse GTAGCTGCCACAGCTTCTCC

β-actin Forward ACATCCGTAAAGACCTCTATGCC 223
Reverse TACTCCTGCTTGCTGATCCAC

FIGURE 1 |BYHWD attenuated neurological recovery impairment after ICH. On day 3, the mNSS (A), the corner turn test (B), the foot-fault test (C), and the weight
increased rate (D) of ICH and BYHWD group were significantly different with the sham group, which indicated the successful ICHmodels. On day 14, rats in the BYHWD
group showed a significantly lower mNSS (A) as well as better performance in corner turn (B) and foot-fault tests (C) and the weight increased rate (D) than the ICH
group, which suggested the therapeutic effects of BYHWD for functional recovery after ICH. Data were presented as mean ± SEM (n � 6 each group); *p < 0.05,
#p < 0.01, ΔP < 0.001. mNSS, modified neurological severity score; weight increased, the difference between weight values of days 3, 7, and 14.
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FIGURE 2 | BYHWD reduced the degree of cerebral edema and downregulated the inflammatory factors following ICH. Recorded brain water content (A) on days
3, 7, and 14 after ICH. A representative immunoblot showed the effects of ICH and BYHWD on the protein levels of inflammatory factors TNF-α and IL-1β (B) at the
ipsilateral tissue. The left side of the dotted line shows the relative mRNA levels of TNF-α and IL-1β (C), respectively. The right side of the dotted line shows the protein
levels of TNF-α and IL-1β (C), respectively. Levels of TNF-α and IL-1β mRNAs were dramatically decreased in the BYHWD-treated group after ICH. Western blot
analysis also showed that the expression levels of TNF-α and IL-1β were significantly downregulated after ICH. BYHWD suppressed inflammatory response. Relative
TNF-α and IL-1β levels were calculated based on densitometry analysis. The mean TNF-α and IL-1β level of the sham group was normalized to 1.0. Data were displayed
as mean ± SEM (n � 6 each group); *p < 0.05, #p < 0.01, ΔP < 0.001 deemed as significant difference.
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FIGURE 3 | NIK was highly expressed in ICH rats’ brain tissues and BYHWD inhibited the activity of the noncanonical NF-κB signaling after ICH. Activation of the
noncanonical NF-κB pathway on days 3, 7, and 14 after ICH in cytoplasm and nucleus. A representative immunoblot showed the effects of ICH and BYHWD on the
protein levels of key factors, NIK, Ikkα, NF-κB p100, and NF-κB p52, in the noncanonical NF-κB pathway in cytoplasm (A) and the nucleus (C) at the ipsilateral tissue.
Relative expression of NIK, Ikkα, NF-κB p100, and NF-κB p52 protein in cytoplasm (B) and NIK, Ikkα, and NF-κB p52 protein (D) in the nucleus. Data are the
mean ± SEM (n � 6 each group); *p < 0.05, #p < 0.01, ΔP < 0.001 deemed as significant difference.
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grow slowly and the weight of the BYHWD group gained about
over 20%.

Decreased Expression and Secretion of
Inflammatory Cytokines After BYHWD
Treatment of ICH
As shown in Figure 2, to explore the effects of BYHWD treatment
on ICH-induced inflammation in brain tissues, we examined
brain edema using a wet/dry method on days 3, 7, and 14,
evaluating the impact of BYHWD treatment on ICH-induced
brain edema with its dynamic variations (Figure 2A). In the
ipsilateral hematoma area of these three groups, the ICH group
showed significant increases in water content compared with the
Sham group, while BYHWD treatment considerably alleviated
the brain water content on day 14 after ICH. Inflammatory
cytokine activation contributed to the evolution of secondary
degeneration after ICH, both mRNA and protein levels of TNF-α
and IL-1β, which were the most important indicators of
inflammation response and were detected by RT-qPCR and
Western blot analysis on days 3, 7, and 14 after ICH (Figures
2B,C). All the observation time points, the results showed that
these two indicators were increased in the ICH group compared
with the sham group. However, the BYHWD group significantly
decreased both expression levels compared with the ICH group as
treatment time progressed. Treatment with BYHWD remarkably
decreased the IL-1β and TNF-α secretion after ICH, compared
with the ICH group. Above all, inflammatory cytokine could be
well inhibited by BYHWD. The results demonstrated that the use
of BYHWD may contribute to the control of ICH-induced
inflammation.

