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A B S T R A C T   

This study investigates the functional significance of assorted variants of uncertain significance (VUS) in 
euchromatic histone lysine methyltransferase 1 (EHMT1), which is critical for early development and normal 
physiology. EHMT1 mutations cause Kleefstra syndrome and are linked to various human cancers. However, 
accurate functional interpretations of these variants are yet to be made, limiting diagnoses and future research. 
To overcome this, we integrate conventional tools for variant calling with computational biophysics and 
biochemistry to conduct multi-layered mechanistic analyses of the SET catalytic domain of EHMT1, which is 
critical for this protein function. We use molecular mechanics and molecular dynamics (MD)-based metrics to 
analyze the SET domain structure and functional motions resulting from 97 Kleefstra syndrome missense variants 
within the domain. Our approach allows us to classify the variants in a mechanistic manner into SV (Structural 
Variant), DV (Dynamic Variant), SDV (Structural and Dynamic Variant), and VUS (Variant of Uncertain Sig-
nificance). Our findings reveal that the damaging variants are mostly mapped around the active site, substrate 
binding site, and pre-SET regions. Overall, we report an improvement for this method over conventional tools for 
variant interpretation and simultaneously provide a molecular mechanism for variant dysfunction.   

1. Introduction 

Over the last three decades, extensive work has recognized that 
histone modifications are central to epigenetic regulation. Epigenetic 
dysregulation caused by mutations in components of histone-modifying 
enzymes leads to various human diseases known as chromatinopathies 
[1]. EHMT1, also called G9a-like protein (GLP), catalyzes mono- and 
di-methylation of Lys9 of histone H3 (H3K9me1 and H3K9me2) for gene 
silencing [2]. EHMT1 alterations are associated with Kleefstra syndrome 

(OMIM 610253), a neurodevelopmental disorder, and different tumor 
types, including uterine, adrenocortical and skin melanoma, and stom-
ach adenocarcinoma [3]. To benefit patients with cancer and suspected 
chromatinopathies, improved methods are necessary to interpret 
EHMT1 genetic alterations. 

Belonging to the SET domain-containing methyltransferase family, 
the human EHMT1 protein consists of 1298 amino acids and is charac-
terized by distinctive domains, including the transactivation domain at 
the N-terminus, the cysteine-rich domain, the ankyrin repeat domain 
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with scaffolding function, and the enzymatic SET domain at the C-ter-
minus. Responsible for the writer function of EHMT1, the SET domain 
catalyzes mono- and di-methylation of the H3K9 residue. Reader func-
tion is conferred by the ankyrin repeat domain, which recognizes the 
same histone modification (H3K9me1/2) and mediates higher-order 
complex formations for gene and epigenome regulations [4]. Thus, 
although the full-length protein cohesively exerts its function, the 
impact of mutations on domain-specific molecular mechanisms should 
be considered, as each domain represents an independent folding unit 
and possesses a discrete function. While numerous Kleefstra syndrome 
germline variants have been identified in patients [5,6], their pathoge-
nicity and dysfunctional molecular defects are poorly understood. Cur-
rent variant interpretations rely heavily on 2D sequence-based 
information and limited structural and functional data [7]. Thus, 
computational approaches and multiplexed experimental data are ur-
gently needed to improve prediction power and delineate potential 
dysfunctional mechanisms [8]. 

This study reports a domain-wide analysis of SET catalytic domain 
variants associated with the Kleefstra syndrome congenital disease to fill 

this knowledge gap. The SET catalytic domain variants have unique 
molecular features that are shared by its homolog EHMT2 and other 
members of the SET domain-containing methyltransferases. We studied 
97 missense variants (on 82 residues) within the EHMT1 SET domain 
using the available crystal structure (PDB access code 3HNA) to predict 
their impacts on the structural and dynamic properties of the protein. 
We applied selective analytical tools from each protein layer repre-
senting universal or protein-specific and global or local considerations, 
including folding/stability energy, structure perturbation, binding en-
ergy calculations, local geometry analyses, and all-atom MD simula-
tions. These multi-tiered mechanistic-based analyses complement 
existing prediction tools and further enhance the mutational impact 
assessments highly relevant to protein structure and function. Thus, this 
study represents a novel approach to understanding the functional ef-
fects of these alterations by providing a broader characterization of 
genomic variants with dynamic modeling specific to a rare disease- 
associated SET domain. 

