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Introduction
According to the world health organization (WHO), cancer is 
the leading cause of mortality in the world. Lung cancer is 
responsible for 18.4% of cancer-related deaths and 11.6% of all 
cancer cases. Colon cancer accounts for 9.2% of all cancer-
related fatalities globally.1-5 Adenocarcinoma and squamous 
cell carcinoma are the most commonly occurring subtypes of 
lung cancer, and adenocarcinoma is the most common colorec-
tal cancer subtype. Cancer detection at an early stage can sig-
nificantly reduce the fatality rate. Furthermore, cancer subtype 
is an important factor for diagnosis and especially treatment 
plan determination. Assessment of histopathological images by 
a pathologist is the gold standard for lung and colon cancer 
diagnosis.6 The inter-observer variability of lung and colon 
classification is moderate.7 Moreover, the number of qualified 
pathologists is too small to meet the substantial clinical 
demands, particularly in countries such as China, with a sig-
nificant population of lung and colon cancer patients.

Artificial intelligence, particularly deep learning algorithm 
may help pathologists to reduce errors and improve efficiency. 
Recently, there has been a rise in research interest in auto-
mated deep-learning-based lung and colon cancer diagnosis. 
Most successful studies used histopathology slide images to 
aid in automated diagnosis.5 Many of these research used the 
publicly available LC25000 dataset.8 Some research only 

conducted 1 cancer type classification, that is, lung or colon 
cancer classification.4 Masud et al designed a small convolu-
tional neural network for lung and colon cancer classification 
and achieved an accuracy of 96.33%.9 Mumtaz Ali adopted a 
multi-input dual-stream capsule network and obtained an 
accuracy of 99.58%. Tummala et al10 used an EffcientNetV2 
model and obtained an accuracy of 99.97%. Al-Jabbar et al11 
provided a hybrid system with the fusion features of VGG-19 
and handcrafted features. The classifier reached a sensitivity of 
99.85%, a precision of 100%, an accuracy of 99.64%, a specific-
ity of 100%, and an AUC of 99.86%. A recent study achieved 
perfect results on the LC25000 dataset.12 However, in this 
study the LC25000 was split into 70% training set and 30% 
testing set only 1 time. Because the test dataset was used for 
hyper-parameter turning and model selection, there existed a 
possibility of data leakage. Furthermore, this study adopted a 
complex framework including 4 CNNs, specifically VGG16, 
ResNet50, InceptionV3, and DenseNet121, and SVM as the 
meta-learner conducting model ensemble. The framework 
cannot be trained end-to-end and the whole classifier con-
sume more computing resource than the simple single model.

Kumar et al13 compared the performances of 2 different 2 
different kinds of feature extractors that include 6 hand-
crafted features extraction techniques and 7 deep neural net-
works with 4 different machine learning classifiers and found 
out that deep neural networks features worked much better. 
And the best result was an accuracy and recall of 98.60%, 
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precision of 98.63%, F1 score of 0.985 and ROC-AUC of 1; 
Mehmood et al and his group14 adopted a pretrained neural 
network (AlexNet) to do LC25000 classification. By adopted 
Class Selective Image Processing (CSIP), the overall accuracy 
raised from 89% to 98.8%. The attractive point of this paper 
is CSIP. Except for CSIP, they used a relatively old network 
and the performance metrics was lower than those of other 
studies; Chhillar and Singh15 proposed a traditional method 
using handcrafted features plus machine learning, specifically 
LightGBM with combined features, and obtained an accu-
racy of 100%. Even though they obtained perfect results on 
the LC25000 dataset, their handcrafted features are specific 
to the task, so that their method is difficult to expand to other 
tasks; Provath et al and his research team16 design a novel 
neural network using global context attention module. They 
showed that the addition of the global context attention 
module decreases the model’s parameter, reduces the compu-
tational costs and boost performances. They conducted 
experiments on 3 datasets LC25000, GLaS, and CRAG data-
set. Even though they obtained great results of precision 99.4, 
sensitivity 99.6, and accuracy: 99.76 on LC25000 dataset, the 
results are not perfect; Dabass et  al.17 proposed a novel 
method to do colon histopathological images classification 
using multiple datasets. Their method includes a stain-invar-
iant pre-processing procedure and a well-designed neural 
network, which contains enhanced convolutional learning 
modules, multi-level attention learning module, and transi-
tional modules. Even though they achieved perfect results on 
the LC25000 dataset, 2-class classification (colon benign and 
colon malignant classes) instead of 5 class classification. They 
also18 invented a novel multi-tasking U-net with hybrid con-
volutional learning and attention modules to do cancer clas-
sification on multiple datasets and achieved an accuracy of 
0.9997, recall of 0.9994, precision of 1 on the LC25000 data-
set. The novelty of this study is using segmentation models do 
both segmentation and classification tasks. Just like the previ-
ous study, on the LC25000 dataset they do 2-class classifica-
tion (colon benign and colon malignant classes) instead of 5 
class classification.

