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A B S T R A C T   

Background: The recent emergence of a highly infectious and contagious respiratory viral disease known as 
COVID-19 has vastly impacted human lives and overloaded the health care system. Therefore, it is crucial to 
develop a fast and accurate diagnostic system for the timely identification of COVID-19 infected patients and thus 
to help control its spread. 
Methods: This work proposes a new deep CNN based technique for COVID-19 classification in X-ray images. In 
this regard, two novel custom CNN architectures, namely COVID-RENet-1 and COVID-RENet-2, are developed for 
COVID-19 specific pneumonia analysis. The proposed technique systematically employs Region and Edge-based 
operations along with convolution operations. The advantage of the proposed idea is validated by performing 
series of experimentation and comparing results with two baseline CNNs that exploited either a single type of 
pooling operation or strided convolution down the architecture. Additionally, the discrimination capacity of the 
proposed technique is assessed by benchmarking it against the state-of-the-art CNNs on radiologist’s authenti-
cated chest X-ray dataset. Implementation is available at https://github.com/PRLAB21/Coronavirus-Di 
sease-Analysis-using-Chest-X-Ray-Images. 
Results: The proposed classification technique shows good generalization as compared to existing CNNs by 
achieving promising MCC (0.96), F-score (0.98) and Accuracy (98%). This suggests that the idea of synergisti-
cally using Region and Edge-based operations aid in better exploiting the region homogeneity, textural varia-
tions, and region boundary-related information in an image, which helps to capture the pneumonia specific 
pattern. 
Conclusions: The encouraging results of the proposed classification technique on the test set with high sensitivity 
(0.98) and precision (0.98) suggest the effectiveness of the proposed technique. Thus, it suggests the potential use 
of the proposed technique in other X-ray imagery-based infectious disease analysis.   

1. Introduction 

Recently, a new member of the coronaviruses (CoV) family named 
SARS-CoV-2 has appeared, which is highly threatening to human life 
[1]. This newly emerged member of the CoV family was responsible for 
the coronavirus disease (COVID-19) epidemic that started in December 
2019. The COVID-19 has become a severe public health problem across 
the globe and was declared a pandemic in 2020 by WHO [2]. The CoV 
family consists of different human virus subtypes that cause mild to 
severe respiratory infections, including the common cold and two 
leading epidemics [3,4]. 

COVID-19 is a highly transmissible viral respiratory infection that is 
mostly characterized by lower to upper respiratory tract illness, fever, 
headache, cough and dyspnea. Besides these, it is accompanied by 
several other symptoms that vary among individuals. The progression of 
COVID-19 down to the lower respiratory tract causes inflammation, 
difficulty in breathing and targets the lungs in most cases. Pneumonia is 
the most typical clinical manifestation of COVID-19 infected patients, 
which in severe cases leads to death [5–7]. COVID-19 transmits pri-
marily through respiratory secretions or droplets, which are discharged 
during cough, sneezing, talking, and contacting an infected person [8]. 

The confirmation of COVID-19 is ascertained through molecular 
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diagnostic techniques such as RT-PCR and gene sequencing [9]. How-
ever, detection of COVID-19 infection through RT-PCR based testing is 
time-consuming and requires a duration of at least 4-6 hours from 
sample collection to results [10,11]. Contrary to this, radiographic 
imaging-based techniques consisting of X-ray and CT are among the 
quickest ways of screening. 

X-ray is low cost and uses a small dose of radiations for image for-
mation; therefore, it is usually used as an assistive screening tool in 
addition to RT-PCR for rapid assessment of COVID-19 in symptomatic 
patients [12,13]. In this regard, X-ray imaging is performed for assess-
ment of the infection spread in lungs, treatment plan, patient care, and 
follow up. Patients with COVID-19 specific lung infection or pneumonia 
commonly exhibit patterns of ground-glass opacities and mixed 
appearance of both ground-glass opacities and consolidation. COVID-19 
specific radiographic findings show the predominance of peripheral 
distribution, bilateral lung involvement and predilection of opacities in 
lower lobes [14]. Different countries such as China, Spain and Italy used 
X-ray imaging to administrate patients’ condition and monitor the 
course of the disease in intensive care patients who are not stable 
enough for CT scan [15,16]. 

