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Abstract

Do islands harbour less diverse disease communities than mainland? The island biogeogra-

phy theory predicts more diverse communities on mainland than on islands due to more

niches, more diverse habitats and availability of greater range of hosts. We compared bacte-

ria prevalences of Campylobacter, Chlamydia and Salmonella in cloacal samples of a small

shorebird, the Kentish plover (Charadrius alexandrinus) between two island populations of

Macaronesia and two mainland locations in the Iberian Peninsula. Bacteria were found in all

populations but, contrary to the expectations, prevalences did not differ between islands

and mainland. Females had higher prevalences than males for Salmonella and when three

bacteria genera were pooled together. Bacteria infection was unrelated to bird’s body condi-

tion but females from mainland were heavier than males and birds from mainland were

heavier than those from islands. Abiotic variables consistent throughout breeding sites, like

high salinity that is known to inhibit bacteria growth, could explain the lack of differences in

the bacteria prevalence between areas. We argue about the possible drivers and implica-

tions of sex differences in bacteria prevalence in Kentish plovers.

Introduction

Understanding how biological diversity stablishes and evolve has been a tradition in modern

ecology [1, 2]. Insights of historic and contemporary research have led ecologists to develop a

number of biodiversity theories that are intended to help us predict biodiversity in a given

space and/or time. According to the theory of island biogeography, landscape structure shapes

species’ abundance, where species richness increases as a function of the area sampled [3].

Along a gradient of ecosystems of increasing size, the number of species inhabiting those
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ecosystems will increase rapidly at first, but then the pace slows down for the larger ecosystems

[3, but see limitations, 4]. Island biogeography theory has been mainly built upon the study of

macroorganisms, with very little consideration towards the biogeography of microorganisms.

In fact, whether microbial biogeography should be considered as a discipline has been subject

of debate, because it has long been suggested that organisms smaller than 1 mm have a cosmo-

politan distribution [5]. However, different studies have documented spatial and temporal

structuration of microbial diversity [6, 7]. For example, positive taxa-area relationships have

been found in free-living bacteria [8], as well as a reduction in bacterial diversity across islands

of decreasing sizes [9].

Symbiotic organisms are in a close and necessary association with other organisms, through

either mutualistic, commensal or parasitic associations [10]. This co-dependant interaction

adds an important layer of complexity to the island biogeography theory, mainly for including

variables from the host that could also be affected by insularity. For example, animals from

islands have been proposed to have weaker immune defence, attributed to the founder effect

during colonization and to island environments being relatively parasite poor (compared to

the mainland) [3, 11, 12]. Examples of the latter include reduced prevalence and diversity of

blood parasites and fewer feather lice species in Macaronesian blackcaps (Sylvia atricapilla)

[13, 14] and reduced viral pathogen diversity and abundance in insular black-spotted pond

frogs (Pelophylax nigromaculatus) compared to the mainland [15]. However, contrasting

results could be found for other host species and microorganisms studied [16].

Studies investigating variation in microorganism prevalence, not microorganism diversity,

in relation to area sampled have been considerably less common. Microorganism prevalence,

here defined as the percentage of individuals of a population infected with a given microorgan-

ism, will depend importantly upon two variables: (i) the ability of the host to defend against

the infection, and (ii) on the ability of the microorganism to infect the host. As mentioned

before, insularity is thought to, at certain extent, shape immune function because after many

generations exposed to low pathogen pressure and diversity, selection favours a reduction in

the energy invested in maintaining a robust immune function [17]. However, changes in

immune parameters in response to insularity are not as straightforward as initially thought, as