Fig. 1. Protein architecture and Kleefstra syndrome variants of EHMT1. (A) Domain structure of EHMT1 and the distribution of Kleefstra syndrome missense variants 
within the SET domain. In the zoomed-up window, the disease cases are tabulated by the number of independent missense mutations found on a particular residue 
and reported to ClinVar. The subdomains are shaded with the same colors used in Figs. 1A and 1B, and the individual bars are colored according to the current 
ClinVar annotations as shown in Fig. 1C. (B) Molecular structure of the EHMT1 SET domain. The same color codes for the sub-domains shown in (A) are used. The 
bound H3K9me peptide and the SAH cofactor are depicted as a ball-and-stick model. The structural zinc ion cluster is also indicated. (C) Current annotations of the 
variants under study in ClinVar and mapping of the 97 Kleefstra syndrome variants onto its molecular structure. Over 61 % of the variants (60 out of 97), 32.0 % (31 
out of 97), and 6.2 % (6 out of 97) are currently classified as VUS, (likely) benign, and (likely) pathogenic, respectively. Among these, 30 variants have also been 
identified as cancer somatic variants. These mutations are distributed over the entire sequence and its molecular structure, with slightly higher frequencies in the pre- 
SET and the core SET domains. 
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2. Results 

2.1. Defining the mutational germline landscape associated with the 
causality of Kleefstra syndrome 

Kleefstra syndrome is a rare genetic disorder caused by mutations in 
EHMT1. Many of these alterations are de novo mutations [5,6]. To study 
the impact of SET domain missense mutations, we extracted all EHMT1 
missense variants found in patients diagnosed with Kleefstra syndrome 
from ClinVar, the most comprehensive public archive of genomic vari-
ations and interpretations of their relationships to diseases [9]. Fig. 1A 
shows the distribution, frequency, and database sources for all Kleefstra 
syndrome variants under study. We find no apparent ‘hot-spot’ regions, 
as variants are scattered across the entire sequence and 3D structure. 
Slightly higher alteration frequencies are found within the pre-SET and 
the core-SET domains, but the differences are insignificant. Fig. 1B 
shows the molecular structure of the EHMT1 SET domain, and Fig. 1C 
shows the variant mapping onto the molecular structure and their cur-
rent pathogenicity annotations in ClinVar. Although professionals 
routinely use these database annotations as variant interpretation 
guidelines, most Kleefstra syndrome variants are still classified as vari-
ants of unknown significance due to insufficient evidence and incom-
plete impact assessment. 

Among the 97 SET domain variants, 6 are currently annotated as 
pathogenic or likely pathogenic, and 31 are annotated as benign or 
likely benign in ClinVar (Fig. 1C). Among the pathogenic variants, 
C1073Y and R1197W have been biochemically characterized and 
proven to be damaging [10] and thus serve as positive controls for this 
study. In addition, among the benign variants, S1004N and V1006M 
have relatively high allele frequencies (> 1.0 × 10− 4) in the healthy 
population gnomAD database [11] and are used as potentially tolerated 
or neutral variants for this study. These S1004N and V1006M variants 
are also indicated as SNPs in the Single Nucleotide Polymorphism 
Database (dbSNP) and are expected to have no appreciable deleterious 
or pathogenic effects. Among the 97 variants, 30 have been observed 
somatically in human cancers [12]. While EHMT1 and EHMT2 are 
commonly altered in human cancers, Kleefstra syndrome variants are 
only found in EHMT1. Thus, this set of variants represents 
EHMT1-specific unique germline variants and more common disease 
variants. 

2.2. Determining the inherent dynamic motions that characterize the 
molecular function of the EHMT1 SET domain 

The EHMT1 SET domain is divided into sub-domains: the canonical 
core-SET, pre-SET, post-SET, and a small insertion within the core-SET 
domain architecture, termed I-SET (Fig. 1B). The post-SET and I-SET 
make up the substrate recognition site. In contrast, the active site is 
primarily located within the core-SET domain. The pre-SET region 
contains the structural zinc ion cluster and a dimerization interface with 
either EHMT1 or EHMT2 for biological homo- and hetero-dimer func-
tional units. The MD trajectories of the wild type in complex with the 
SAM cofactor and the structural zinc ions show a coordinated movement 
with high mobility in the pre-SET region, which provides a dimerization 
interface. At the same time, relatively rigid motions in the active and 
substrate binding sites are observed (Supplementary Fig. S1 and Sup-
plementary Movie M1). The crystal structures of the apo and H3 peptide- 
bound forms (PDB codes 2IGQ and 3HNA, respectively) show nearly 
identical conformations near the active and substrate binding sites. 
Thus, the histone H3 tail binds to the pre-formed stable recognition site 
and readily presents its H3K9me1 substrate moiety to the active site. 