The rapid transmission rate and critical condition of COVID-19 
infected pneumonia patients have significantly burdened the radiolo-
gists. Therefore, it is crucial to develop a highly efficient COVID-19 
detection technique that can interpret the subtle difference in radio-
graphic patterns to assist the radiologists. Previously, several automated 
diagnostic systems based on classical Machine Learning (ML) and Deep 
Learning techniques were developed and successfully deployed due to 
fast detection speed and good performance [17–19]. 

Several researchers exploited the potential of Convolutional Neural 
Networks (CNNs) to expedite the analysis of COVID-19 infected images. 
Most of the existing studies adapted state-of-the-art CNN models like 
ResNet, DenseNet, VGG, MobileNet, Xception, and InceptionNet using 
Transfer learning (TL) for classification. Recently, a scheme of pre- 
trained CNN models (ResNet, squezeNet and DensNet) has been uti-
lized to identify COVID-19 in X-ray images. These models are finetuned 
on the COVID-19 dataset named “COVID-Xray-5k” and achieved an 
average classification accuracy of 98% [20]. Likewise, [21] finetuned 
the pre-trained inception model to detect COVID-19 and reported an 
accuracy of 89.5% [21]. In another study by [22], the ResNet-50 model 
that was pre-trained on ImageNet data has been employed on small 
chest X-ray images and reported an accuracy of 98%. Afshar et al. pre-
sented COVID-CAPS based on Capsule Net and achieved an accuracy of 

98%, sensitivity of 80%, and AUC-ROC of 0.97 [23]. They initially 
pre-trained the model on X-ray images in comparison to other ap-
proaches that adapted CNN models, which are pre-trained on Natural 
images. 

However, due to the unavailability of the consolidated data re-
pository in the early days of the pandemic, these models are evaluated 
on a small dataset. Moreover, most of the previously conducted studies 
are based on existing CNN models designed specifically for natural im-
ages dataset. These models are adapted for the COVID-19 task without 
tailoring them by considering the characteristic patterns of COVID-19 
pneumonia. Thus, it limits the use of the discussed techniques in real- 
time diagnostics. 

This study presents a new deep Convolutional Neural Network (CNN) 
based COVID-19 classification technique for the discrimination of 
COVID-19 pneumonia patients from healthy individuals based on chest 
X-Ray images. In this study, we build a large dataset by collecting ra-
diologist’s authenticated X-ray images from publicly accessed re-
positories. We have proposed two novel CNN architectures, namely 
COVID-RENet-1 and COVID-RENet-2, to classify COVID-19 pneu-
monia. The idea of the proposed technique is validated by performing 
series of experimentation and comparing with baseline models. The 
detection capacity of the proposed technique is evaluated on the seen 
test set and compared against several state-of-the-art CNNs. The con-
tributions of this work are as follows:  

• Two novel CNN architectures, COVID-RENet-1 and COVID-RENet-2, 
are proposed for the COVID-19 specific pneumonia analysis.  

• In the proposed CNN architecture, Region and Edge-based operations 
are systematically used in combination with convolution operation 
to better explore the region homogeneity, textural variations, and 
boundary related information in an image. 

• The performance comparison of the proposed COVID-19 classifica-
tion framework with several existing CNN architectures shows a 
significant decrease in both the false negatives and false positives. 

The rest of the manuscript is arranged as follows: Section 2 presents 
the details of the proposed COVID-19 classification framework and 
experimental setup. The results and discussion is made in section 3. The 
last Section 4 concludes the paper. 

Fig. 1. The detailed workflow of the proposed technique for the classification of COVID-19 infected X-ray images.  
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2. Materials and methodology 

A new classification technique is developed in this work based on 
two custom CNN architectures for automatic discrimination of COVID- 
19 pneumonia patients from healthy individuals using chest X-ray im-
ages. The discrimination potential of the proposed classification tech-
nique is empirically evaluated via several performance metrics and 
compared with standard state-of-the-art CNNs. In the experimental 
setup, training samples are augmented to improve the generalization. 
The overall setup of the proposed COVID-19 classification technique is 
shown in Fig. 1. 

