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Abstract

In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest
in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA
synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase ac-
tivity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation.
It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and forma-
tion in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell
replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and
insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with
hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochem-
ical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other
medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clear-
ance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of
the methods used to overcome these difficulties with an emphasis on HDAC inhibition.
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Introduction

In a seminal article published in 1990, a Japanese group1

reported that (R)-trichostatin A (a fungal antibiotic, Fig. 1)
is a potent and specific inhibitor of mammalian histone deace-
tylase (HDAC) activity in vivo, and that this inhibition
strongly induced tumor cell apoptosis, a process that can be
mediated epigenetically by regulating the histone function.
Since that time, research into the roles HDAC enzymes play
in cancer development, progression, and survival has led to
the identification of other histone deacetylase inhibitors
(HDACi),2–5 and several of these have been evaluated in clini-
cal trials, primarily for the treatment of hematologic malignan-
cies.6–8 HDACi are also being investigated for synergistic
cytotoxicity in combination therapies with conventional che-
motherapy and targeted agents against solid tumors.9–12 One
of the combination strategies fuses the cytotoxic platinum
DNA-binding potential of platinum agents and HDAC inhibi-
tory activity into a single molecular entity.13 In 2006, vorinostat
(SAHA, Zolinza�, Fig. 1) became the first HDAC inhibitor to be
clinically approved by the Food and Drug Administration14

for use in the treatment of cutaneous T-cell lymphoma (a rare
form of non-Hodgkin’s lymphoma that localizes to the skin).
In clinical trials, vorinostat has failed as a monotherapy in the

treatment of metastatic breast cancer (and other solid
tumors). However, in combination with paclitaxel and bevaci-
zumab as a first-line therapy, the results are more promising.15

Mammalian HDAC Isoforms

The mammalian HDAC family of enzymes consists of at
least 18 isoforms that are grouped into four principal class
types according to their expression patterns and sequence ho-
mology relative to the yeast HDAC proteins.16 Class I
(HDACs 1, 2, 3, and 8) proteins are found predominantly in
the nucleus; Class IIa (HDACs 4, 5, 7, and 9) and Class IIb
(HDACs 6 and 10) shuttle between the nucleus and the cyto-
plasm; Class III enzymes, known as the sirtuins (Sirt1–7), are
a silent information regulator (Sir)2 family of proteins17,18

that are NAD + -dependent deacetylases inhibited by nicotin-
amide;18–20 and Class IV (which contains only HDAC 11) has
properties of both Class I and Class II HDACs, and like the
Class I and Class IIa/b isoforms, uses a lysine residue to
bind to Zn2 + in the active state.3,18,21

In addition to the histone proteins, some nonhistone pro-
teins are also targeted by histone acetyltransferases (referred
to as HATs22–24 in keeping with the historical histone relation-
ship) and deacetylases (referred to as HDACs), and as a
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consequence, acetylation and deacetylation processes figure
prominently in mitigating cellular function and activity as
well as transcriptional and chromatin-related processes.18,25

Choudhary et al.26 undertook a mass-spectral-based study
designed to analyze sites of lysine-specific HDACs (KDACs)
and concluded that protein modification by acetylation
in vivo could be as common as an event as phosphoryla-
tion27–29—a hypothesis predicted a decade earlier by
Kouzarides.30 Acetyl is the primary acyl group exchanged
by the HATs and HDACs, although propionyl and butyryl
may also be substrates.20,31–33 Typically, histone acetylation
is associated with the activation of gene transcription, whereas
deacetylation is associated with transcriptional repression.34

Similarly, methylation and demethylation are alternative path-
ways cells utilize to effect epigenetic changes.23,35,36 Strahl and
Allis37 suggest that combinatorial sequences of epigenetic
changes represent a histone language sometimes referred to
as a histone code that proteins could read, write, erase, and
modify.38 Importantly, since the energy needed to support epi-
genetic transformations in a cell is provided by its mitochon-
dria, nuclear and mitochondrial genomic interactions in the
cell are coordinated.18

DNA Accessibility

In mammalian cells, the genome is tightly packed into
chromatin units called nucleosomes, which consist of *147-
base-pair segments of DNA wrapped around a core of eight
histones (two each of H2A, H2B, H3, and H4).39,40 Electro-
static forces between positive-charged lysine residues on the
histone proteins and negative-charged phosphates on the
DNA backbone allow the nucleosome to adopt a highly con-
densed three-dimensional structure that limits access to the
DNA segment by transcription factors and other DNA-
seeking chemicals. For example, for a segment of DNA to be
read by the cell’s transcriptional machinery, the DNA must
first be made accessible. One means by which this is achieved
in the cell is through acetylation by HAT36 of the lysine resi-
dues on the histone tails protruding from the nucleosome
cores.24,40 This neutralizes the positive charges on the histone
tails (relieving electrostatic forces that keep the histone–DNA
pair bound closely together) and exposes the DNA.39 Once
transcription has been completed, HDAC enzymes remove
the N-acetyl groups from the acetylated lysine residues,
which restores positive charge to the histone and draws the
DNA back into its protected, less-accessible tertiary structure.5