NIK was Highly Expressed in ICH Rats’
Brain Tissues and BYHWD Inhibited the
Activity of the Noncanonical NF-κB
Signaling in Brain Tissues After ICH
We investigated the specific indicators of the noncanonical NF-
κB pathway, including NIK, Ikkα, NF-κB p100, and NF-κB p52,
dynamic changes of protein expression after ICH using Western
blot (Figures 3A–D).

The results showed that several specific indicators of the
noncanonical NF-κB pathway, including NIK, Ikkα, NF-κB
p100, and NF-κB p52, were increased in brain tissue after
ICH. In the cytoplasm, day 3 after modeling, the expression
levels of NIK, IKKα, NF-κB p100, and NF-κB p52 were
markedly increased in the ICH group compared with the
sham group. And these indicators were relatively decreased
in the BYHWD treatment group compared with the ICH
group. After long-term treatment, NIK, Ikkα, NF-κB p100,
and NF-κB p52 in the ICH group were still in high
expression on days 7 and 14 after ICH, but the BYHWD
group significantly improved. In the nucleus, NF-κB p100
was not detected because it was turned into p52 before
entering the nucleus. The results of NIK, Ikkα, and NF-κB
p52 were consistent with that of the cytoplasm. Day 3 after
modeling, compared with the sham group, the expression of

NIK, IKKα, and NF-κB p52 was remarkably increased in the
ICH group. The expression of these three indicators was
reduced in the BYHWD group compared with the ICH
group, and the decrease in IKKα turned to be statistically
different. On days 7 and 14, the results were similar to those
in the cytoplasm. These findings suggested that specific
indicators of the noncanonical NF-κB pathway were highly
expressed in ICH rats’ brain tissues and the BYHWD
treatment can inhibit NIK, the key promoters of
noncanonical NF-κB pathways, in brain tissues after ICH.

BYHWD Promoted Recovery by
NIK-Mediated Repression of the
Noncanonical NF-κB Pathway
Following the determination that NIK is highly expressed in
brain tissue after ICH, we further investigated whether
targeting of NIK in ICH alone could suppress the
inflammatory responses in the ICH model. To answer this,
we pretreated rats with either NIK targeting (NIK siRNAs) or
non-targeting siRNA (siRNAs control) before ICH surgery.
Then using RT-qPCR and the Western blot analysis measured
the mRNA and the protein level of NIK (Figure 4) and the
inflammation indicators (Figure 5) in brain tissues on days 7
and 14 after ICH.

Compared with the siRNAs control + sham group, the relative
mRNA level of NIK in each ICH group was increased at different
degree (Figure 4). The results showed that the relative mRNA
and protein expression of NIK in the NIK siRNAs + ICH group
was downregulated than that in the siRNAs control + ICH, which
represented the success of pretreatment. Compared with the NIK
siRNAs + ICH group, the ICH + BYHWD group showed no
statistical difference in the relative mRNA expression of NIK
levels and protein levels of NIK on days 7 and 14 after ICH. But
mRNA and protein levels of NIK both in the NIK siRNAs + ICH
group and the ICH + BYHWD group were much lower than
those in the siRNAs control + ICH group showed on days 7 and
14 after ICH. This suggests that the activation of key regulators of
noncanonical NF-κB pathway was inhibited in siRNA-pretreated
rats after ICH, while NIK was also inhibited by BYHWD
treatment.

The results showed that inflammatory factors were notably
in the brain tissue after ICH. The relative mRNA and protein
expression of TNF-α/IL-1β in the NIK siRNAs group was
significantly decreased than those in the control siRNA group
after ICH of both observation time (Figure 5). These
observations indicated that after downregulating NIK, the
key regulator of the noncanonical pathway, the activation
of the noncanonical pathway was inhibited. However,
experiments of first part have shown that BYHWD can
effectively inhibit NIK.