Matson et al. [18] found that in bluebirds (Sialis sialis) the immune response was stronger in

island than in the mainland. Lobato et al. [19] investigated two immune components in bird

assemblages from two islands and mainland in Africa, finding that acquired immunity was

lower on islands but no differences were seen in the innate immunity. The high microorgan-

ism diversity expected in mainland [9] increases the chances of hosts of encountering strains

of microorganism of high virulence, that could rapidly spread out across a population and ele-

vate prevalence at a given sampling time [20]. Also, the force of infection (the rate at which

susceptible individuals become infected in a population) is expected to increase with popula-

tion size in the case of having many susceptible hosts present in a large population at any given

time, and because in this ecosystem the number of contacts between infected and susceptible

individuals is likely to also increment [21–24]. Conversely, in simplified ecosystem (i.e.

islands) the reduced pathogen pressure compared to mainland would suggest, in general,

lower levels of pathogen prevalence than in the mainland [25–27]. However, to our knowledge

just a handful studies have tested aspects of these predictions, and to date there is very little

known on how prevalence of bacteria could be affected by insularity.

Here, we tested for the first time the influence of insularity on the transmission patterns of

the bacteria Campylobacter, Salmonella and Chlamydia in four populations of Kentish plover

(Charadrius alexandrinus). These bacteria are known for its importance in wildlife and public

health, being usually commensal in poultry but a common cause of gastrointestinal and respi-

ratory disease in wild birds [28, 29]. Kentish plover is a small shorebird, ideally suited for this
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purpose because breeds all across Eurasia and Macaronesia (Fig 1), islands where they are

year-round residents and represent populations genetically distinctive from the mainland [30].

We compared the cloacal bacteria prevalence of two island populations from Cape Verde and

Canary Islands, and two populations breeding in continental Spain (Table 1). Because these

Fig 1. Sampling locations of the four Kentish plover populations. Two on mainland and two on islands: (A) Rice fields of Doñana, and (B)

Salina la Esperanza, Cádiz, both in Spain; (C) Lanzarote, Canary Islands, and (D) Maio, Cape Verde.

https://doi.org/10.1371/journal.pone.0237369.g001
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bacteria could provoke disease, we also investigated the effect of insularity and bacteria infec-

tion on body condition. Based on previous evidence, we predicted (i) a higher prevalence of

infection in mainland than in insular populations; (ii) bacteria infection will negatively affect

the host’s body condition [31, 32]; and as possible consequence of the previous two, (iii) birds

from islands will have better body condition than those from mainland [33]. Last, because clo-

acal transmission of bacteria seems to be asymmetrical between the sexes [see 34], we predicted

(iv) females potentially having higher prevalences than males.

Materials and methods

Ethics

All necessary permits were obtained for the described field studies. Salina la Esperanza: permit

granted by the University of Cádiz, Cádiz Bay Natural Park and Animal Health authorities in

compliance with Spanish laws (number 2019-/2979/4202/Bc/EA 3619). Doñana: permit

granted by the CSIC Ethics committee and Animal Health authorities in compliance with

Spanish laws (number 2011_02 21/02/2012/77). Lazarote: permit granted by the Council of

Land Usage, Sustainability and Security, Vice-Ministry of Environment, Canary Islands (num-

ber 2016/3646). Maio: permit granted by the General Directory of Environment, Cape Verde

(number 33/2014).

Bird species and sampling locations

We captured, ringed, weighed and morphometrically measured breeding Kentish plovers

from two different locations in mainland (southern Spain) and from two Macaronesian islands

(Table 1, Fig 1). One mainland Kentish plover population was studied in the largest area of

rice fields in Spain (36,000 ha) located in a reclaimed marshland behind Doñana National

Park, Spain (37˚07’08.3"N 6˚06’33.7"W). Fieldwork was done in July 2015 at four sites during

the peak of the breeding season. The other mainland population bred in a 35-ha saltpan in the

Cádiz Bay Natural Park, Puerto Real, Spain (36˚30’36.0"N 6˚09’20.8"W). Fieldwork was con-

ducted in April–June 2015. Among the island populations investigated, we studied Kentish

plover on Lanzarote, Canary Islands (29˚03’36.1"N 13˚36’24.9"W). Lanzarote is the eastern-

most island of the archipelago, separated by approx. 120 km from North Africa and 1,000 km

from the Iberian Peninsula. Fieldwork was conducted during the breeding season in April–

June 2016, monitoring five sites around the island with different environments: saltpans,

sandy beaches and semi-desert rocky areas. Lastly, we studied the Kentish plover population in

Maio, Cape Verde (15˚09’16.6"N 23˚11’39.4"W), one of four Sotavento Islands in the archipel-

ago, located at approx. 650 km from West Africa and 2,900 km from the Iberian Peninsula.