Consequently, inhibiting HDACs can cause gene activa-
tion to be initiated or prolonged—an effect that has a thera-
peutic application across a wide-spectrum of disease
phenotypes, as well as in the ex vivo production of stem
cells by induced pluripotency (reprogramming),41,42 for use
in the emerging field of regenerative therapy.43,44 As a result,
much effort is directed toward identifying druggable HDACi
with therapeutic potential, particularly of the small-molecule
type.7,45–51

n-Butyric Acid

n-Butyric acid, a short-chain naturally occurring fatty acid,
is produced in transient amounts during the natural synthesis
and breakdown of longer-chain fatty acids in vivo. A signifi-
cant source in the diet comes from dairy products (such as
Greek feta cheese) containing lamb rennet.52,53 However, n-
butyric acid (butyrate) is also endogenously made in the
human body by anaerobic bacterial fermentation of carbohy-
drates (derived from dietary fiber) in the colon,54–56 but in ad-
dition to being a part of the metabolic fatty acid fuel cycle,57,58

butyrate is also capable of inducing growth arrest in a variety
of normal cell types and senescence-like phenotypes in gyne-
cological cancer cells,59,60 inhibiting DNA synthesis and cell
growth in colonic tumor cell lines,61–64 suppressing hTERT
mRNA expression and telomerase activity in human prostate
cancer cells,65 and inducing stem cell differentiation66–71 and
apoptosis by DNA fragmentation.72 It regulates gene expres-
sion by inhibiting HDACs,73,74 enhances memory recovery
and formation in mice,75 stimulates neurogenesis in the ische-
mic brain,70,76,77 promotes osteoblast formation,78 selectively
blocks cell replication in transformed cells (compared to
healthy cells),79–81 and can prevent and treat diet-induced
obesity and insulin resistance in mouse models of obesity,82

as well as stimulate fetal hemoglobin expression in individu-
als with hematologic diseases such as the thalassemias and
sickle-cell disease,83–85 in addition to a multitude of other bio-
chemical effects in vivo.86–88

However, efforts to exploit the potential of butyrate in the
clinical treatment of cancer and other medical disorders are
thwarted by its poor pharmacological properties (short half-
life and first-pass hepatic clearance) and the multigram doses
needed to achieve therapeutic concentrations in vivo.39,79,89–95

Prodrugs of butyric acid96,97 such as Pivanex98–100 and tribu-
tyrin58,94,101 (Fig. 2) help mitigate the impediments, but have
not been viable as therapeutic agents. Nonetheless, the arginine

FIG. 1. Hydroxamic acid HDACi:
trichostatin A and vorinostat. HDACi,
histone deacetylase inhibitors.

FIG. 2. Butyrate HDACi: butyric acid,
Pivanex, and tributyrin.
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salt of butyrate has been utilized successfully in clinical studies
for the therapy of sickle-cell disease,102,103 thalassemia,104

Epstein-Barr Virus-related malignancies,6 and chronic, non-
healing wounds,105 clearly demonstrating the proof of principle
for butyrate-based epigenetic therapeutic approaches to these
diseases.

Short-Chain Fatty Acids

Although not as potent as butyric acid, other short-chain
fatty acids (SCFAs) like valproic acid and 4-phenylbutyrate
(Fig. 3) also have HDAC inhibitory activity.106,107 However,
a structure–activity relationship study carried out by Gilbert
et al.108 found that nonbranching SCFAs having three to five
carbon atoms in length (Fig. 4) are the best inhibitors of
HDACs. According to Gilbert et al.108 branching decreases
the inhibition of HDACs relative to that observed with
n-propionate, n-butyrate, or n-pentanoate. Among the
branched-chain acids, valproate exhibited the greatest activ-
ity with 2,2-dimethylbutyric acid109,110 and 2-ethylbutyric
acid exhibiting only half the activity of valproate. The obser-
vations are consistent with the Lu et al.111,112 model of the ac-
tive site of HDACs being a narrow tube-like pocket, spanning
a length equivalent to a straight chain of four to six carbon
atoms, with a Zn2 + -chelating moiety positioned near the bot-
tom to help facilitate the deacetylation catalysis.113–116 Inter-
estingly, pyruvate, the three-carbon chain end-product of
glycolysis, is an endogenous HDAC inhibitor, whereas lactate
is not.117 Thus, the tumor-associated cytoplasmic diversion of
pyruvate into lactate (the Warburg effect) may serve not only
to induce a state of apoptosis resistance by suppressing mito-

chondrial activity in the tumor cell118 but also as a means for
the tumor cell to avoid HDAC inhibition, a potential alternate
and suicidal pathway.