2.3. Comprehensive assessment of EHMT1 variants using conventional 
genomic tools and computational biophysics and biochemistry 

We aim to combine highly correlated impact scores from each 

protein layer, namely sequence, structure, and dynamics. Current an-
notations of genomic variants are primarily based on 2D sequence 
conservation/residue coevolution, the physicochemical property of the 
substituted amino acid, and local structure considerations such as sec-
ondary structures [7,13]. Commonly used 2D sequence-based variant 
calling methods include SNP&Go [14], PROVEAN [15], PolyPhen2 [16], 
Rhapsody [17], CADD [18], and REVEL [19]. Combined annotators, 
such as CADD and REVEL, show better performance [20]. However, we 
recognize that protein function is not solely determined by its chemical 
composition but also by its molecular structure’s spatial arrangement 
and dynamic nature. Therefore, we applied selective analytical mea-
sures that reflect both structural and dynamic aspects of the protein to 
investigate the disruptive effect of each mutation. Specifically, we 
conducted a series of static or dynamic structure-based analyses using 
either the original crystal structure (stressed) or energy-minimized 
structure (relaxed). Initially, we applied metrics that are universal to 
proteins, such as folding energy, protein stability, global/local structural 
perturbation, energetic frustration, and dynamics-based analyses, 
including root mean square deviation (RMSD), root mean square fluc-
tuation (RMSF), a radius of gyration (Rg), and solvent accessible surface 
area (SASA). Subsequently, we calculated correlations among these 
scores to identify more functionally relevant, thus evolutionally 
conserved metrics for overall damaging assessment (Fig. 2). These mo-
lecular features have been essential to maintaining organismal fitness 
during the evolutionary selection process [21–23]. Thus, we hypothe-
size that integrating 2D sequence-based scores with scores from protein 
3D structure and 4D time-dependent dynamic behaviors for molecular 
fitness will enhance the prediction power of variant interpretation as 
presented in our previous work [24–27]. The current study further 
demonstrates the importance of considering protein-specific and 
mechanistic-based interpretations of variants for clinical 
recommendations. 

2.4. Analysis with the two-domain structure, congruence among 
individual scores, and unraveling the need to perform domain-wide 
analysis 

We used various analytical measures that reflect both structural and 
dynamic aspects of the protein to probe the disruptive effect of each 
mutation. We initially constructed a two-domain structure containing 
both SET and ankyrin repeat domains by superposing the overlapping 
region (13 residue-long alpha-helix at the end of the ankyrin repeat 
domain and the beginning of the SET domain) of individual domain 
structures (PDB access codes 3HNA and 6BY9). Although the over-
lapping helix might be at a different position in each domain structure 
due to different crystal packing environments, the backbone torsion 
angles of the flexible linker (9 residues) leading the overlapping helix 
should have prevented the formation of unnatural or drastically shifted 
conformations and the energy minimization prior to MD simulation 
should allow recovering the low-energy native-like structure. We then 
performed various calculations using universal metrics from each pro-
tein layer (Fig. 2A). We used the difference values between the wild type 
and the variants as potential damaging scores [27]. We expected a 
correlation among the impact scores from all three layers of proteins, as 
protein sequence, structure, and dynamics are highly coupled, and their 
coupling strongly influences the evolutionary selection unique to each 
protein’s molecular function [28–30]. The cross-correlation matrix 
calculated with the individual scores revealed that all structure-based 
scores showed noticeable congruence with sequence-based scores, 
reaffirming the interrelationship between protein structure and 
sequence and the effectiveness of structure-based metrics as universal 
metrics for all proteins (Fig. 2A). However, MD-based scores showed 
little congruence with the sequence-based scores, possibly due to dif-
ferential sets of functionally relevant metrics for each domain with a 
unique function. We conducted a domain-wide impact analysis using 
individual domain structures to test this possibility. 
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Fig. 2. Identification of congruent and domain-specific MD-based metrics by the cross-correlation matrix of the individual damaging scores. (A) Cross-correlation 
matrix with various measures of universal and protein-specific metrics using the two-domain structure. Although all 3D structure-based scores (red labels) show 
notable congruence with the 2D sequence-based scores (blue labels), nothing emerged from the 4D MD-based scores (purple labels). (B) Cross-correlation matrix with 
various measures of universal metrics using the SET domain-only structure. Among the 4D MD-based scores, RMSF-related scores (indicated by a square bracket on 
top) and SASA (indicated by an arrow) show better congruence with the sequence-based scores. (C) Cross-correlation matrix with various measures of universal 
metrics using the biological EHMT1:EHMT2 SET domain heterodimer structure. Among the 4D MD-based scores, in addition to RMSF-related scores and SASA, 
RMSD-related scores also show congruence, implying these features have been evolutionally conserved for the EHMT1 SET domain. (D) Cross-correlation matrix with 
various measures of universal metrics using the ankyrin repeat domain-only structure. Rg is the only congruent and functionally relevant metric among the 4D MD- 
based scores. A few other sporadic positive (blue) and negative (red) correlations for other MD-based scores are inconsistent and believed to be due to a higher level 
of background noise because of the lower number of variants in this sample. 
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2.5. Developing domain-specific effective and functionally relevant 
metrics increases the yield of discovering damaging variants 

