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INTRODUCTION 
 
Coronary artery disease (CAD) remains one of the most 
common causes of death worldwide. As a complex and 
multifactorial disorder, it introduces a heavy economic 

and social burden to people of all countries worldwide 
[1]. Atherosclerosis is the common pathological basis 
for CAD and other related diseases such as myocardial 
infarction (MI), peripheral artery disease and stroke [2]. 
Numerous epigenetic factors and their interactions can 
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ABSTRACT 
 
To evaluate DNA methylation sites and gene expression associated with coronary artery disease (CAD) and the 
possible pathological mechanism involved, we performed (1) genome-wide DNA methylation and mRNA 
expression profiling in peripheral blood datasets from the Gene Expression Omnibus repository of CAD samples 
and controls; (2) functional enrichment analysis and differential methylation gene regulatory network 
construction; (3) validation tests of 11 differential methylation positions of interest and the corresponding gene 
expression; and (4) correlation analysis for DNA methylation and mRNA expression data. A total of 669 
differentially expressed mRNAs were matched to differentially methylated genes. After disease ontology, Kyoto 
Encyclopedia of Genes and Genomes pathway, gene ontology, protein-protein interaction and network 
construction and module analyses, 11 differentially methylated positions (DMPs) corresponding to 11 unique 
genes were observed: BDNF – cg26949694, BTRC - cg24381155, CDH5 - cg02223351, CXCL12 - cg11267527, EGFR 
- cg27637738, IL-6 - cg13104385, ITGB1 - cg20545410, PDGFRB - cg25613180, PIK3R1- cg00559992, PLCB1 - 
cg27178677 and PTPRC - cg09247619. After validation tests of 11 DMPs of interest and the corresponding gene 
expression, we found that CXCL12 was less hypomethylated in the CAD group, whereas the relative expression 
of ITGB1, PDGFRB and PIK3R1 was lower in CAD samples, and CXCL12 and ITGB1 methylation was negatively 
correlated with their expression. This study identified the correlation between DNA methylation and gene 
expression and highlighted the importance of CXCL12 in CAD pathogenesis. 
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contribute to CAD, such as chromatin remodeling, 
DNA methylation, noncoding RNA regulation and 
histone modification [3]. Among these factors, DNA 
methylation is a key epigenetic process for 
atherosclerosis and CAD [4]. 
 
Several previous studies have examined relationship 
between CAD development and DNA methylation. 
When the DNA methylation of critical genes is 
changed, CAD occurs [5]. DNA methylation can also 
inhibit the hub genes from functioning in CAD. 
Following gene promoter hypermethylation, gene 
expression will be downregulated. Conversely, when 
DNA is hypomethylated, the expression level of the 
gene will be upregulated. 
 
To identify more novel CAD-associated DNA 
methylation sites, we carried out and integrated two 
microarray datasets from the Gene Expression Omnibus 
(GEO) repository (methylome and transcriptome), and 
we constructed an integrative regulatory network of 
CAD-related differential methylation and matched 
differential expression of genes (DMaGs). 
Subsequently, we also validated several DMaGs in an 
additional sample to evaluate the potential DNA 
methylation-mRNA expression-CAD regulatory effect.  
 
RESULTS 
 
Data preprocessing and identified differentially 
methylated positions (DMPs) and differentially 
expressed genes (DEGs) 
 
When each gene expression and profile was analyzed 

from GSE23561, we obtained a total of 54 560 
expression probes. After the data were analyzed, 3 882 
DEGs were obtained, of which 471 were 
downregulated, and 3 411 upregulated. The heat map 
and volcano plot of the DEGs are presented in Fig. 1.  
 
We measured DNA methylation levels at 460 295 
methylation sites in GSE107143. After quality control 
and screening procedure, 454 325 methylation positions 
were subjected to differential analysis. In total, 1 2559 
DMPs, including 5 015 hypermethylated and 7 544 
hypomethylated DMPs were identified. According to 
the annotation, 8707 DMPs were physically located 
within 4558 unique genes. The principal component 
analysis (PCA) map and volcano plot of DEGs are 
presented in Fig. 2. 
 