The field of computer vision has for years been dominated 
by CNNs (convolutional neural networks).19-21 However, ViTs 
(Vision Transformers)22-26 have recently outperformed CNNs 
for image classification and some other tasks. Nevertheless, 
ViTs are hardly successfully used in medical image analy-
sis,27,28 let alone cancer classification. It probably because the 
original ViT do not inherently encode inductive biases (prior 
knowledge) to deal with visual data,29 they typically require a 
large amount of training data to figure out the underlying 
modality-specific rules.30 By combining self-attention with a 
hierarchical structure that operates locally at different scales, 
Swin Transformer23 have built locality, translational equivari-
ance, and hierarchical scale into ViTs. This will reduce the 
sample size needed. Swin Transformer models embrace both 

inductive bias just like CNNs and self-attention to model long 
range interactions just like ViTs. We hypothesize that in some 
cases Swin Transformer models outperform both ordinary 
CNNs and ViTs. Moreover, compared with the original Swin 
Transformer, Swin Transformer not only has the advantage of 
scaling up capacity and resolution, which is important for 
object detection and segmentation tasks, but also can achieve 
comparable or even better results on classification tasks with 
ordinary image size.

The aim of this study was to develop an automatic lung 
and colon cancer classification model using histopathological 
images. In this study, the publicly available LC25000 dataset8 
was used to develop and validate the algorithm. The algo-
rithm development included data splitting, neural network 
structure selection, on the fly image augmentation, training 
and validation.

Materials and Methods
System pipeline

The system pipeline is shown in Figure 1. Given a histopatho-
logical image patch cropped from a whole slide image, it was 
predicted as 1 of 5 classes, that is, lung adenocarcinoma, lung 
squamous cell carcinoma, benign lung, colon adenocarcinoma 
and benign colon.

Dataset

The LC25000 dataset,8 which contains histopathological 
images of the lung and colon, was used to develop and evaluate 
the lung and colon cancer classification algorithm. The dataset 
was organized into 5 classes: lung adenocarcinoma, lung squa-
mous cell carcinoma, benign lung, colon adenocarcinoma and 
benign colon. HIPAA compliant and validated 750 images of 
lung tissue (250 benign lung tissues, 250 lung adenocarcino-
mas, and 250 lung squamous cell carcinomas) and 500 total 
images of colon tissue (250 benign colon tissues and 250 colon 
adenocarcinomas) were captured from pathology glass slides.31 
After processing, there were 5000 images for each class in the 
dataset, which encompasses 25 000 lung and colon images with 
768 pixels × 768 pixels.

Data splitting

To avoid the randomness of performance indicators caused by 
data splitting, a 5-fold cross validation was used to split the 
dataset. The data splitting process is illustrated in Figure 2. The 
dataset was split into a training, validation, and testing dataset 
with a ratio of 60%, 20%, and 20% for 5 times. Every test data-
set did not overlap, so did the validation dataset. The training 
dataset was used to train model parameters, and the validation 
dataset was used to tune hyper-parameters and select models. 
The final performance results were obtained by combining 
results of 5 testing sub-datasets.
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Neural networks

The field of computer vision including medical image analy-
sis has for years been dominated by CNNs. However, ViTs22-

26 have recently outperformed CNNs for image classification 
and some other tasks. Besides the original ViT, other ViTs22-

26 including DeiT (Data efficient image transformer),25 
ConViT (Convolutional-like vision transformer),26 and Swin 
Transformer23,24 have been proposed and obtained excellent 
performance on some public datasets such as the ImageNet 
dataset. However, ViTs were rarely successfully used in medi-
cal image analysis,27,28 let alone cancer classification. It was 

probably because compared with CNNs, most ViTs need a 
larger dataset to train and the training speed is slower. Hard 
inductive biases of CNNs enable sample-efficient learning. 
ViTs rely on more flexible self-attention layers, however, they 
require costly pre-training on large external datasets or distil-
lation from pre-trained convolutional networks.25,26

By combining self-attention with a hierarchical structure 
that operates locally at different scales, Swin Transformer 
series,23 including both Swin Transformer and Swin Transformer 
V2, have built locality, translational equivariance, and hierarchi-
cal scale into ViTs. This may reduce the sample size needed. On 
the basis of Swin Transformer, Swin Transformer V224 made 

Figure 1.  The flowchart of automated lung and colon cancer classification system. The image of Swin Transformer V2 was adopted from https://github.

com/microsoft/Swin-Transformer.

https://github.com/microsoft/Swin-Transformer
https://github.com/microsoft/Swin-Transformer
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the following improvements: pre-layer-normalization changed 
to post-layer-normalization and dot product replaced by scaled 
cosine attention. The architecture of Swin Transformer V2 is 
shown in Figure 2. Swin Transformer V2 can not only scale up 
capacity and resolution, but also improve training stability and 
accuracy.