Approximately 100–200 pairs bred in Maio around areas of saline lakes and saltpans of approx.

100 ha and surrounded by sandy shores. Three sites were monitored during September–

November 2015. Kentish plovers present high breeding-site fidelity [35, 36] whereas during

Table 1. Number of birds examined and infected in mainland and island populations of Kentish plover.

Population n Campylobacter Chlamydia Salmonella Pooled infection

Island Maio, Cape Verde 88 2 5 10 17

Lanzarote, Canary Islands 27 0 0 3 3

Total 115 2 5 13 20

Mainland Doñana, Spain 52 1 1 10 12

Salina la Esperanza, Cádiz, Spain 52 1 4 10 15

Total 104 2 5 20 27

https://doi.org/10.1371/journal.pone.0237369.t001
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winter the birds from mainland Europe move to SW Europe and W African [37]. Kentish plo-

ver from Maio and Lanzarote are year-round residents but eventually could move between

islands, particularly in the population of Lanzarote (TS, and GT pers. obs). All field procedures

complied with the laws and approved by the ethics committees of the corresponding

countries.

Bacteria sampling and laboratory diagnosis

Our analyses were focused on three bacteria genera of renown importance for wildlife and

public health. Campylobacter and Salmonella are gram-negative bacteria from the Enterobac-

teriaceae family and often found as commensal microbiota in avian hosts [38, 39]. Commensal

strains result from bacterial adaptation to specific hosts [28, 40]. In poultry, many specific

strains are recognised as commensal such as Campylobacter jejuni ST-104 (ST-21 CC) in

broiler [29], but in Kentish plover it is unknown whether there are species-specific strains and

to what degree these strains are commensals or can harm host health. Nevertheless, pathogenic

strains like Campylobacter lari or Salmonella typhimurium have been associated with gastroin-

testinal disease in poultry and in wild birds [29, 30, 41] and are also a latent epidemiological

problem causing foodborne disease worldwide [42]. Although these bacteria are typically

acquired through an oral-fecal route by ingesting contaminated food or water, evidence shows

transmission after copulation, either through direct cloacal contact or due to ingestion of bac-

teria during post-copulatory preening [43, 34]. Chlamydia, on the other hand, are sexually

transmitted bacteria and species like Chlamydia psittaci may cause chlamydiosis in birds and

the zoonosis psittacosis (if transmitted to humans by contaminated aerosols), both being a sys-

temic disease often linked to mortalities [44, 45].

Bacteria sampling took place at capture by gently introducing a sterile cotton swab into the

bird’s cloaca. Swabs were stored in phosphate-buffered saline (PBS) buffer at -20ºC in the field,

and then in the laboratory at -80ºC until further analysis [46]. DNA extraction was done using

the Maxwell1 16 Buccal Swab LEV DNA Purification Kit following the manufacturer’s proto-

col. Detection of Campylobacter was based on amplification of a DNA segment within the flaA
short variable region (SVR) of Campylobacter jejuni or C. coli, according to Ridley et al. [47].