When differentially methylated genes (DMGs) were 
matched to the DEGs, approximately 669 genes 
(DMaGs) had been selected for subsequent analysis 
(Fig. 3). The details of the 669 genes are shown in 
Supplementary Table 1. 
 
Analysis of DMaG functional enrichment 
 
We performed functional and pathway enrichment 
analysis to identify genes with the same function and 
pathway in CAD for further analysis. In the analysis of 
gene ontology (GO) functions, approximately 150 
biological processes, 45 cellular components, and 7 
molecular functions were identified with an adjusted P 
< 0.05. Approximately 50 pathways were enriched for 
the Kyoto Encyclopedia of Genes and genomes 
(KEGG)  pathway and  115 disease ontology  (DO) item  

 
 

Figure 1. The heatmap and volcanoplot for DEGs. (A) For the heatmap, the control samples are shown as a red cluster, and the 
CAD samples are shown as a green cluster. (B) For the volcano plot, the two vertical lines show the 1.2-fold change boundaries and 
the horizontal line the statistical significance boundary (adj-P < 0.05). Items with statistical significance and upregulation are marked 
with red dots, and downregulated with blue dots in the volcano plot. 
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Figure 3. Venn map showing the intersection of DEGs and 
DMGs. 

 

 
 

Figure 4. Functional annotation for DMaGs. (A) KEGG and DO analysis for DMaGs; (B): GO analysis for DMaGs. 
 

 
 

Figure 2. The PCA and volcanoplot for DMPs. (A) For the PCA map, the red strip represents the healthy control and the blue 
strip atherosclerosis samples. (B) For the valcano plot, the two vertical lines are the 0.05-fold change boundaries and the horizontal 
line is the statistical significance boundary (P < 0.05). Items with statistical significance and hypermethylation are marked with red 
dots and hypomethylation are marked with blue dots in the volcano plot. 



www.aging-us.com 1489 AGING 

analysis of the screened DMGs at P < 0.05 (false 
discovery rate, FDR set at < 0.2).  
 
Among these items, GO:0007156 homophilic cell 
adhesion via plasma membrane adhesion molecules, 
GO:0098742 cell-cell adhesion via plasma-membrane 
adhesion molecules, GO:0016339 calcium-dependent 
cell-cell adhesion via plasma membrane cell adhesion 
molecules, GO:0050808 synapse organization, 
GO:0061564 axon development, GO:0043235 receptor 
complex, GO:0000982 transcription factor activity, 
RNA polymerase II proximal promoter sequence-
specific DNA binding and GO:0045296 cadherin 
binding in GO functions; hsa04750 inflammatory 
mediator regulation of transient receptor potential 
(TRP) channels, hsa04020 calcium signaling pathway, 
hsa04060 cytokine-cytokine receptor interaction, 
hsa04514 cell adhesion molecules (CAMs), hsa04010 
mitogen-activated protein kinase (MAPK) signaling 
pathway and hsa04151 phosphatidylinositol 3' -kinase-
Akt (PI3K-Akt) signaling pathway in the KEGG 
pathways; DOID:423 myopathy, DOID:9352 type 2 
diabetes mellitus, DOID:5844 myocardial infarction, 

DOID:0050700 cardiomyopathy, DOID:3393 coronary 
artery disease and DOID:9970 obesity in Disease 
Ontology were related to CAD. The genes related to 
these items were selected for further analysis. 
 
Fig. 4 represents the most valuable items in the 
development of CAD; detailed information is provided 
in Supplementary Table 2. 
 
Protein-protein interaction (PPI) network 
construction and submodule analysis 
 
To elucidate the PPI in these matched genes, data 
analysis was performed using the STRING database, 
from which 1 662 protein pairs and 397 nodes were 
revealed with a combined score > 0.9. Fig. 5A shows 
the net analysis in Cytoscape. For detection using the 
Molecular Complex Detection (MCODE) app, two 
modules with a score > 6 were found and are presented 
in Fig. 5B and Fig. 5C. These two modules included a 
total of 38 genes. After a comprehensive analysis of the 
GO, DO, and KEGG data, we selected 11 DMaGs 
related to the onset of CAD, which demonstrated a high  

 
 

Figure 5. PPI network construction and identification of hub items. (A) PPI network of the selected DMaGs. The edge shows 
the interaction between two genes. Significant modules identified from the PPI network using the molecular complex detection 
method with a score > 6.0. (B) Molecular-1 with MCODE = 11; (C) Molecular-2 with MCODE = 8. A degree was used to describe the 
importance of protein nodes in the network, with a dark color filling denoting a high degree and light color a low degree.  
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Table 1. The matched pairs of DEGs and DMPs. 