2.1. Dataset 

We have built a new dataset consisting of X-ray images of healthy 
individuals and COVID-19 pneumonia patients in this work. X-ray im-
ages were collected from Open Source GitHub repository and Kaggle 
repository called “pneumonia” [24,25]. Radiologists approved all the 
images in the aforementioned repositories, and we filtered COVID-19 

and healthy samples from these repositories for this experimental 
setup. Since data is continuously updated by an open-source GitHub 
repository; therefore, in this experiment, we collected 6448 images 
consisting of 3224 COVID-19 patients and 3224 healthy individuals; 
thus, the developed dataset is balanced in nature. Each image in this 
dataset was resized to 224 × 224 pixels. Some of the COVID-19 infected 
and healthy images are presented in Fig. 2. 

2.2. Data augmentation 

Deep learning models largely overfit on an insufficient amount of 
data. Therefore, a considerable amount of data is required for effective 
training and achieving good generalization. Data augmentation refers to 
augmenting the base data to increase data samples [26,27]. In this work, 
we have augmented the training dataset by performing random rotation 
(0-360 degree), sharing (±0.05), scaling (0.5-1 range), and image 
reflection (±1 in left and right direction). These augmentation strategies 
are used to increase the data as well as generalization of the model to 
make it effective for different hospitals and lab setups. 

Fig. 2. Panel (A) and (B) show COVID-19 infected and healthy images, respectively.  

Fig. 3. Architectural details of the proposed COVID-RENet-1.  
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2.3. The proposed deep COVID-RENet based classification 

In this study, we have exploited the potential of deep CNNs to learn 
the COVID-19 specific patterns of pneumonia in chest X-ray images. 
Deep CNNs have been extensively employed for image classification and 
recognition because of their strong potential in learning salient features 
and patterns manifested by images. CNNs, on account of their good 
learning ability, are used for both feature generation and classification 
[28]. 

In this work, we have developed two new CNN architectures based 
on Region and Edge-based operations for COVID-19 specific pneumonia 
classification in X-ray images and named them as “COVID-RENet-1” 
(also known as PIEAS Classification-Network-4 (PC-Net-4)) and 
“COVID-RENet-2” (also known as PIEAS Classification-Network-4 (PC- 
Net-6)). These models are optimized in an end-to-end manner to capture 
the pneumonia specific information from the X-ray images. Fully con-
nected layers in the proposed deep CNN models are used for the clas-
sification. The architectural details are summarized in the following 
sections. 

Fig. 4. Architectural details of the proposed COVID-RENet-2.  

Table 1 
Explanation of various performance metrics.  

Metric Symbol Description 
Accuracy Acc % of correctly predicted samples 
Recall 

(Sensitivity) 
R Ratio of correctly predicted COVID-19 

samples 
Specificity S Ratio of correctly predicted Healthy 

samples 
Precision P Ratio of predicted samples close to actual 

class 
True Positives TP Correctly predicted COVID-19 samples 
True Negatives TN Correctly predicted Healthy examples 
False Positives FP Incorrectly predicted COVID-19 samples 
False Negatives FN Incorrectly predicted Healthy samples 
Negative Samples TN+FP Total Healthy samples in the dataset 
Positive Samples TP+FN Total COVID-19 samples in the dataset 
Total Samples TP+TN+FP+FN Total samples in the dataset  

Fig. 5. Training plots for the proposed COVID-RENet-2 (panel A) and COVID-RENet-1 (panel B).  
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2.3.1. Architectural details of the proposed COVID-RENets 
The architectural design of the proposed COVID-RENets is motivated 

by classical image processing techniques [29] and is based on the idea of 
exploiting the underlying patterns in images. In this regard, we sys-
tematically synergized the use of Region and Edge-based operations as 
well as convolution operation in CNN to learn the COVID-19 specific 
pneumonia patterns effectively. In this work, we used VGG-16 and 
ResNet-18 [30,31] as baseline models to validate the advantage of the 
proposed Region and Edge-based idea for pattern mining in CNNs. 
VGG-16 is a state-of-the-art CNN that exploits average pooling 
throughout the architecture for image size regulation and uses convo-
lution operation for feature engineering. ResNet-18 uses strided 
convolution operation for image downsampling instead of pooling 

operation and leverage the advantage of convolution operation in 
combination with the ReLu activation function for feature extraction. 