Chlamydia detection centred on amplifying the IGS region and domain I of 23S rRNA gene,

following Nordentoft et al. [48]. Salmonella detection used primers specific for the invA gene,

as described by Rahn et al. [49]. In brief, real-time PCR assays were conducted with 5 μL of

2 × Rotor-Gene SYBR Green PCR Master Mix, 7 μL of RNase-Free water, 1 μL of primers, and

2 μL of DNA extract. Thermal conditions for PCRs were as follows: initial activation for 10

min at 95ºC, PCR cycling for 15 sec at 95ºC, for 30 sec at 59ºC and for 30 sec at 72ºC (for Chla-
mydia) or 30 sec at 95ºC, for 15 sec at 54ºC and 20 sec at 72ºC (for Salmonella) for 45 times,

and melting curve were obtained by lowering the temperature from 90ºC to 75ºC, descending

by 0.3ºC each step. We used DNA from Chlamydia psittaci and Salmonella typhimurium as

positive controls in each reaction plate. For Campylobacter cycling was for 10 sec at 95ºC, for 6

sec at 50ºC and for 6 sec at 72ºC for 35 times, and melting curve were obtained by lowering the

temperature from 90ºC to 50ºC, descending by 2.2ºC each step. The positive controls used

were Campylobacter jejuni and C. coli. Negative controls were included in each plate.

Statistical analyses

Our predictions were tested by running Markov chain Monte Carlo simulations for general-

ized linear mixed models using the R package ‘MCMCglmm’ [50]. Differences in insularity

were tested by running four models: one for each bacteria type and one for the prevalence of

the three bacteria combined (pooled bacteria infection). The models had bacteria infection
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(binomial variable: infected/un-infected) as response variable, and insularity (binomial vari-

able: island/mainland) and sex (binomial variable: female/male) as fixed factors as well as the

two-way interaction between these two variables. Date of sampling (Julian date) and sampling

site were added as random terms. Sampling site corresponded to the sites sampled within each

location: four in Doñana, one in Salina La Esperanza, five in Lanzarote, and three in Maio. We

used parameter expanded priors for the random effects (list(V = diag(1)�0.02, nu = 7)), and

fixed effect priors for binary responses i.e. fixing the residual variance at 1 (list(V = diag(1),

nu = 0.002, n = 1, fix = 1)). Models were run across 1,000,000 iterations with thin of 600 and a

burn-in of 1,500. These values were determined based on model convergence and autocorrela-

tion levels assessed through the Gelman-Rubin test [51], and trace graphs and the ‘autocorr’

function, both implemented in the R package ‘coda’ [52]. In all four models, the potential scale

reduction factor was 1.01 or lower, which is below the threshold of 1.1 indicating good model

convergence. Autocorrelation was also low, always below the threshold of 0.1 [50].

Body condition was estimated using the scaled mass index proposed by Peig and Green [53],

consisting on standardizing body mass for a given size using a body linear measurement (here,

wing length). This analysis was conducted only for the pooled bacteria prevalence due to the

very low prevalences of Campylobacter and Chlamydia (see results). This model was run with a

Gaussian error distribution and had body condition as response variable and infection status,

insularity and sex as fixed factors and their two-way interactions. Date of sampling and sam-

pling site were added as random terms. We used parameter expanded priors for the random

effects (same as above) but inverse gamma priors (list(V = 1, nu = 0.002)) for the residuals and

normal distributions centred on zero with large variances as fixed effects priors (default prior in

MCMCglmm). This model was run across 1,000,000 iterations with thin of 600 and a burn in of

1,500. Here, the potential scale reduction factor was 1.001 or lower and the autocorrelation was

not higher than 0.03 [50]. In this analysis 11 Kentish plovers were excluded from the model

because wing length, body mass or both measurements were not available. MCMCglmm results

are expressed as posterior mean, lower and upper 95% credibility intervals, and significance as a

pMCMC value. All statistical analyses were conducted in R v3.3.3 [54].

Results

Forty-seven out of 219 birds sampled were infected (21.5%). The highest prevalence was

recorded in Salmonella (15.1%) followed by Chlamydia (4.6%) and Campylobacter (1.8%),

with no birds presenting mixed infections. Bacteria infection was spread out in most popula-

tions (Table 1) except on Canary Islands where only Salmonella was found (Table 1).