DMPs DEGs 
SYMBOL CpG site MAPINFO CHR Δβ P values Fold Change P values 
BDNF cg26949694 27740059 11 9.09E-02 1.13E-02 1.317611 1.77E-03 
BTRC cg24381155 101351808 10 -6.02E-02 2.04E-03 1.2535658 4.28E-03 
CDH5 cg02223351 55017021 7 -6.66E-02 0.00589 1.2556628 3.35E-03 
CXCL12 cg11267527 44290098 10 -7.92E-02 9.84E-03 1.4688135 1.91E-03 
EGFR cg27637738 66364607 16 -7.02E-02 5.63E-03 1.3553032 6.61E-04 
IL6 cg13104385 22723889 7 9.79E-02 2.97E-02 1.2966267 1.80E-03 
ITGB1 cg20545410 32898318 10 -5.96E-02 2.04E-03 1.2151364 1.04E-03 
PDGFRB cg25613180 149510300 5 -5.80E-02 1.69E-02 1.252214 2.28E-03 
PIK3R1 cg00559992 67582213 5 6.07E-02 1.97E-02 1.367476 8.36E-04 
PLCB1 cg27178677 8130265 20 -7.14E-02 2.36E-02 1.2294703 3.35E-03 
PTPRC cg09247619 198636968 1 -7.38E-02 1.94E-04 1.4577283 2.75E-02 

CHR: chromosome. DEG: differentially expressed gene. Δβ: difference of methylation between patients with CAD and 
healthy controls. DMP: differential methylation position. MAPINFO: position in Build 37. 
 

Table 2. Comparison of the demographic, lifestyle characteristics and serum lipid levels between the 
normal and CAD groups. 

Parameter Control CAD test-statistic P 

Number 303 303   
Male/female 92/211 96/207 0.675 0.409 
Age (years)1 56.31±10.45 56.88±10.23 0.944 0.383 
Height (cm) 155.23±6.92 155.58±7.12 1.594 0.222 
Weight (kg) 51.86±7.54 60.56±11.82 21.439 1.77E-005 
Body mass index (kg/m2) 28.49±3.23 31.30±6.25 27.214 2.11E-008 
Waist circumference (cm) 73.43±6.61 87.45±9.87 23.122 3.34E-005 
Smoking status [n (%)] 78(26.0) 105(34.8) 7.690 0.005 
Alcohol consumption [n (%)] 72(23.9) 77(25.5) 0.309 0.578 
Systolic blood pressure (mmHg) 128.23±17.28 129.57±25.16 0.513 0.442 
Diastolic blood pressure (mmHg) 80.54±10.16 82.49±13.35 0.717 0.291 
Pulse pressure (mmHg) 49.64±14.13 50.42±14.59 1.492 0.233 
Glucose (mmol/L) 5.91±1.76 7.64±2.73 17.867 5.02E-005 
Total cholesterol (mmol/L) 4.93±1.13 5.34±1.16 7.131 0.016 
Triglyceride (mmol/L)2 1.49(0.51) 1.53(1.22) 2.137 0.187 
HDL-C (mmol/L) 1.52±0.44 1.06±0.26 8.673 0.013 
LDL-C (mmol/L) 2.84±0.84 2.88±0.79 9.497 0.007 
ApoA1 (g/L) 1.23±0.25 1.17±0.27 0.384 0.518 
ApoB (g/L) 0.83±0.19 0.89±0.32 1.542 0.193 
ApoA1/ApoB 1.67±0.50 1.66±0.57 0.095 0.758 