The proposed COVID-RENet-1 consists of four convolutional blocks. 
Each block consists of a convolutional layer (Eq. (1)), batch normali-
zation, and ReLU as an activation function. After every convolutional 
block, Region and Edge-based operations are employed using average 
(Eq. (2)) and max pooling (Eq. (3)), respectively. These operations 
enhance the region-specific properties and boundary information, 
whereas convolution operation extracts the pattern defining features 
from the image. Fully connected layers represented in Eq. (4) are used in 
the proposed model to obtain target-specific features for classification. 

Fig. 6. COVID-19 infected (panel a & b) and healthy (panel c & d) images that are misclassified by both COVID-RENet-1 and COVID-RENet-2.  

Table 2 
Performance comparison of the proposed COVID-RENets with baseline models 
on the test set.  

Models Depth MCC F-score %Accuracy 
Proposed TL COVID-RENet-2 10 0.96 0.98 98.14 
Proposed TL COVID-RENet-1 08 0.96 0.98 98.06 
TL_Resnet18 18 0.95 0.97 97.13 
TL_ VGG16 16 0.94 0.97 97.05  

Fig. 7. Panels (A & B) show the number of correct and misclassified detections, respectively made by COVID-RENet-1, COVID-Net-2 and baseline models.  

Table 3 
SVM based learning capacity estimation of the proposed COVID-RENets with 
baseline models on test set.  

Models MCC F- 
score 

% 
Accuracy 

TP FP FN TN 

Proposed TL COVID- 
RENet-2 

0.97 0.98 98.29 640 18 5 627 

Proposed TL COVID- 
RENet-1 

0.96 0.98 98.14 631 10 14 635 

TL_Resnet18 0.95 0.97 97.57 631 18 14 627 
TL_ VGG16 0.94 0.97 97.13 629 21 16 624  
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Fig. 8. Panel (a) shows the original chest X-ray image. Panel (b) shows the radiologist defined COVID-19 infected regions highlighted by yellow circle or black arrow. 
The resulted class activation map of the proposed COVID-RENet-2 and COVID-RENet-1 is shown in panels (c & d), respectively. Panel (e) shows the class activation 
map of the best performing baseline CNN, ResNet. 

Fig. 9. Feature visualization for the proposed COVID-RENets and the best performing baseline CNN (ResNet) on the test set.  

S.H. Khan et al.                                                                                                                                                                                                                                 
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Dropout is applied to the fully connected layers to reduce the chances of 
overfitting. 

Similarly, the proposed COVID-RENet-2 is based on the same idea 
with increased depth. COVID-RENet-2 constitutes four convolutional 
blocks but with a different number of convolutional operations. Fig. 3 
illustrates the architecture of the proposed COVID-RENet-1, while Fig. 4 
shows the details of the proposed COVID-RENet-2. 

fx,y =
∑p

a=1

∑q

b=1
fx+a− 1,y+b− 1ka,b (1)  

favg
x,y =

1
w

2 ∑w

a=1

∑w

b=1
fx+a− 1,y+b− 1 (2)  

fmax
x,y = maxa=1,⋯,w,b=1,⋯,wfx+a− 1,y+b− 1 (3)  

v =
∑D

d

∑C

c
udfc (4) 

In Eq. (1), the convolutional operation is employed (assuming the 
filter is symmetric). Input feature map, of size (X × Y), is represented 
by f, where kernel, of size p x q, is represented by k. The resultant feature 
map is represented by f, where x and y run from 1 to X - p + 1 and Y - q +
1, respectively, as depicted in Eq. (1). Eqs. (2) and (3) determine the 
average and max-pooling operations, and their outputs are represented 

by favg and fmax, respectively. In Eqs. (2) and (3), w represents the 
window size of average and max operation. v (Eq. (4)) is an output of a 
fully connected layer, which applies global operation on the output fc of 
the feature extraction stage (consisting of convolution and pooling 
operation). ud shows the number of neurons in a fully connected layer. 