Relative mRNA and protein levels of inflammatory indicators
were comparable between the NIK siRNAs + ICH group and the
ICH + BYHWD group on days 7 and 14 after ICH, suggesting
that BYHWD alleviates the inflammatory response after the
recovery of ICH and may be involved in NIK-mediated
repression of the noncanonical NF-κB pathway.
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DISCUSSION

In the present study, we reported that BYHWD treatment
reduced inflammation after ICH by inhibiting the NIK-
mediated regulation of the noncanonical NF-κB pathway
and then attenuated neurological impairment. Compared
with the ICH rats, rats treated with BYHWD reduced the
extent of brain edema after ICH, inflammatory factors, and
inhibited the noncanonical NF-κB pathway by regulating NIK;
in contrast, these effects were absent in the ICH nontreated
group as well as in the siRNA control group. Finally, ICH rats
treated with BYHWD showed significantly enhanced recovery
and repair of neurological deficits in several classical
behavioral tests.

After ICH, in addition to the primary injuries, secondary
injuries were caused by pathologic responses to the hematoma
with persistent effects on prognosis and recovery. The secondary

injuries, including inflammation, oxidative stress, excitotoxicity,
and cytotoxicity, trigger different pathophysiological changes that
lead to local trauma and neurological and organismal functional
impairments (Wang and Tsirka, 2005; Yang et al., 2006; Wang
and Dore, 2007; Aronowski and Zhao, 2011; Wu et al., 2011;
Zhou et al., 2014; Duan et al., 2016; Jiang et al., 2016; Lan et al.,
2017). Inflammation, as an important factor in secondary injury,
is a complicated process that is mediated mainly by cellular and
molecular components. Cellular components include leukocytes,
macrophages, astrocytes, T-cells, and microglia, whereas
molecular components include prostaglandins, chemokines,
cytokines, extracellular proteases, and ROS. Numerous studies
have shown that these changes lead to inflammatory reactions,
including inflammatory cell recruitment and activation, as well as
inflammatory media release, which contributes to the progression
of brain injury and repair (Wang and Tsirka, 2005; Wang and
Dore, 2007;Wang, 2010; Mracsko and Veltkamp, 2014). NF-κB is