HDL-C: high-density lipoprotein cholesterol. LDL-C: low-density lipoprotein cholesterol. Apo: Apolipoprotein. 1 Mean ± 
SD determined by the t-test. 2 Because the data were not normally distributed, the value obtained for triglyceride was 
presented as the median (interquartile range), and the difference between the two groups was determined using the 
Wilcoxon-Mann-Whitney test. 
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degree of association simultaneously, as well as in the 
submodule analysis. These genes included brain-derived 
neurotrophic factor (BDNF), beta-transducing repeat 
containing E3 ubiquitin protein ligase (BTRC), cadherin 
5 (CDH5), C-X-C motif chemokine ligand 12 
(CXCL12), epidermal growth factor receptor (EGFR), 
interleukin-6 (IL-6), integrin subunit beta 1 (ITGB1), 
platelet derived growth factor receptor beta (PDGFRB), 
phosphoinositide-3-kinase regulatory subunit 1 
(PIK3R1), phospholipase C beta 1 (PLCB1) and protein 
tyrosine phosphatase receptor type C (PTPRC), and the 
details are presented in Table 1. 

Validation of the DNA methylation–mRNA 
regulatory net 
 
We carried out correlation analysis to detect whether 
DNA methylation causes CAD by regulating gene 
expression. The addition of methyl groups at cytosine-
guanine dinucleotides (CpGs) in regulatory/promoter 
regions in DNA, known as DNA methylation, typically 
leads to transcriptional repression and decreased 
expression of the gene in question [6]. However, the 
DNA methylation was positively correlated with the 
gene expression in BDNF, IL-6 and PIK3R1. We 

 
 

Figure 6. Verification of DNA methylation of interest between CAD and healthy samples. 
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selected all the methylation-mRNA pairs to evaluate the 
relationship between DNA methylation and gene 
expression in a total of 606 samples (303 healthy 
controls and 303 CAD patients). The 606 verification 
samples were matched for age and gender. The weight, 
body mass index (BMI), waist circumference, smoking 
status, serum glucose, serum total cholesterol (TC) and 
low-density lipoprotein cholesterol (LDL-C) levels 
were higher in the CAD than in the control groups 
(Table 2). Eleven DMPs corresponding to 11 unique 
genes were identified, including BDNF – cg26949694, 

BTRC - cg24381155, CDH5 - cg02223351, CXCL12 - 
cg11267527, EGFR - cg27637738, IL-6 - cg13104385, 
ITGB1 - cg20545410, PDGFRB - cg25613180, 
PIK3R1- cg00559992, PLCB1 - cg27178677 and 
PTPRC - cg09247619. First, we analyzed the 
methylation of these 11 genes in two samples, and we 
found that CXCL12 was less hypomethylated in the 
CAD group (Fig. 6). Then, the relative expression of 
CXCL12 was found to be higher in CAD samples, 
whereas those of ITGB1, PDGFRB and PIK3R1 were 
lower in CAD samples (Fig. 7). Next, we performed a 

 
 

Figure 7. Verification of mRNA expression of interest between CAD and healthy samples. 
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correlation analysis between DNA methylation and 
gene expression in the same samples, and we found that 
CXCL12 and ITGB1 methylation was negatively 
correlated with their respective expression (Fig. 8). 
After a comprehensive analysis, we found that CXCL12 
DNA methylation had a significantly negative 
correlation with its expression.  

DISCUSSION 
 
An increasing number of studies have approved the 
relationship between DNA methylation and CAD 
development over the past two decades. In general, the 
relationship between methylation and genes is mainly 
reflected in the following two aspects. When 

 
 

Figure 8. Correlation analyses of DNA methylation and mRNA expression. 
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hypermethylation occurs in the genes promoter region, 
the transcription process is inhibited, resulting in 
downregulation of gene expression. When the promoter 
region is hypomethylated, the opposite effect is 
observed. Another strategy is to observe the change in 
the phenotype after application of a DNA methylation 
inhibitor. In vitro, the key gene in CAD is typically 
targeted, and then methylation of the gene or gene 
promoter is detected [7]. In human studies, genome-
wide methylation has been carried out comparing 
healthy control and CAD samples with 
HumanMethylation array or sequencing [8]. 
Subsequently, the methylation of key genes was also 
validated in human tissue by pyrosequencing or 
methylationspecific PCR (MSP) [9]. In the present 
study, we integrated two sets of gene microarray data 
(DNA methylation and gene expression) for peripheral 
blood samples from arteriosclerosis patients. These two 
datasets had matching age structures, arteriosclerosis 
diseases and source of microarray samples sources. We 
identified genes that with the same differential 
methylation and differential expression. Finally, in 
CAD and normal samples, we validated that CXCL12 
cg11267527 methylation was related to the 
development of CAD. 
 