Unlike the two-domain structure analysis, when we performed the 
individual domain-wide analyses, positive correlations showed up for 
MD-based scores although the actual correlation values were lower than 
the structure-based scores. All structure-based scores showed significant 
congruence with the sequence-based scores as expected, and some 
dynamic-based scores showed notable agreement with other scores in a 
domain-specific manner. For the monomeric SET domain, RMSF-related 
scores and SASA showed congruence with the sequence-based scores 
(Fig. 2B). Despite weak correlations, these differences are quite striking, 
and we hypothesize that they have implications. Although the functional 
relevance of SASA cannot be readily explained (perhaps it is related to 
dimerization or some unknown protein-protein interactions), correla-
tions with the RMSF-related scores parallel our previous findings for the 
Jumonji catalytic domain of KDM6A [27]. Although this needs to be 
tested against many different enzymes, the concerted fluctuating fre-
quency of dynamic motions throughout the molecule might be a com-
mon property essential for all reactions to be optimally catalyzed and 
has been conserved [31–34], thus being an effective measure of func-
tional disruption. 

When the biological heterodimeric SET domain was used as a 

starting model [35], in addition to RMSF-related scores and SASA, 
RMSD-related scores also showed noticeable congruence (Fig. 2C). This 
might be related to the relative orientation between the monomers, 
which can play a critical functional role (Supplementary Fig. S2). 
However, dimerization interaction energies show weaker correlations 
with the sequence-based scores (Supplementary Fig. S3). On the other 
hand, for the alpha-solenoid ankyrin repeat scaffolding domain, only Rg 
was a congruent and effective metric for functional disruption (Fig. 2D). 
For EHMT1, each domain has a different set of functionally relevant and 
more effective metrics for functional disruption. When scored collec-
tively, the true signals can be canceled out, producing low correlations 
with other scores (Fig. 2A). As a result, the MD-based damaging scores 
from the two-domain model can become less reliable. Thus, we used the 
individual domain structures to complete domain-specific and compre-
hensive molecular fitness analyses. In this article, we present the data 
with the catalytic SET domain; the results with the ankyrin repeat 
domain will be published later with validation data. The entire molec-
ular fitness scores for the SET domain are provided in Supplementary 
Table S1, and their plots against the variants for each metric are shown 
in Supplementary Fig. S4. 

Fig. 3. Identification of additional domain function-specific MD-based metrics, the final set of metrics used for overall impact scoring, and reclassification of the 
variants. (A) Key functional elements in the active site. In addition to the SAM cofactor, two tyrosine residues (Tyr 1155 and Tyr 1242) play critical roles in catalysis. 
(B) Cross-correlation matrix with additional catalysis-related metrics and the universal MD-based metrics previously identified such as RMSF and SASA (separated by 
the cyan bar among the MD-based metrics). Noticeably congruent and functionally relevant domain-specific metrics are indicated by red arrows. Tyr and Tyr2 refer 
to the aligning Tyr1155 and the catalytic Tyr1242 residues, respectively. (C) Cross-correlation matrix of the scores from the finally chosen metrics for meta-score 
calculations that are concordant and functionally relevant, thus have been evolutionally conserved. (D) Mapping of pre- and post-classified EHMT1 Kleefstra syn-
drome variants. Meta-scoring reveals that the damaging variants (red) are concentrated near the substrate binding site, active site, and pre-SET region which contains 
the structural zinc-ion cluster and the dimerization interface, while the tolerated variants (blue) are primarily found in the periphery or surface of the molecule. Pie 
charts at the bottom show the numbers of the pre- and post-classified variants in each category. 
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2.6. Parametrizing SET domain-specific metrics extends the predictive 
power of evaluating damaging variants in enzymatic domains 

The SET domain is well-known for its catalytic mechanism involving 
critical functional roles of the SAM cofactor and two tyrosine residues 
[36,37]. Tyr1155 aligns the substrate lysine for the methyl transfer re-
action, while Tyr1242 enhances the electrophilicity of the departing 
methyl group of the SAM cofactor (Fig. 3A). Optimal enzymatic activity 
relies on local geometry and mutual interactions, which can be affected 
by disease-causing mutations. Thus, we measured time-dependent 
interaction energies to assess potential damaging impacts and moni-
tored the distances between critical functional elements from the mo-
lecular dynamics (MD) trajectories. We also calculated the differences 
between the wild type and the variants for the peptide interaction en-
ergy (substrate binding). We observed congruence between the 
sequence-based scores and all essential interaction- and distance-related 
scores, except for the SAM cofactor and the substrate target Lys in-
teractions, when we calculated cross-correlations between these values 
and other scores (Fig. 3B). Thus, in the overall impact scoring, we 
included these domain-specific metrics in addition to the congruent 
universal metrics such as RMSF and SASA (Fig. 3C). This confirmed the 
functional relevance of these metrics and supported their inclusion in 
the overall impact scores. 