FIGURE 4 | BYHWD suppresses the expression of NIK and regulates the noncanonical NF-κB pathway by targeting NIK protein via transfected with NIK siRNAs
screening. Relative expressions of the key protein NIK were measured on days 7 and 14 transfected with NIK siRNAs or siRNAs control after ICH. (A) Representative
immunoblot showed the effects of siRNAs control + Sham, siRNAs control + ICH, NIK siRNAs + ICH, and ICH +BYHWDon the protein levels of NIK at the ipsilateral injury
area. The left side of the dotted line shows the relative mRNA levels of NIK (B). The right side of the dotted line shows the protein levels of NIK. Levels of NIK mRNAs
were dramatically decreased in the NIK siRNAs + ICH and ICH + BYHWD group after ICH. Western blot analysis showed that the expression levels of NIK were
significantly downregulated after ICH. Effect of BYHWD treatment is consistent with the effect of blocking NIK transfected with NIK siRNAs. BYHWD suppressed the key
protein. Relative NIK levels were calculated based on densitometry analysis. The mean NIK level of the sham group was normalized to 1.0. Data are the mean ± SEM (n �
3 each group); *p < 0.05, #p < 0.01, ΔP < 0.001 deemed as significant difference.
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FIGURE 5 | Downregulated the inflammatory factors TNF-α and IL-1β following ICH via transfectedwith NIK siRNAs screening. Relative expressions of TNF-α and IL-1βwere
measured on days 7 and 14 transfected with NIK siRNAs or siRNAs control after ICH. A representative immunoblot showed the effects of siRNAs control + Sham, siRNAs control +
ICH, NIK siRNAs + ICH, and ICH + BYHWD on the protein levels of inflammatory factors TNF-α and IL-1β (A) at the ipsilateral injury area. The left side of the dotted line shows the
relativemRNA levels of TNF-α and IL-1β (B), respectively. The right sideof thedotted line shows theprotein levels of TNF-α and IL-1β (B), respectively. Levels of TNF-α and IL-1β
mRNAs were dramatically decreased in the NIK siRNAs + ICH and the ICH + BYHWD group after ICH. Western blot analysis showed that the expression levels of TNF-α and IL-1β
were significantly downregulated after ICH. Effect of BYHWD treatment is consistent with the effect of blocking NIK transfected with NIK siRNAs. BYHWD suppressed inflammatory
response. Relative TNF-α and IL-1β levels were calculated based on densitometry analysis. Themean TNF-α and IL-1β level of the sham groupwas normalized to 1.0. Data are the
mean ± SEM (n � 3 each group); *p < 0.05, #p < 0.01, ΔP < 0.001 deemed as significant difference.
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one of the key regulators of the body’s multi-modulation signal
transduction pathway in the inflammatory and neuronal
apoptosis during postinjury neurogenesis (Morishita et al.,
2014); activation can induce macrophage migration factors,
neurotrophic factors, extracellular matrix release increase
inflammatory fine cytokine expression levels, and increase the
peripheral nerve inflammatory response (Chou et al., 2011).
Mostly, NF-κB is a transcription factor that plays a key role in
inflammatory processes (Teng et al., 2009; Xiong et al., 2016).
Thus, control of the NF-κB pathway response and modulation of
inflammatory factors may provide a new direction for treatment.
Since the canonical NF-κB pathway occurs early after injury and
responses rapidly and short-lived, whereas the noncanonical NF-
κB pathway is a process in which the response continues to act. To
control inflammation, almost researches focused on the canonical
NF-κB pathway and few did researches on the noncanonical NF-
κB pathways relatively. But the noncanonical NF-κB pathways
activate in a tightly regulated way (Shih et al., 2011; Sun, 2011;
Zhang et al., 2014). So, the noncanonical NF-κB pathway
responses with limited stimuli and persistent feature
theoretically provide a more possible therapeutic intervention,
potentially limiting bad effects and targeting much severer or
persistent injury. Therefore, we consider that the noncanonical
NF-κB pathways play an important role during the postinjury
recovery period. The noncanonical NF-κB pathway
predominantly targets activation of the p52/RelB NF-κB
complex by NIK. Inducers of the noncanonical NF-κB
pathway discovered so far are thought to be associated with
NIK signaling activation (Claudio et al., 2002; Coope et al., 2002;
Dejardin et al., 2002; Kayagaki et al., 2002; Novack et al., 2003).
Studies to date have shown that NIK plays a key regulatory role
either deficiency and overactivity related to many diseases, such
as diverse malignancies (Nadiminty et al., 2007; Gonzalez-
Murillo et al., 2015), immunodeficiency (Shinkura et al., 1999;
Willmann et al., 2014; Shen et al., 2017), autoimmunity (Huang
et al., 2018; Liu et al., 2018), organ injuries (Ruiz-Andres et al.,
2016; Ortiz et al., 2017) (Jiang et al., 2015; Liu et al., 2017; Shen
et al., 2017; Xiong et al., 2018), abnormal glucose metabolism
(Sheng et al., 2012; Malle et al., 2015), sarcopenia and osteopenia
(Taniguchi et al., 2014; Fry et al., 2016), vascular injury (Maracle
et al., 2017; Maracle et al., 2018), and so on. So, it is important to
tighten control of the NIK. In our study, we detected that NIKwas
highly expressed in the brain tissue after ICH. The noncanonical
NF-κB pathways actively activate in the injured region and
associate with local and systemic inflammation, which may
affect progression of ICH. From our research, BYHWD might
downregulate ICH-induced NIK by inhibiting the inflammatory
response. NIK continues the responses and affects the long-term
recovery of ICH. Therefore, targeting NIK in the recovery phase
of ICH by BYHWD can hold therapeutic potential to promote
recovery. Various studies have been explored because of the
complex process of ICH and the NF-κB pathway (Hayden and
Ghosh, 2008). In inactivated cells, NIK levels are kept low by
TRAF3, which promotes constitutive proteasomal degradation of
NIK by virtue of the E3–ubiquitin ligase complex consisting of
TRAF2, TRAF3, and cIAP1/2. Upon receptor stimulation, NIK is
stabilized by cIAP-mediated degradation of TRAF3, which then