Bacteria prevalence was always higher in birds from mainland than from islands, however

this difference was non-significant. Although a trend appeared when infection was pooled

together, showing nearly significant higher prevalence of infection in mainland (P = 0.077; Fig

2, Table 2). Females had a higher prevalence of Salmonella than males, and the same pattern

was found when all bacteria were pooled together (Fig 2, Table 2). The interaction between

insularity and sex was not significant (all cases P> 0.05), so insularity did not affect bacteria

prevalences between the sexes.

Body condition was not significantly affected by the presence of the three bacteria (Fig 3,

Table 3). Females were heavier than males in the mainland while on islands no sex differences

in body condition were found (Table 3).

Discussion

Our results showed that Campylobacter, Chlamydia and Salmonella were widespread among

most Kentish plover populations and similarly prevalent in mainland and islands. Female
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Kentish plovers had a higher Salmonella prevalence than males, a pattern also found when the

infection of the three bacteria was combined together. Lastly, we showed that body condition

was not related to infection of the three bacteria but to sex and insularity, with a higher body

condition found in females and in birds from the continent.

Insularity

We found similar Campylobacter, Chlamydia and Salmonella prevalences in insular and main-

land bird populations. One reason of our findings in Salmonella could originate from the fact

that infection with this genus of bacteria, as most shorebird microbiota, depends on the envi-

ronmental availability of the bacteria [55]. Although Kentish plovers in our study bred in

completely different landscapes (i.e. islands vs mainland), the breeding sites were relatively

similar in that involved lands of high salinity, scarce vegetation and close to saline water bod-

ies. High levels of salinity could consistently constrain bacteria acquisition throughout sam-

pling locations because salinity is a well-known inhibitor of Salmonella and Campylobacter
growth [56, 57]. Perhaps the exception to this was the population from Doñana that bred near

brackish water. Interestingly, the percentage of infected birds in Doñana was equal to those in

Cádiz (19.2%) but higher than in Lanzarote and Maio (respectively, 11.1% and 11.4%). The

animal diversity in mainland increases the probability of encountering animals hosting Salmo-
nella infection that could later be acquired by Kentish plovers [58], and thus is a possible

Fig 2. Differences in bacteria prevalence between populations. Prevalence of cloacal bacteria infection between a) mainland and island and b) male and female

Kentish plovers. �Indicates a statistically significant difference of P< 0.05.

https://doi.org/10.1371/journal.pone.0237369.g002
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reason of the close to significant higher prevalence of Salmonella in the continent. However, a

possible counter argument is that hot environments (25–35 degrees C) with high relative

humidity such as the islands of Maio and Lanzarote, provide suitable conditions for a longer

persistence in the environment of the bacteria [59], increasing the potential of between-indi-

viduals bacteria transmission through ingestion of bacteria from feathers during preening,

posterior to, for example, belly-soaking [more frequent in hot environments, 60] or direct con-

tact of individuals (e.g. copulation) [34]. Campylobacter may be also acquired from the envi-

ronment and thus could be affected by the same factors described for Salmonella [61].

However, Campylobacter is much more susceptible to environmental conditions, requiring,

for example, microaerophilic conditions to proliferate [57, 62]. Another reason of such low

prevalences found (1.8%, 4 infected out of 219 birds) could be because direct PCR detection

from feaces can be problematic compared to enrichment and culture, regarded as the gold

Table 2. Infection of (a) Campylobacter, (b) Chlamydia, (c) Salmonella and (d) all bacteria combined in relation

to insularity and sex in Kentish plovers (n = 219).