Recently, several studies have demonstrated that 
elevated serum CXCL12 expression is positively 
correlated with the incidence of CAD [10, 11]. 
Chemokines, for the sake of similarities in their amino 
acid sequences, can be defined on a structural basis into 
four major families, including the CXC, CX3C, CC and 
C subclasses [12]. Previous studies have shown that 
chemokine CXC classes, such as CXCL12, played 
important role in the process of angiogenesis and 
angiostasis [13]. According to the presence or absence 
of an ELR (glutamine-leucine-arginine) motif 
immediately adjacent to CXC, the CXC chemokines are 
further divided in two subgroups, ELR+ and ELR−. The 
ELR− subgroup of CXC chemokines, such as CXCL12 
is a chemoattractant for lymphocytes, monocytes and 
NK cells [14]. Genome-wide association studies 
(GWASes) in more than 100 000 people have revealed 
novel loci associated with CAD and MI, presenting 
exciting opportunities to discover novel disease 
pathways. One of the identified loci is on chromosome 
10q11, near the gene for the chemokine CXCL12, which 
has been implicated in CAD in both mouse and human 
studies. These GWASes demonstrate that CXCL12 may 
emerge as a potential therapeutic target for 
atherosclerosis and thrombosis [15]. All these causes 
can be attributed to the inflammatory process. Several 
previous studies have shown that atherosclerosis is a 
chronic inflammatory reaction, comprising two 
remarkable steps: smooth muscle cell recruitment and 
foam cell formation. CXCL12 can also play a crucial 

role in the accumulation of smooth muscle progenitor 
cells (SPCs), participate in the inflammatory response 
and induce endothelial cells differentiation into foam 
cells, eventually lead to arteriosclerosis [16]. In the 
current research, we found that the CXCL12 
cg11267527 was in the promoter region of the gene. In 
this case, combined with previous studies, we 
speculated that hypomethylation of the promoter region 
might lead to the upregulation of gene expression, 
which was increased during the inflammatory response, 
resulting in endothelial cells differentiation into foam 
cells to cause vascular endothelial injury and eventually 
atherosclerosis. 
 
Additionally, smoking is a risk factor for many human 
diseases, and DNA methylation has been related to 
smoking [17]. Zhu et al. have identified DNA 
methylation markers associated with smoking in a 
Chinese population, including some markers that have 
also been correlated with gene expression. Exposure to 
naphthalene, a byproduct of tobacco smoke, may 
contribute to smoking-related methylation [18]. Zhang 
et al. found that smoking is closely related to DNA 
methylation and increases all-cause mortality in 
cardiovascular diseases [19]. In our study, we found that 
the percentage of smoking in CAD patients was higher 
than in controls. One reasonable explanation for this 
observation is that smoking caused changes in DNA 
methylation, resulting in abnormal gene expression and 
leading to the onset of the disease. 
 
The present study has some limitations. First, although 
the microarray samples had a matched age structure, as 
well as the same diseases and sample resources, the 
batch effect would still lead to some deviation in the 
final results. Second, the sample size of the microarray 
was somewhat small. Although our study has analyzed 
two different types of datasets, a low statistical 
efficiency was still unavoidable. Third, the patients in 
this study were from one hospital. Thus, it is unknown 
whether there was a difference would be observed for 
patients from different areas and of various races. 
Therefore, the validity of this analysis should be further 
tested in more prospective cohorts. Finally, the specific 
mechanism of the (DNA methylation)-mediator 
(mRNA)-outcome (CAD) net for regulating the 
pathogenesis of CAD has not been fully validated in 
vivo and in vitro. 
 
In conclusion, we downloaded 2 datasets from GEO and 
combined differentially methylated and expressed 
genes. After functional analysis, we selected 11 DMaGs 
for validation in 606 samples (303 CAD patients and 
303 healthy controls). CXCL12 was found to be 
hypomethylated and to exhibit upregulated gene 
expression in CAD patients. Additionally, correlation 
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analysis showed that DNA methylation caused CAD by 
regulating gene expression. 
 