2.7. Data integration and modeling allow meta-scoring and re- 
classification of EHMT1 SET domain Kleefstra syndrome variants 

We selected four structure-based and seven dynamics-based metrics 
that show congruence with sequence-based scores and combined them 
with four sequence-based scores to extend the predictive power of 
evaluating damaging variants in enzymatic domains (Fig. 3C). These 
metrics were used to compute an overall score for each variant, which 
can be numerically represented for practical use by clinicians and ge-
neticists. However, calculating the final scores simply by summing up 
the individual scores is inappropriate, as the measurements for indi-
vidual metrics are given in different units and have distinct ranges. 
Therefore, we chose to use Z-score conversion and scaling to transform 
the individual scores into a zero to one range, commonly used by many 
sequence-based tools [38]. We then averaged them for the final scores 
(Supplementary Table S1). 

We used suggested thresholds for each prediction tool as guidelines 
to classify the variants. We re-classified the variants into three groups: 
tolerated (0–0.3), uncertain (0.3–0.4), and damaging (0.4–1.0) based on 
their overall damaging scores. The re-classified variants are shown in 
Fig. 3D. This results in a balanced number of variants in each category. 
Out of 97 variants evaluated, 62 (63.9 %) were classified as damaging, 9 
(9.3 %) were classified as tolerated, and 26 (26.8 %) remained as vari-
ants of uncertain significance (VUS). However, this significantly 
improved from the 60/97 (61.9 %) VUS identified in the current ClinVar 
annotations. The damaging variants are mostly found near the func-
tional regions, while the tolerated variants are located on the periphery 
or molecular surface. Our analysis showed that the annotations of 
currently classified VUS have been improved using our method, and our 
comprehensive structural genomics approach enhanced the prediction 
power of genomic variant interpretation. 

2.8. A molecular biophysics classification of variants and EHMT1/2 
paralog analysis extends information on damaging effects on EHMT1 and 
generalizes results to related proteins 

We further classified the damaging variants into structural (SV), 
dynamic (DV), and structural & dynamic variants (SDV) to provide 
mechanistic interpretations [27]. We calculated molecular fitness scores 
by considering only structure- and dynamics-based scores, as shown in 
Supplementary Table S1. These molecular fitness evaluations revealed 
that 13 variants are expected to disrupt at least one of the structural 

features. In comparison, 51 variants are expected to disrupt at least one 
of the dynamic features (Fig. 4A). Among these, 11 variants disrupted 
both the protein’s structural and dynamic properties. The C1073Y and 
R1197W variants, previously characterized and proven to be damaging 
to protein function, are predicted to be damaging by our analysis 
(Fig. 4A, left panel). In contrast, our analysis predicts two other variants 
from gnomAD with a relatively high allele frequency >1.0 × 10− 4 in 
general populations (S1004N and V1006M variants) to be tolerated by 
our analysis (Fig. 4A, right panel). All previously annotated damaging 
variants are expected to be damaging by our analysis (Fig. 4B, left pie 
chart). However, among the previous benign annotators, only 4 out of 
31 are expected to be tolerated by our analysis, and 18 are expected to be 
damaging while 9 variants now belong to the VUS group (right pie 
chart). Thus, our results suggest that current annotations in the database 
tend to underestimate the damaging impact of genomic variants. The 
annotations of the currently classified VUS variants have also been 
improved using our method, and 38 out of 60 are expected to be 
damaging while 5 are expected to be tolerated (middle pie chart). Our 
analyses provide evidence that integrating 2D sequence-based scores 
with the scores from the protein 3D structure and 4D time-dependent 
dynamic behaviors for molecular fitness can enhance the prediction 
power of variant interpretation and provide potential molecular mech-
anisms for functional disruption. 

Finally, we evaluated the results against the sequence conservation 
between EHMT1 and EHMT2. Our data indicated that most damaging 
variants (57/62, 91.9 %) are found on canonical residues that are highly 
conserved for structural and functional reasons while most tolerated 
ones (8/9, 88.9 %) are found in varying residues (Fig. 4C). None of the 
tolerated germline variants are represented in the cancer somatic vari-
ants. Cancer somatic variants are found throughout the sequence 
including many varying residues, some of which might represent poly-
morphisms and be tolerated. Overall, our data showed that the 
damaging consequences of these variants are well represented in the 
human disease genomic landscape. This sequence information and 
mechanistic-based structural bioinformatics have the potential to pro-
vide better diagnosis, risk assessment, and clinical guidelines for 
observed variants within individualized medicine. 