95% credibility intervals

Post. mean Lower Upper P
a) Intercept -5.196 -7.807 -2.984 < 0.001

Insularity (island)a 0.002 -3.833 3.726 0.995

Sex (males)b 0.533 -2.906 4.687 0.754

Insularity (island)a�sex (males)b -0.324 -5.604 4.788 0.876

Random

Site 0.027 0.006 0.063

Date 0.028 0.007 0.066

b) Intercept -3.257 -4.519 -2.139 < 0.001

Insularity (island)a -0.945 -3.140 1.140 0.360

Sex (males)b -1.434 -4.541 1.275 0.318

Insularity (island)a�sex (males)b 2.276 -1.385 6.014 0.197

Random

Site 0.029 0.006 0.071

Date 0.028 0.006 0.064

c) Intercept -1.349 -1.991 -0.630 < 0.001

Insularity (island)a -0.842 -1.958 0.219 0.129

Sex (males)b -1.331 -2.584 0.094 0.043

Insularity (island)a�sex (males)b 0.520 -1.272 2.644 0.578

Random

Site 0.027 0.006 0.061

Date 0.030 0.006 0.076

d) Intercept -0.887 -1.53 -0.230 0.008

Insularity (island)a -0.920 -1.939 0.110 0.077

Sex (males)b -1.248 -2.526 -0.146 0.030

Insularity (island)a�sex (males)b 0.980 -0.693 2.678 0.252

Random

Site 0.032 0.006 0.078

Date 0.030 0.007 0.074

Residual variances were fixed at 1. Significant effects in bold.
aRelative to mainland.
bRelative to females.

https://doi.org/10.1371/journal.pone.0237369.t002
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standard for Campylobacter detection [63]. Although Campylobacter prevalences in the wild

are medium to high and around 75% in shorebirds [64], a previous study investigating the

prevalence of Campylobacter spp. in Kentish plovers failed to find any infected individual out

of 12 tested [65]. In addition, low prevalences, as found in Campylobacter and Chlamydia, may

make more difficult to detect differences in prevalence between populations. This is particu-

larly important for bacteria like Chlamydia, that is mainly horizontally transmitted by direct

contact between infected individuals [66].

Fig 3. Variation in body condition in Kentish plovers. Scaled mass index in male and female Kentish plovers from

mainland and islands (females and males from mainland weighed on average [mean ± standard deviation] 42.6 ± 2.9

and 40.5 ± 2.1 g, respectively, while on islands, females and males weighed 41.0 ± 2.8 and 41.0 ± 3.1 g, respectively).

Medians, upper and lower quartiles are shown. Whiskers indicate minimum and maximum values and circles outliers.
��Indicates a statistically significant difference of P< 0.01.

https://doi.org/10.1371/journal.pone.0237369.g003
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Sex-specific bacteria prevalence

Bacteria prevalence was significantly female-biased when Salmonella infection and all the bac-

teria species were analysed together. These sex differences were independent of insularity. In

addition to potential differences in the ecology of the different bacteria genera, the very low

prevalences of Chlamydia and Campylobacter may explain why our results only approached

significance for Salmonella. Studies of sex-specific parasite infection (as general term) have

shown great heterogeneity in their patterns and are rather scarce in terms of bacteria presence.

One study investigating pathogen prevalence in the island populations of Berthelot’s pipit

(Anthus berthelotii) found no sex differences of infection with pox virus, Plasmodium and Leu-
cocytozoon [67]. Another study found that females had higher prevalence of cloacal bacteria

than males in alpine accentor (Prunella collaris) [68], while bacteria richness did not vary with

sex in blue tits (Cyanistes caeruleus) [69]. This heterogeneity may be due to many non-exclu-

sive factors, including differences in immunocompetence and behavior between host sexes as

well as differences in the ways of transmission between the pathogens studied [70–72]. The

immune system plays an important role in pathogen defense hence if sex-specific differences

in immunocompetence exist, we could expect unbalanced infection. However, although a

recent meta-analysis showed in general no sex differences in immune capacity across animals

[including birds, 73], the literature available shows plenty of variation (i.e. female and male

biases) at species and population level that has not yet been explained [74–77].