MATERIALS AND METHODS 
 
Microarray data 
 
Two profile data sets were selected. GSE23561 [20] 
was retrieved from the GPL10775 Human 50K Exonic 
Evidence-Based Oligonucleotide array for gene 
expression. Microarrays were performed for 35 
subjects, including 6 CAD patients and 9 healthy 
controls (mean age = 50.53 ± 12.17, 7 males and 8 
females). Log (base 2) transformation of the 
downloaded raw data was performed with the 
GEOquery module available in R [21]. The CEL files 
were transformed into the expression value matrix using 
the Affy package in R with robust multiarray (RMA) 
methods to normalize the expression value matrix [22]. 
Subsequently, Bioconductor in R was used to convert 
the probe data to the gene [23]. The expression of some 
probes was too high or too low. We determined that 
such probes were outliers and had to be removed 
without further analysis. In cases in which many probes 
corresponded to one gene, we used the average 
expression value to screen for differential genes. For 
any gene that corresponded to multiple probes, the 
mean expression value of such a gene should be chosen. 
GSE107143 [24] was designed as bisulfite converted 
DNA from whole the blood of 8 atherosclerotic patients 
and 8 healthy subjects were hybridized to the Illumina 
Infinium HumanMethylation 450 BeadChip (mean age 
= 62.25 ± 18.18, 16 males and no females). These data 
were processed using the GEO2R online analysis tool 
(https://www.ncbi.nlm.nih.gov/geo/geo2r/) to compare 
atherosclerotic patient samples and normal samples 
[25]. The samples for these two datasets were age-
matched (P = 0.062), and the source of the microarrays 
was peripheral blood. 
 
DEGs and DMGs analysis 
 
The limma package in R [26] enabled the identification 
of DEGs based on the comparisons between the control 
and the CAD samples, and provided good normalization 
of the expression matrix. The threshold values were 
|log2-fold-change| > 1.2 and P < 0.05 (FDR < 0.2). The 
DMPs were calculated by GEO2R based on 
comparisons between the controls and atherosclerotic 
patients. DMPs located in the gene region were 
assigned to the corresponding genes, which were 
defined as DMGs. The threshold values were | log2-
fold-change | (Δβ) > 0.05 and P < 0.05 (FDR < 0.2). 
Subsequently, the differentially methylated genes were 
matched to the DEGs, and only the matched genes 
(DMaGs) could be selected for further analysis. 

DMaGs functional enrichment analysis 
 
Studies of large-scale transcription data or genomic data 
are usually performed based on functional enrichment 
analyses consisting of DO, KEGG pathway and GO 
analyses. In the current study, we used clusterProfiler 
and DOSE package in R [27] to complete the above 
analysis. 
 
PPI network construction and module analysis 
 
The protein prediction and experimental interactions 
were analyzed using the STRING database (version 
10.5) [28]. Gene fusion, coexpression experiments, 
databases, text mining, neighborhoods and 
cooccurrence are typical prediction methods for the 
database. In addition, a combined fraction was used to 
show the interaction of protein pairs in the database. In 
this study, DMaGs were mapped to PPIs, and a 
combined score > 0.9 was used as the cutoff value [29] 
to analyze key genes in the network. Degrees served as 
a valuable way to determine the role of protein nodes in 
the network. Network modules represented one of the 
cores of the protein networks and may have specific 
biological implications. The MCODE in the Cytoscape 
software package (version 3.61) [30, 31] was used to 
identify the major and the most notable clustering 
modules. Subsequently, we choose EASE ≤ 0.05 and a 
count ≥ 2 for the cutoff value, and a MCODE score > 6 
as the threshold for further analysis. 
 