2.3.2. Advantages of the proposed COVID-RENet in exploring the image 
content 

X-ray imaging of the chest shows several patterns that help display 
the variation in intensity values of different regions. The underlying 
structure of these patterns is established on region smoothness, textural 
variations, and boundaries. X-ray imaging manifests the radiological 
patterns of COVID-19 pneumonia that are characterized by different 
types of opacities and obscuration of well-structured marks. 

In this work, the systematic combination of convolution operation 
Eq. (1)), and Region and Edge-based operations (Eqs. (2) and ((3)) en-
ables the proposed architecture in enhancing the region-specific prop-
erties. This, in turn, helps distinguish the well-structured healthy regions 
from the deformed regions in the X-ray images. In contrast to this 
scheme, most current CNN architectures use different combinations of 
convolution operations while applying a pooling operation only at the 
input layer to learn invariant features [31–33]. Other well-known 
benchmarked CNNs normally use a single type of pooling down the ar-
chitecture for down-sampling [30,34]. The advantages of implementing 
the proposed idea in CNN are as follows:  

• The proposed COVID-RENet helps in dynamically emulating image 
sharpening and smoothing and can automatically adjust the extent of 
smoothening and sharpening as per the spatial content of the image. 

• The systematic use of Region-based operation after each convolu-
tional block helps in enhancing the region homogeneity of different 
segments. The region operator smoothens the region variations via 
an average-pooling (Eq. (2)) and thus also acts as a noise suppressant 
for the distortions acquired during X-ray imaging. On the other hand, 
the edge operator encourages CNN to learn highly discriminative and 
local features using max-pooling operation (Eq. (3)).  

• Additionally, pooling operations also perform down-sampling, 
which improves the model robustness against slight variations in 
the input image. 

2.3.3. Validation of the proposed region and edge based idea 
The learning capacity of the proposed COVID-RENet-1 and COVID- 

RENet-2 is evaluated from different perspectives and compare the per-
formance against the baseline models. Initially, consider the proposed 
models as feature-extractors and transfer their knowledge to linear ML 
classifier for analyzing discrimination capacity. For this purpose, SVM is 
used for performing binary classification. Additionally, the class sepa-
ration ability of the learnt feature-space is analyzed by performing 2-D 
visualization of the data using principal component analysis. Class 
activation map based analysis is conducted to gain an insight that the 
decision-making process of the proposed technique is based on charac-
teristics patterns of COVID-19 infected regions rather than random 
irrelevant regions. 

2.4. Implementation of the standard existing CNNs 

For comparison, we implemented different state-of-the-art well- 
known deep CNN models, including VGG, GoogleNet, Inception, ResNet, 
SqueezeNet, DenseNet, and Xception [30–32,34–37]. These CNNs have 
been extensively used for a wide range of image classification problems 
and have been used by several researchers for COVID-19 X-ray classi-
fication. These models vary in block design and architecture, but all of 
them either exploited a single type of pooling operation down the 
network or replaced the pooling operation with a strided convolution 
operation for complexity regulation. We implemented these CNNs in an 
end-to-end manner for classification and added an additional FC and 

Table 4 
Performance comparison of the proposed COVID-RENets with standard existing 
CNNs on test set.  

Models MCC F- 
score 

% 
Accuracy 

TP FP FN TN 

Proposed TL COVID- 
RENet-2 

0.96 0.98 98.14 633 12 12 633 

Proposed TL COVID- 
RENet-1 

0.96 0.98 98.06 628 8 17 637 

TL_Inceptionv3 0.93 0.96 96.51 620 20 25 625 
TL_DenseNet201 0.93 0.96 96.51 626 26 19 619 
TL_Google Net 0.93 0.96 96.51 621 21 24 624 
TL_Xception 0.93 0.96 96.43 625 26 20 619 
TL_Resnet50 0.94 0.97 97.05 629 22 16 623 
TL_Squeeze Net 0.93 0.96 96.51 625 25 20 620  

Fig. 10. ROC curve based analysis of the proposed COVID-RENet-1 and COVID- 
RENet-2 with exisitng CNNs. The values in square bracket show a standard 
error at the 95% confidence interval. 
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classification layer to tune them for X-ray based COVID-19 pneumonia 
discrimination. 