Body condition

Recent advances in methods of microorganism detection have shown that wild animals often

are natural reservoir of pathogenic microorganisms without any apparent health cost [38, 78,

79]. The relationship between bacteria infection and body condition could be difficult to

untangle because one could argue that individuals in poor body condition would be more

prone to infection, however, this is more likely to happen when access to food is reduced and

immunity also gets compromised [80, 81]. Nevertheless, the consistent presence of these bacte-

ria that we found throughout the locations and populations of Kentish plover, in addition to

the lack of impact on body condition, suggests that these shorebirds are natural reservoir of

Table 3. Factors affecting the body condition in Kentish plovers (n = 208).

95% credibility intervals

Post. mean Lower Upper P
Intercept 42.656 41.802 43.486 < 0.001

Pooled bacteria infection -0.195 -1.578 1.151 0.789

Insularity (island)a -1.815 -2.964 -0.639 0.001

Sex (males)b -2.196 -3.445 -1.029 0.001

Pooled bacteria infection�Insularity (island)a 0.958 -0.888 3.081 0.342

Pooled bacteria infection�sex (males)b 0.198 -1.730 2.407 0.841

Insularity (island)a�sex (males)b 2.236 0.702 3.838 0.006

Random

Site 0.028 0.006 0.071

Date 0.029 0.006 0.067

Residual 8.047 6.529 9.587

Eleven birds were excluded from the model. Significant effects in bold.
aRelative to mainland.
bRelative to females.

https://doi.org/10.1371/journal.pone.0237369.t003
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Campylobacter, Chlamydia and Salmonella. However, these bacteria have great diversity of

strains with different pathogenicity and the impact of parasites on host health, survival and life

history is difficult to demonstrate based on observational studies and always require experi-

mental manipulation of parasite prevalence or intensity of infection [82, 83]. Further studies

are needed to determine whether positive birds harboured strains distinctive and specific to

Kentish plover, or strains of other species that have recently adapted to this host [28]. Contrary

to our expectations, birds from mainland had better body condition than those from islands.

Animals living on islands are exposed to low interspecific competition for food [84]. In addi-

tion, the tropics lack of well-defined seasons, with rather stable temperatures during the day

and night, and predictable foraging conditions. Such conditions could prevent birds from fuel-

ling up excessively and store energy as fat because of the constant food availability. Also, ani-

mal in tropics tend to have slower basal metabolic rates, which imply lower caloric

requirements [85]. On the other hand, birds from mainland are exposed to more variable envi-

ronmental condition like lower temperatures at night, that might translate into higher food

consumption during the day [86]. Interestingly, only birds from mainland had sex differences

in body condition. Sex differences in body mass or body condition during breeding usually

occur previous to the egg-laying stage, where females increase their body mass, and then later

during the nesting and brood care stage, where the sex that provides most of the care will see

the detrimental effects on body weight [e.g. 87–89]. If we take this into consideration, in addi-

tion to previous studies in different continental Kentish plover populations describing a poly-

androus mating system [90], we could argue that a polyandrous mating system could explain

why only in mainland we found that females were heavier than males, because in polyandry

males provide the brood case. However, this postulate cannot be confirmed because to date,

no empiric studies have investigated the mating system of the mainland populations here

studied.

Conclusion

Although in a relatively low prevalence, our study shows that Campylobacter, Chlamydia and

Salmonella were widely present across Kentish plover populations, placing it as possible natu-

ral reservoirs of these bacteria. Contrary to our expectations, the three bacteria examined were

equally prevalent on mainland and on island populations. Insularity and the sex of the host

were important variables determining the bird’s body condition, but these patterns were diffi-

cult to interpret. Positive relationships between geographical size and animal, plant and bacte-

ria diversity have been reported [e.g. 9, 91]. In the case reported here, it is possible that

bacteria infection in hosts do not directly depend on geographical size because of the added

level of complexity of including the many variables of the host that could also be affected by

insularity. We emphasize on expanding research on bacteria infection in wild birds from an

ecological point of view, necessary to further understand the potential impact of social interac-

tions and mating system structure on sexual differences in the prevalence of cloacal bacteria.
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