3. Discussion 

Proteins perform vital functions by being made up of amino acids 
that fold into a unique 3D structure. The effect of genetic variation on 
protein structure and function can be dramatic, with non-synonymous 
SNPs being the most common DNA sequence variation associated with 
human diseases [39]. Missense mutational effects can alter protein dy-
namics and cause human disease. Accurate evaluation of these effects 
can provide information on residue-specific roles in protein structur-
e/function and dysfunction in the disease state. The current study ad-
vances the field of rare diseases, particularly Kleefstra syndrome, by 
implementing a computational biophysics approach and contrasting it 
with previous tools recommended by established guidelines. 

The sequence-structure-function relationship has been established 
for all proteins, but molecular dynamics still need to be fully explored in 
genomic variation interpretation. To improve the assessment of genomic 
variations, we implemented a comprehensive computational approach 
incorporating multiple mechanism-based aspects of the protein 
sequence, structure, and dynamics of EHMT1 for its mutational impact 
assessment. Structurally coordinated dynamics play an essential role in 
substrate binding and undergoing allosteric transitions while main-
taining the native fold in catalytic enzymes [40,41]. Thus, 
dynamics-related protein-specific metrics can be reliable indicators of 
any protein function and dysfunction caused by disease mutations. Once 
identified, these metrics can be parameterized for each protein and 
domain. We analyzed each variant independently to show how curated 
missense variants may affect EHMT1 enzymatic activities. The selected 
metrics used in the current study served as effective measures of 
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Fig. 4. Further classification of the variants, comparison with pre-classification, and the EHMT1/2 paralog analysis. (A) Additional classification of the variants into 
structural variants (SV), dynamic variants (DV), and structural & dynamic variants (SDV), and mapping onto the molecular structure. SV or DV are indicated as red 
balls, SDVs are indicated in pink, and the tolerated variants are shown in blue. Previously characterized damaging variants (C1073Y and R1197W) and higher allele 
frequency variants among the healthy populations (S1004N and V1006M) are also indicated. (B) Comparison of pre-classification (ClinVar annotations) and post- 
classification by our molecular fitness analysis for each pre-classified group. We compared the two classification results using a pie chart that indicates damaging 
versus tolerated for our new classification results for each of the three pre-classification categories. The inset bar chart shows the balance among the three damaging 
sub-categories. The damaging variants influenced by only 2D-based scores are not considered in the inset bar charts. These mechanism-based interpretations should 
help resolve the conflicting variants (middle) and provide enhanced interpretations for all variants. The numbers of the variants in each group are indicated in 
parentheses. (C) Comparison of post-classification and EHMT paralog annotation analysis. Sequence alignment of human EHMT1 and EHMT2 with indications of 
conserved residues (red boxes) and revised annotations (stars below). More than one variant is found on some of these residues. Cancer somatic variants in both 
proteins are also indicated at the bottom (green boxes). Residue numbers are based on EHMT1. Secondary structure elements are shown at the top of each sequence 
alignment. Positions of the re-classified variants of the current study are indicated by red (damaging), VUS (black), and blue (tolerated) stars at the bottom of aligned 
sequences. All germline variants on the conserved residues are predicted to be damaging by our comprehensive analysis, and none of the tolerated germline variants 
are represented in the cancer somatic variants. 
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damaging impacts. The cross-correlation matrix of the individual scores 
was used to select more functionally relevant and effective metrics for 
each protein. Our findings affirm that the protein 
sequence-structure-dynamics-function relationships, molecular dy-
namic properties, and molecular structures have been conserved 
throughout evolution. 

We hypothesize that universal structure-based metrics, such as 
folding/stability, global/local structural perturbation, and global/local 
energetic frustration, can be applied to all proteins and become part of 
the standard procedure for clinical functional impact analysis. On the 
other hand, MD-based metrics are not equally effective, and more 
congruent and functionally relevant MD-based metrics need to be 
identified for each protein. Moreover, a domain-wide analysis should be 
considered, especially when individual domains do not make any 
physical contact, because individual domains are independent folding 
units and functional modules. 

Many proteins consist of several domains, and the same domain may 
appear in various proteins. Because members of the same domain family 
likely share the same evolutionary origin and perform similar molecular 
functions, the same set of effective MD-based metrics can be applied to 
the same domain family members. In many cases, long stretches of 
disordered regions connect individual domains, and only individual 
domain structural information is available. Even when multi-domain 
structures are available, individual domains can be isolated during 
data analysis and used for domain-specific analysis to gain more domain 
function-specific impact analysis. Subsequent collective analysis on 
multi-domain or functional oligomeric structures can provide additional 
mechanistic information, such as interdomain communication and 
cooperative functionality. 