2.5. Transfer learning based optimization of the proposed technique 

The proposed COVID-RENet-1 and COVID-RENet-2 are trained on 
the X-ray dataset by exploiting TL. CNNs are parameter hungry, and 
optimal performance requires a large amount of dataset during training, 
whereas training on a small number of X-ray samples may cause poor 
convergence [38]. TL is a technique that has shown promising results for 
CNN models in the non-availability of a large dataset. It allows the reuse 
of the already trained models’ weight space and prevents highly 
parameterized models from overfitting by providing a good initial set of 
weights [39]. Therefore, we customarily exploited the concept of TL in 
this work to achieve substantial performance. In this regard, we 

initialized the weights of the proposed COVID-RENets from the 
pre-trained model’s parameter space. 

Likewise, for a fair comparison, we adapted the same training 
strategy for the standard state-of-the-art CNNs. These architectures have 
been optimized for X-ray images by applying domain-adaptation based 
TL to fine-tune the ImageNet pre-trained models on the X-ray dataset for 
classification of COVID-19 specific pneumonia. 

2.6. Implementation details 

The dataset was divided into two disjoint sets with a ratio of 80:20% 
for train and test sets, respectively. Further, the training set was parti-
tioned into train and validation datasets for parameter selection. The 
parameter optimization of the model was carried out using the 5-fold 
cross-validation. During the training of CNNs, SGD was used as an 

Fig. 11. Performance comparison of the proposed COVID-RENet-1 and COVID-RENet-2 with state-of-the-art CNNs.  

S.H. Khan et al.                                                                                                                                                                                                                                 
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optimizer with a momentum of 0.95. The model was trained for 10 
epochs by initially setting the learning rate to 0.0001 and weight decay 
as 0.0005. A mini-batch training strategy was employed with a batch 
size of 16 images per epoch for smooth training. All the deep CNNs were 
optimized for image classification by minimizing cross-entropy loss, and 
softmax was used as an activation function. Linear SVM was used for the 
ML-based classification analysis. 

All the simulations were carried out on MATLAB 2019b. Dell Core I 
i7-7500 CPU with a 2.90 GHz processor and with CUDA-enabled Nvi-
dia® GTX 1060 Tesla was used for MATLAB based simulations. The 
training of the models approximately took ~12 hours.  The training time 
for one epoch on Nvidia Tesla K80 was ~30-60 minutes. 

3. Results and discussion 

This study proposes a deep CNN-based technique for detecting 
COVID-19 infected pneumonia patients using chest X-ray images. Two 
experiments are performed to evaluate the effectiveness of the proposed 
technique empirically. In the first experiment, we have analyzed the 
advantages of synchronously using average and max pooling in COVID- 
RENets for pattern recognition. In the second, a general evaluation for 
the COVID-19 detection task is performed by comparing performance 
with popular state-of-the-art techniques. 

3.1. Performance measures 

The performance of the implemented models is evaluated using 
various standard performance metrics. These metrics include accuracy, 
sensitivity, specificity, recall, Mathews Correlation Coefficient (MCC), 
and F-score. Accuracy is defined in (Eq. (5)), which measures the total 
number of correct assignments. Similarly, recall (Eq. (6)) and specificity 
(Eq. (7) measure the proportion of actual COVID-19 patients, and the 
actual healthy individuals identified, respectively. The precision is 
specified in (Eq. (8)), F-score in (Eq. (9)), and (Eq. (10)) shows MCC. The 
mathematical explanation of the different metrics is provided in Table 1. 

Acc =
Predicted COVID − 19 + Predicted Healthy

Total Samples
× 100 (5)  

R =
Predicted COVID − 19

Total COVID − 19 Samples
× 100 (6)  

S =
Predicted Healthy

Total Healthy Samples
× 100 (7)  

P =
Predicted COVID − 19

Predicted COVID − 19 + Incorrectly Predicted COVID − 19
× 100

(8)  

F − Score = 2 ×
P × R
P + R

(9)  

MCC =
(TP × TN) − (FP × FN)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
((TP + FP)(FP + FN)(TN + FP)(TN + FN))

√ (10)  

3.2. Performance analysis of the proposed COVID-RENets 

The performance of the proposed COVID-RENet-1 and COVID- 
RENet-2 is evaluated on an unseen test dataset based on MCC and F- 
score that are standard measures for medical diagnostic system. Con-
trary to Accuracy, both MCC and F-score assign weightage to precision 
along with sensitivity. 