activates and also promotes the binding of IKKα to its substrate
p100, which is ubiquitinated and processed into p52 after
phosphorylation (Sun, 2011; Verhelst et al., 2015). BYHWD
may interfere with the formation of TRAF2, TRAF3, and
CIAP1/2 and thereby increases the levels of NIK protein.
However, in the process of our study, we have only
preliminarily explored the effect of BYHWD on the
noncanonical NF-κB pathway and focus on whether it would
have an effect on the key regulators of the noncanonical NF-κB
pathway. So, we may further explore its internal sophisticated
mechanism of action and whether there are regulatory effects on
upstream and downstream in the future. At the same time, MAP
kinase–regulated pathways may act to promote survival or death,
depending on the cellular context in which they are activated.
From previous studies, it appears that MAP kinases are activated
to some extent after ICH as a response to external stimuli (Skaper
et al., 2001; Ohnishi et al., 2007; Chen et al., 2016). Furthermore,
BYHWD, as a compound, is inherently multi-targeted and its
mechanisms can involve in many pathways and proteins. Given
the complexity of the pathophysiological response to disease and
the complex and diverse processes of the inflammatory response,
the mechanisms by which BYHWD acts in the treatment of ICH
will be investigated further.

Previously, investigations have shown that BYHWD alleviates
inflammation in many diseases in rats, such as cerebral ischemia,
stroke, ischemic heart disease, Alzheimer’s disease, and spinal
cord injury (Iadecola and Alexander, 2001; Liu et al., 2011; Kim
et al., 2020; Ryu et al., 2020). In ICH, BYHWD plays a therapeutic
role through different aspects (Chen et al., 2008; Zhou et al., 2008;
Cui et al., 2015; Cui et al., 2018; Kang et al., 2019; Li et al., 2019).
Studies have shown that BYHWD can modulate the
inflammatory response, mediate apoptosis, decrease ROS
generation (Jin et al., 2013; Shen et al., 2016), promote
neovascularization, improve cerebral circulation, and enhance
brain tissue repair (Liu et al., 2015; Zhang et al., 2016b).
Researchers focused on the NF-κB pathway with BYHWD,
which was mostly limited to the canonical pathway and was
dedicated to reducing the inflammatory effects of the acute phase
of injury. But in fact, in the long term, it is more important for
people with ICH to recover body function and improve quality of
life during the recovery period. BYHWD as a compound
preparation has not been systematically studied to elucidate
the role of specific active ingredients in the treatment of ICH,
but studies have reported the effect of some of the components of
BYHWD on the inflammatory response. Astragalus Radix and
Angelicae sinensis Radix are the two main components of
BYHWD and have been shown to attenuate inflammation (Xu
et al., 2015; Wang et al., 2016). Moreover, the hydroalcoholic
extract of Radix Astragalus significantly reduced the activation of
microglia and astrocytes (Di Cesare Mannelli et al., 2017).
Nonetheless, the exact mechanism is still unclear. Thus, for
the time being, we can only speculate that it is the major
component of BYHWD that regulate NIK. And it is worth
investigating which botanical drugs or components are
targeting NIK, thereby reducing inflammation responses and
promoting recovery after ICH, as well as which cells play a
role in neural recovery.
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FIGURE 6 |Graphic abstract. Schematic of BYHWD attenuate the inflammatory response by inhibiting the noncanonical NF-κB pathway via downregulation of NIK
at the recovery phase of ICH in a rat model.
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CONCLUSION

Taken together, our findings suggest that NIK, a key factor in
the noncanonical NF-κB signaling pathway, plays an important
role in the inflammatory response in ICH, and the mechanism
of BYHWD for treating ICH may involve downregulation of
NIK to attenuate the inflammatory response and promote
recovery (Figure 6).
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