The current study lacks a distinct training set due to the rarity of the 
disease and the very few genotype-phenotype relationship studies 
available for EHMT1, and all ClinVar variants were treated as a test set. 
However, the results with our control variants and the unity of the 
metrics with known functional relevance, such as the substrate (H3 
peptide) interactions and the available roles of the tyrosine residues in 
the active site, all support the effectiveness of our approach. We firmly 
believe that the structure- and dynamics-based analyses will critically 
augment the prediction power beyond sequence-based benchmarking 
tools and improve the overall impact assessment. For future improve-
ment, more extensive studies such as different simulation conditions and 
time scales will be considered. Additional impact assessments such as 
protein expression, impact on RNA structures, translocation, protein–-
protein interactions, post-translational modifications, etc. will be 
included in the workflow. 

In conclusion, the current work provides important molecular-level 
insights into functional disruption by Kleefstra syndrome variants. Our 
data indicate that damaging variants of EHMT1 display mechanistic 
disruptions at either a structural or dynamics level or both, mainly 
concentrated around functional regions such as the active site and the 
substrate binding interface and the pre-SET region that contains the 
structural zinc ion cluster and the dimerization interface. On the other 
hand, tolerated variants are mostly found on the periphery or on the 
molecular surface, whose sequences are varied between EHMT1 and 
EHMT2. These findings should apply to not only EHMTs but also related 
SET domain-containing methyltransferases. Extended studies that use 
sequence paralogs and molecular dynamics will help validate our find-
ings and improve the predictive value of these mechanistic-based 
comprehensive approaches. Furthermore, this comprehensive impact 
analysis should help annotate the pathogenicity of many different pro-
teins that can be curated into the public archives of human genomic 
variations for clinical applications. 

4. Materials and methods 

4.1. The extraction of KS variants from the public archive and the 
selection of control variants 

KS-associated variants were identified from ClinVar, the most 
comprehensive public archive of genomic variations and interpretations 
of their relationships to diseases [9]. All 97 EHMT1 missense variants 
found in patients diagnosed with KS and reported in ClinVar at the 
commencement of this study were extracted. These variants were 
referenced against cancer somatic variants curated in the database such 
as the Catalog of Somatic Mutations in Cancer (COSMIC) [12] and TCGA 
[42], which revealed that 30 out of 97 KS variants are also reported as 
cancer somatic variants. An independent literature search identified the 
C1073Y and R1197W variants as experimentally proven damaging 
variants and thus serve as positive controls [10]. In addition, among the 
benign variants, the S1004N and V1006M variants are also indicated as 
SNPs in the Single Nucleotide Polymorphism Database (dbSNP) and 
have relatively high allele frequencies in the general population gno-
mAD database [11], thus serving as neutral variants or negative 
controls. 

4.2. Preparation of the initial structures 

4.2.1. We constructed the two-domain structure containing 
both the SET and the ankyrin repeat domains by superposing the 

overlapping helix (982–998) of the individual domain structures (PDB 
access codes 3HNA and 6BY9) after considering the asymmetric contents 
of the crystal lattice. For the SET domain-only structure, we used the 
mono-methylated H3K9 peptide-bound form of the high-resolution 
(1.5 Å) crystal structure (PDB access code 3HNA). The cofactor SAH 
was replaced with SAM to constitute the active form of the enzyme, and 
the seven missing residues in the flexible loop (965–971) were built 
using the Modeller program [43]. The EHMT1-EHMT2 SET domain-only 
heterodimer was prepared by replacing its heterodimer partner from 
either homodimer structures (PDB access codes 3HNA or 5JJ0), which 
display a nearly identical dimerization binding mode. For missense 
variant analysis using these structures, substitutions were made within 
the Discovery Studio suite version 21.1 (Dassault Systèmes BIOVIA) by 
mutating the corresponding residue and selecting the side chain rotamer 
causing the least steric hindrance with the surrounding residues. 

4.3. Protein folding energy and stability calculation 

We assessed the stability of the mutated protein by the variant- 
induced changes in folding energy (ΔΔGfold) using FoldX [44] and the 
Discovery Studio suite. We used the energy-minimized mutant struc-
tures for these calculations. In Discovery Studio, shifted amounts of 
protein stability (free-energy difference between folded and unfolded 
states) due to mutations were calculated at pH 7.4 using the 
energy-minimized wild type structure and introducing each substitution 
for calculation. After the preparation phase, the initial structures of the 
wild type and the generated mutants were subjected to a two-stage 
minimization process before energy calculation. The predicted ΔΔGs, 
using both programs, are in good agreement (Supplementary Table S1 
and Supplementary Fig. S4A-B). 

4.4. Global and local structure perturbation measurements 

We measured the positional displacement of backbone atoms be-
tween the entire catalytic domains of wild type and mutant (global) or 
only the atoms near the residue of interest between them (local). For 
local structure perturbation from the energy-minimized structures, any 
residues within a 10 Å radius of the mutation site were selected using 
PyMOL (Schrödinger, LLC) and calculated for least-squared RMSD of the 
backbone atoms between the wild type and the mutant using Coot [45]. 
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For global structure perturbation, entire backbone atoms were used for 
RMSD calculation between the structures. 