Training based accuracy and loss plots for COVID-RENet-1 and 
COVID-RENet-2 are shown in Fig. 5, respectively. Loss and accuracy 
plots (Fig. 5) show that both the proposed models converge smoothly 
and reach an optimal value quickly. The proposed COVID-RENet-1 
model correctly classified 633 samples of both COVID-19 and healthy 

individuals. Likewise, the proposed COVID-RENet-2 performs similarly 
by correctly identifying 628 COVID-19 infected and 637 healthy in-
dividuals, respectively. It is observed that an increase in depth improves 
the detection rate for COVID-19. Fig. 6 shows some of the X-ray images 
that are misclassified by both COVID-RENet-1 and COVID-RENet-2. 
Misclassification occurs probably due to illumination variation, low 
contrast, and intricate pattern of samples. In this regard, we employed 
several data augmentation strategies during training to maximize the 
generalization and improve the robustness towards unseen patient 
samples. 

3.2.1. Performance comparison with baseline techniques 
The effectiveness of the proposed idea is evaluated by benchmarking 

the performance against ResNet and VGG. These two baseline models, 
ResNet-18 and VGG-16, are approximately as deep as COVID-RENet-1 
and COVID-RENet-2. Contrary to the idea of using two opposing pool-
ing operations in COVID-RENets, VGG-16 exploits a single type of 
pooling operation and ResNet-18 uses strided convolution in place of 
pooling down the architecture. The comparison is presented in Table 2. 
Performance analysis suggests that both the COVID-RENets show gain in 
performance as compared to ResNet-18 and VGG-16 in terms of MCC 
(0.96), F-score (0.98), and accuracy (0.98). Fig. 7 shows that the pro-
posed COVID-RENet significantly improves the detection rate for both 
COVID-19 infected and healthy individuals compared to baseline 
ResNet-18 and VGG-16. 

3.2.2. Learning capacity estimation via ML classifier 
Feature engineering plays a significant role in evaluating the 

learning capacity of deep CNNs. The feature-space of the proposed 
model is evaluated using the classical ML model to assess its contribu-
tion in learning class-specific mappings. The mapping capability of the 
proposed COVID-RENet is evaluated by extracting features from its 
penultimate layer and assigning them to the linear ML classifier, SVM. 
Table 3 shows that the pattern leant by proposed COVID-RENet-1 and 
COVID-RENet-2 are distinguishable for two classes and can be used to 
discriminate COVID-19 pneumonia and healthy individuals. Quantita-
tive analysis in terms of MCC (0.97), F-score (0.98), and accuracy (98%) 
suggest that proposed technique perform better then VGG-16 
(MCC:0.94, F-score:0.97, ACC: 97%) and ResNet-18 (MCC:0.95, F- 
score:0.97, ACC: 97%). 

3.2.3. Class activation map based interpretation 
We performed the class activation map based study to empirically 

investigate the effectiveness of systematically using max and average 
pooling operations in CNN. Fig. 8 demonstrates the response of the 
proposed COVID-RENets and best performing baseline model (ResNet- 
18) towards COVID-19 infected X-rays. Class activation map-based 
visualization suggests that the synergy of two different pooling opera-
tions encourage the model to detect COVID-19 caused pneumonia 
accurately by focusing on infected regions. 