Sample verification and diagnostic criteria 
 
A total of 606 subjects had complaints about their 
chests in the First Affiliated Hospital, Guangxi Medical 
University from Jan. 1, 2015 to Dec. 31, 2017. The 
levels of TC, triglyceride (TG), high-density lipoprotein 
cholesterol (HDL-C), LDL-C, apolipoprotein (Apo) A1, 
ApoB and the ratio of ApoA1 to ApoB defined as 
normal values were 3.10–5.17, 0.56–1.70, 0.91–1.81, 
2.70–3.20 mmol/L, 1.00–1.78, 0.63–1.14 g/L, and 1.00–
2.50; respectively [32]. Since angiographic examination 
was performed for CAD and/or other suspected 
diseases, all participants were examined using coronary 
angiography by two experts. CAD was confirmed as 
more than one of the three major coronary arteries or 
their major branches (branched diameter ≥ 2 mm) (≥ 
50%) [33]. Participants who had a history of CAD, type 
I diabetes mellitus and congenital heart disease were 
excluded. Through clinical examination, medical 
history and questionnaires, the control group was 
judged to have no CAD. Medical history and general 
information were obtained using a standard 
questionnaire [34]. The investigation conformed to the 
rules of the Helsinki Declaration of 1975 
(http://www.wma.net/en/30publications/10policies/b3/) 
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and the new edition of 2008. The research design was 
approved by the Ethics Committee of the First 
Affiliated Hospital of Guangxi Medical University (No: 
Lunshen-2011-KY-Guoji-001; March 7, 2011). All 
procedures are conducted in conformity to ethical 
standards. Written informed consent was obtained from 
all the participants upon receipt of a complete 
explanation of the study. In the initial evaluation, all 
clinical data were collected based on the medical 
records. Clinical data collection and biochemical 
measurements were performed according to previous 
studies [35]. 
 
Validation of differential methylation and mRNA 
expression of DMaGs of interest 
 
Focused on identified regulatory network, we selected 
eight DMaGs to validate methylation and gene 
expression in an additional sample, respectively. These 
selected DMaGs met the following criteria: (1) the 
DMP was located in the promoter region; (2) the 
methylation level of the DMP was significantly 
correlated with gene expression; (3) the CpG 
dinucleotide content was enriched in the 300-bp up- and 
downstream regions around the DMP; and (4) genes in 
the identified regulatory network were prioritized. 
Targeted bisulfite sequencing was used to validate the 
DMPs. Primer design and optimization were performed 
by GeneSky Corporation (Shanghai, China). The 
primers were designed to flank each targeted CpG site 
and span 100-300 bp. The primers information is 
summarized in the Supplementary Table 3.  
 
Peripheral blood samples were obtained from CAD 
patients and healthy controls. The peripheral blood 
mononuclear cells (PBMCs) were isolated from 15 ml 
peripheral blood by density gradient centrifugation 
using Lymphoprep (Sigma, life science, USA) within 4 
hours after phlebotomy. Total RNA was isolated from 
PBMCs by standard phenol-chloroform extraction using 
TRIzol reagent (Invitrogen Life Technologies, 
Carlsbad, USA) according to the manufacturer’s 
instructions, and the concentration was measured using 
a Nanodrop ND-1000 Spectrophotometers (Thermo 
Fisher Scientific, Waltham, USA). The RNA quality 
was checked using a Bioanalyzer Nanochip (Agilent 
Technologies, Santa Clara, USA). Genomic DNA was 
isolated using genomic DNA extraction kits (Life 
Technologies, Gaithersburg, USA), and the DNA 
integrity was analyzed by agarose gel electrophoresis. 
Following primer validation, study specimen DNA was 
bisulfite-converted using the EZ DNA Methylation-
Gold Kit (ZYMO, CA, USA). Samples were amplified, 
barcoded and sequenced (MiSeq, Illumina, Inc., San 
Diego, USA) using the paired-end sequencing protocol 
according to the manufacturer’s guidelines. 