4.5. Frustration index calculation 

The energy landscape of protein molecules can affect their biological 
behaviors. To evaluate how energy is distributed in protein structures 
and how mutations or conformational changes shift the energy distri-
butions, we measured the differences in energetic frustration in protein 
molecules using the Protein Frustratometer server [46]. The frustration 
index measures how favorable a particular contact is relative to all 
possible contacts in that location. Sites of high local frustration often 
indicate biologically important regions such as binding or allosteric 
sites. The shift amounts were calculated by measuring the differences in 
the frustration indexes between the wild type and mutant residues in 
both directions and summing up the differences. We tested the changes 
in either global (cumulative) or local frustration indexes as a means of 
damaging impact scoring. We discovered that the global changes show 
better correlations with the sequence-based scores, which aligns with 
the multiple binding platforms used by this domain for various 
protein-protein interactions. Therefore, global changes were used for the 
overall impact scoring of the variants in the ankyrin repeat domain. 

4.6. Molecular simulations 

MD simulations were performed using the CHARMm36 all-atom- 
force field [36] implemented in Discovery Studio with a 2 fs time step. 
A simplified distance-dependent implicit solvent environment was used 
with a dielectric constant of 80 and a pH of 7.4. All MD simulations were 
conducted using periodic boundary conditions. Models were energy 
minimized for 5000 steps using the steepest descent followed by 5000 
steps of the conjugate gradient to relax the protein structure obtained 
under the stressed crystal environment. Each system of 10 replicates of 
wild type and each variant was independently heated to 300 K over 
200 ps and equilibrated for 500 ps, followed by ten ns production 
simulation under the NPT ensemble (100 ns total). Conformers were 
recorded every 10 ps to give 1000 frames for analysis per each mutation. 
This timescale is sufficient for side chain rearrangements in the protein’s 
native state and to facilitate local conformational changes. The total 
energy plots of the trajectories indicate that the systems can reach near 
equilibrium towards the end of the simulation. For final data analysis, 
one or two outliers (in some cases none) from each data set of 10 rep-
licates that deviate from the rest in RMSD plots and might represent the 
minor and rarer form of conformations (altogether 14 % of the entire 
data) were excluded from averaging, and only the last 500 frames that 
have reached the near minimum total energy state were used. From a 
10 ns MD simulation, trajectory files were analyzed for structural impact 
by root mean squared deviation (RMSD), root mean square fluctuation 
(RMSF), and other measures such as time-dependent molecular in-
teractions, a radius of gyration (Rg), and solvent-accessible surface area 
(SASA). Trajectories were aligned to the initial WT conformation before 
analysis. RMSD and RMSF values were calculated at the residue level for 
all atoms using the tools available within Discovery Studio and the al-
gorithms implemented in Microsoft Excel. Further analyses were con-
ducted in the R programming language [47], leveraging the bio3d 
package [48]. Molecular visualizations were generated using PyMOL. 

4.7. Time-dependent interaction energy calculation and distance 
monitoring 

Molecular interaction-free energies were measured using Discovery 
Studio. This was done using the MD simulation trajectories and selecting 
the protein and the interaction groups of interest. Non-bonded in-
teractions were monitored, and dynamic interaction energies (van der 
Waals and electrostatic energies) were calculated using the CHARMm36 
force field and the implicit distance-dependent dielectric solvent model. 

Distance monitoring of the key catalytic components was also done 
within Discovery Studio by selecting those atoms of interest. These 
measurements were made for all 10 replicates and averaged for com-
parison with the wild type. 

4.8. Overall impact classification of the variant 

We used a cross-correlation matrix among the scores as guidance to 
choose more effective and functionally relevant metrics for integration 
(Supplementary Text S1). For overall impact scoring, we Z-score scaled 
the individual scores onto a zero to one scale, commonly used by many 
sequence-based tools, and averaged them for the final scores [27]. 
Finally, for variant classification, we used the suggested thresholds for 
sequence-based prediction tools for overall impact scoring as guidelines 
and re-classified the variants based on the meta-scores (0–0.3: tolerated, 
0.3–0.4: uncertain, and 0.4–1.0: damaging). This results in a balanced 
number of variants in each category. As a result, known damaging 
variants and gnomAD healthy population variants belong to the 
respective expected categories. Likewise, the proper threshold values 
were chosen for molecular fitness scores (without the sequence-based 
scores) based on the suggested values for sequence-based prediction 
tools. Any variants predicted to be damaging in either molecular aspect 
(structure or dynamics), yet the overall meta-scores below 0.4 have been 
assigned as VUS. Similarly, any variants that fall below the threshold 
value in either aspect, yet collectively the overall meta-scores exceed 0.4 
have been assigned as damaging (but not further classified as either a 
structural or dynamic variant). 
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