3.2.4. Feature space based analysis 
Feature space learnt by the proposed COVID-RENets and best per-

forming baseline model, ResNet, is analyzed to understand the decision- 
making behaviour in a better way. The good discrimination ability of a 
classifier is generally associated with the characteristics of the feature 
space. Class distinguishable features improve the learning and lower the 
model’s variance on the diverse set of examples. Visualization of feature 
space is performed by plotting principal components of the data. Fig. 9 
shows the 2-D plots of principal component 1 and principal component 2 
and their percentage variance for the proposed COVID-RENet-1, COVID- 
RENet-2 and ResNet-18 for the test set. Data plotting shows that 
exploitation of both max and average pooling operation considerably 
improves the feature space diversity and thus resulted in improved 
classification performance. 
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3.3. Discrimination capability of the proposed COVID-RENets 

We compared the performance of the proposed technique with 
popular CNNs on unseen chest X-ray images for comprehensive empir-
ical evaluation. The results are evaluated in terms of MCC, F-score, 
Accuracy, AUC-ROC, sensitivity and precision. 

3.3.1. Performance comparison with existing CNNs 
The performance of the proposed COVID-RENet-1 and COVID- 

RENet-2 is compared with GoogleNet, InceptionV3, ResNet-50, Squee-
zeNet, Xception and DenseNet-201. Table 4 shows that the performance 
comparison suggests that proposed models COVID-RENet-1 and COVID- 
RENet-2 can better recognize the COVID-19 specific pneumonia patterns 
from X-ray images in terms of standard metrics MCC, F-score, and ac-
curacy. This improvement in the performance is because of the sys-
tematic use of average and max pooling operators in the proposed CNN 
architecture. In essence, this systematic use of these two opposite 
pooling operators encourages the model to learn both fine-grained de-
tails and highly discriminative features from the raw X-ray images. 

3.3.2. ROC-AUC based analysis 
ROC curve has an essential role in achieving the optimal analytical 

threshold for the classifier. ROC curve graphically illustrates the clas-
sifier segregation ability at possible threshold values. Fig. 10 shows that 
our proposed COVID-RENet-1 and COVID-RENet-2 achieved an AUC of 
(0.99) on COVID-19 chest X-ray datasets. It is evident from ROC based 
quantitative analysis that the proposed technique upholds high sensi-
tivity with a low False-positive rate. This suggests that the proposed 
COVID-19 classification technique has a significant potential to deploy 
for COVID19 patients’ analysis. 

3.3.3. Diagnostic significance of the proposed technique 
The effectiveness of a medical diagnostic system is mostly assessed 

through detection rate (sensitivity) and precision. An accurate detection 
rate is important for the COVID-19 detection system in controlling 
infection spread. Therefore, the proposed technique’s detection rate and 
precision are explored for COVID-19 X-ray images, as shown in Fig. 11 
and Table 4. The quantitative analysis shows (Fig. 11) that the COVID- 
RENet-1 (Sen: 0.97, Pre: 0.99) and COVID-RENet-2 (Sen: 0.98, Pre: 0.98) 
improves the precision of the classification system along with a high 
detection rate. Thus, it is likely to assist the radiologist with high ac-
curacy and can be used to increase the throughput by reducing the 
burden on expert radiologists. 

4. Conclusions 

Early diagnosis of COVID-19 patients is essential in preventing the 
spread of disease. Therefore, two novel custom, deep CNN models are 
proposed to discriminate the X-ray images of COVID-19 pneumonia 
patients from healthy individuals. The performance analysis of the 
proposed COVID-19 classification technique is carried out with the 
standard existing CNN models. Experimental results demonstrated that 
the proposed COVID-RENet-1 and COVID-RENet-2 perform better than 
baseline and existing CNN models by improving Accuracy, F-score, and 
MCC. The proposed technique achieved an MCC of 0.97 for discrimi-
nating COVID-19 samples from healthy individuals with a sensitivity 
and precision of 0.98. The proposed technique is expected to help 
medical practitioners with the diagnosis of COVID-19 infected patients. 
Moreover, it has a strong potential to be used for the analysis of different 
types of chest X-ray image abnormalities. 

Availability of data and material 

Publicly available dataset is used in this work that is accessible at htt 
ps://www.kaggle.com/khoongweihao/covid19-xray-dataset-train-test- 
sets and https://github.com/ieee8023/covid-chestxray-dataset. 

Whereas all the data generated during analysis is accessable from cor-
responding author on reseasonable request. 

Code availability 

All the scripts that are developed for the simulations are available 
from the corresponding author on reasonable request. 
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