Cellular Uptake by Transport Proteins

While prodrugs can facilitate cell penetration and help pro-
long bioavailability, their metabolic cleavage does not necessar-
ily result in therapeutic concentrations of the drug being
delivered where needed. Cellular uptake of fatty acids, butyric
acid included, is achieved with the aid of specific transport-
ers119,120 and cell surface receptors.120,121 Likewise, cellular
entry of carbohydrates is also tightly regulated by carbohy-
drate-specific transporters and cell surface receptors.120,122,123

The most sensitive clinical test for detecting occult metastases is
the enhanced uptake of 2-deoxy-2-[18F]fluoro-d-glucose in vivo
by cancer cells compared to normal cells as determined by
positron-emission tomography124—implying that glucose (and
other natural carbohydrate) scaffolds may be used to carry (cy-
totoxic) substrates selectively into cancer cells.125–127 This con-
struct was applied to butyrate and other SCFAs,33,79,128–131 for
example, Bu4ManNAc and 3,4,6-O-Bu3GlcNAc (Fig. 5).125,130

However, though families of transporters exist for the common
dietary sugars such as glucose, they are refractory to modified
derivatives (substituted carbohydrates) or analogs, and without
assisted cell membrane crossing, cellular uptake of non-natural
sugars is limited.122

Butyryl-L-Carnitine Esters

An alternative delivery method we118,132,133 and others134–138

have found to be an effective transporter of modified
SCFA substrates in vivo utilizes the cell’s natural carnitine–
acylcarnitine transport machinery. More than 100 years ago,
Knoop139 published a seminal study on the metabolism of
omega-phenyl-substituted fatty acids that he fed to dogs.
When the dogs were fed odd-chain-substituted fatty acids,
hippuric acid (2-benzamidoacetic acid) was found in their
urine, and when fed even-chain-substituted fatty acids, phe-
nylaceturic acid [2-(2-phenylacetamido)acetic acid] was the
result.140 To account for these findings, he proposed that
the metabolism proceeds by the successive removal of two

FIG. 3. Short-chain fatty acid HDACi: valproic acid and
phenylbutyric acid.

FIG. 4. Variable short-chain fatty acid HDACi.

FIG. 5. Anticancer sugar-based HDACi butyrates.

FIG. 6. Butyryl-l-carnitines.
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carbon units via the existence of a mitochondrial fatty acid
b-oxidation pathway—a type of carbon oxidation having no
reported examples in organic chemistry at the time.140

However, to enter the mitochondrial inner matrix, where b-
oxidation takes place, fatty acids (presenting as acylcarnitines)140

are passaged through the mitochondrial membrane via the car-
nitine acyltransferase pathway.141 Long-chain fatty acids are ob-
ligated to be processed this way, but SCFAs can also use this
pathway too.142 Thus, as Srinivas et al.135 reported, butyryl-l-
carnitine can act as a prodrug for delivering butyrate into cells
in vivo, and our own studies (article in preparation) found that
butyryl-l-carnitines, PMXTM 550B and PMX 550D (Fig. 6), are
more potent HDACi than butyrate itself.

Conclusions

Unlike the sugar transporters, which highly discriminate
against synthetically modified sugars, the acylcarnitine trans-
porters appear to tolerate a range of acyl-substrate varia-
tions118 that can traverse both the plasma118,135,140 and
blood–brain barriers.133,134 PMX 550B and PMX 550D are
strong butyrate HDACi, and their potential for oral delivery
and mitigation of short-half life may lead to more effective
epigenetic therapeutics for treating the thalassemias, sickle-
cell disease, neurological disorders, and cancer.
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(The degradation of aromatic fatty acids in the animal
body). Beitr Chem Physiol Pathol. 1904;6:150–162.

140. Houten SM, Wanders RJA. A general introduction to the
biochemistry of mitochondrial fatty acid b-oxidation. J
Inherit Metab Dis. 2010;33:469–477.

141. Bieber LL. Carnitine. Annu Rev Biochem. 1988;57:261–283.
142. Bieber LL, Emaus R, Valkner K, et al. Possible functions of

short-chain and medium-chain carnitine acyltransferases.
Fed Proc. 1982;41:2858–2862.

Address correspondence to:
Kosta Steliou, PhD
PhenoMatriX, Inc.

9 Hawthorne Place Suite 4R
Boston, MA 02114

E-mail: steliou@bu.edu

Douglas V. Faller, MD, PhD
Cancer Research Center

Boston University School of Medicine
715 Albany Street, Room K-701

Boston, MA 02118

E-mail: dfaller@bu.edu

198 STELIOU ET AL.