Quantitative real-time PCR (qRT-PCR) was used to 
validate the differential expression for the above eleven 
selected DMaGs. Total RNA from PBMCs was isolated 
using TRIzol reagent, according to the instructions 
recommended by the manufacture, and reverse-
transcribed. Reverse transcription was performed in a 
total volume of 20 μl, which contained 1 μl oligo (dT) 
(100 μM), RNase-free water 11 μl, 25 mM each dNTPs 
0.4 μl, recombinant RNase inhibitor 0.5 μl, Moloney 
murine leukemia virus (M-MLV) 0.5 μl, 5 × M-MLV 
buffer 4 μl and RNase-free water 2.6 μl, and took place 
under the conditions of 42 °C for 60 min, 85 °C for 5 
min, and 4 °C forever. The cDNA served as template 
for amplification by qPCR using SYBR Green assays. 
The assay was performed using a SYBR Green 
MasterMix kit in a volume of 10 μl, which contained 
0.2 × cDNA 1 μl, 2 × SYBR master mix 5 μl and 0.625 
mM each primer 4 μl. The cDNA amplification was 
monitored using a Roche light cycler 480II under 1 
cycle of pre-degeneration of 95°C for 10 min, 40 cycles 
of 95 °C for 10 s and 60 °C for 20 s. This assay was 
carried out in triplicate for each sample, including a no-
template control. Ct values were averaged for each 
sample after two PCR experiments. Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) served as the 
mRNA’s internal standard. The amplification conditions 
were performed according to the instructions. The 
primer information is summarized in Supplementary 
Table 4. Relative quantification of expression was 
performed compared with the internal standard using 
the 2 -∆∆CT method. 
 
Statistical analysis 
 
The statistical software package SPSS 22.0 (SPSS Inc. 
Chicago, IL, USA) and Prism 7.0 (GraphPad Software) 
were used for all statistical analyses. Chi-square 
analysis was applied to assess differences in ratios 
among groups. Continuous data are presented as the 
means ± SD for those that were normally distributed, 
and the median and quartile ranges for TG that were not 
normally distributed. Comparison of continuous data 
sets was performed using Mann-Whitney nonparametric 
and Kruskal-Wallis tests [36]. R software (version 
3.5.0) was used for further bioinformatic analysis. 
Pheatmap and ggplot2 packages (https://cran.r-
project.org/) were utilized for the heat map, volcano 
plot, PCA analysis and Venn map. To determine 
whether the methylation level was associated with gene 
expression, we extracted mRNA data from the genome-
wide mRNA expression profile based on same 
annotated gene symbol with DMaGs, followed by 
correlation test using GraphPad Prism (Version 7.0) and 
retesting by SPSS. For those genes with a significant 
correlation, the mRNA expression levels between CAD 
patients and healthy controls were compared using the 
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Student’s t-test (calculated by GraphPad Prism and 
retested by SPSS). 
 
Abbreviations 
 
Apo: apolipoprotein; BDNF: brain-derived neurotrophic 
factor; BMI: body mass index; BTRC: beta-transducing 
repeat containing E3 ubiquitin protein ligase; CAD: 
coronary artery disease; CAMs: Cell adhesion 
molecules; CDH5: cadherin 5; CXCL12: C-X-C motif 
chemokine ligand 12; DEGs: differentially expressed 
genes; DMaGs: differential methylation and matched 
differential expression of genes; DMGs: differentially 
methylated genes; DMPs: differentially methylated 
positions; DO: disease ontology; EGFR: epidermal 
growth factor receptor; FDR: false discovery rate; 
GAPDH: glyceraldehyde-3-phosphate dehydrogenase; 
GEO: Gene Expression Omnibus; GO: gene ontology; 
GWAS: Genome-wide association study; HDL-C: high-
density lipoprotein cholesterol; IL-6: interleukin-6; 
ITGB1: integrin subunit beta 1; KEGG: Kyoto 
Encyclopedia of Genes and genomes; LDL-C: low-
density lipoprotein cholesterol; MAPK: Mitogen-
activated protein kinase; MCODE: molecular complex 
detection; MI: myocardial infarction; M-MLV: moloney 
murine leukemia virus; MSP: methylationspecific PCR; 
PBMCs: peripheral blood mononuclear cells; PCA: 
principal component analysis; PDGFRB: platelet 
derived growth factor receptor beta; PI3K-Akt: 
phosphatidylinositol 3' -kinase-Akt; PIK3R1: 
phosphoinositide-3-kinase regulatory subunit 1; 
PLCB1: phospholipase C beta 1; PPI: protein-protein 
interaction; PTPRC: protein tyrosine phosphatase 
receptor type C; qRT-PCR: quantitative real-time PCR; 
RMA: robust multi-array; SPCs: smooth muscle 
progenitor cells; TC: total cholesterol; TG: triglyceride; 
TRP: transient receptor potential. 
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