In this study, many mainstream CNNs and ViTs were used 
to develop the algorithm, and the best model was chosen as the 
final classifier.

Training strategies

To enlarge the sample size and avoid overfitting, image aug-
mentation was used during training.32 Compared with image 
augmentation before training, the on the fly implementation 
was not only more time-efficient but also more flexible. The 
image augmentation operation included random horizontal 
and vertical flipping, random brightness and contrast modifi-
cations. The Albumentations33 library and PyTorch dataset 
class were used to implement real-time image augmentation. 
After image augmentation, all pixel values were normalized to 
(0-1). Technical details about image augmentation can be 
found in the source code.

Softmax was used as the last layer’s activation function, 
and multi-class cross entropy loss was used as the loss func-
tion. For every model, parameters were initialized from the 
corresponding ImageNet pre-trained model, and then all lay-
ers were fine-tuned. During pre-experiments, there was no 
perceivable performance difference between parameters ini-
tialized from the ImageNet-1K models and initialized from 

ImageNet-21K pre-trained models. Adam34 was used as the 
optimizer. Automatic mixed precision training35 was used to 
speed up the training and inference process and save GPU 
memory. Label smoothing (ε = 0.1) was used to calibrate 
probabilities and improve generalization ability.36 The batch 
size was set to 64. The number of epochs was set to 60, and 
the learning rate was set to 1e-4. During experiments, perfor-
mances were insensitive to these hyper-parameters.

Because of 5-fold cross validation, every neural network was 
independently trained on 5 different training datasets. And for 
every training dataset, the same neural network was trained 3 
times, and the model with the minimum validation loss was 
chosen as the best model. Finally, 5 models were obtained for 
every neural network, and each for every data splitting.

Inference and performance evaluation

Inference process for 1 image: Given an image, the prediction 
mathematical formula is as follows:

pred_class  probs.argmax axis -� ��� �
Here probs denotes the output of softmax activation of the 

last layer. And pred_class is the predicted class, which is one of 
the 5 classes.

Overall performance evaluation: Because of 5-fold cross 
validation, we have 5 non-overlapping testing datasets. For 
every neural network, results were calculated separately on each 
testing dataset using the best model trained on the same data 
splitting. The final testing results were obtained by combining 
results of 5 testing datasets.

Figure 2.  Five-fold cross validation data splitting. Blue, cyan and green stand for training, validation and testing dataset, respectively. The final testing 

dataset was combined by 5 testing subsets.
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Performance metrics

The commonly used multi-class classification performance 
indicators are accuracy, confusion matrix and Kappa coeffi-
cient.37 Besides that, 5 class multi-class classification can be 
viewed as 5 one-versus-rest binary classifications. For binary 
classification, the precision, recall(sensitivity), specificity and 
F1 are popular metrics.38,39 Considering that previous studies 
using the same LC25000 dataset adopted these 3 binary clas-
sification metrics, to compare our results with theirs, they were 
also calculated. Because the LC25000 dataset was balanced for 
every class, the macro average and micro average values for 
every indicator were identical.

Accuracy is the total number of correct predictions divided 
by the total number of samples. The confusion matrix is a spe-
cial case of contingency table, with 2Ds (“actual” and “pre-
dicted”). And both accuracy and Kappa can be deduced from 
the confusion matrix. Precision (also called positive predictive 
value) is the fraction of true positives among predicted posi-
tives. Recall (true positive rate) refers to the probability of a 
positive test, conditioned on truly being positive. F1 is a special 
case of Fβ and more specifically is the harmonic mean of preci-
sion and recall. All these metrics are bounded between 0 and 1 
(perfect). TP, TN, FP, FN stands for true positive, true positive 
false positive, false negative, respectively. For Kappa annotation, 
Pr(a) represents the actual observed agreement and Pr(e) rep-
resents chance agreement. The mathematical formulas of these 
metrics are as follows:

Accuracy � �
� � �
TP TN

TP TN FP FN

Kappa �
Pr a Pr e

Pr e
� � �
�

( )
( )�

Precision � TP
TP FP�

Recall �
�
TP

TP FN

F TP
TP FN FP

�
�

� �
�

�
� � �

�
�

�

� �

F TP
TP FN FP

�
�

� �
�

� �

Experimental settings

Hardware: Intel E5-2620 V4 * 2, 256GB Memory, Nvidia 
GTX 3090 * 2

Software: Ubuntu 20.04, CUDA 11.3, Anaconda 4.10.
The programing language and libraries: Python 3.8, 

Pytorch 1.12, Torchvision OpenCV, NumPY, Timm, Sklearn, 

Matplotlib, Pandas, Albumentations, and Tqdm. Detailed 
information about these software libraries can be found in  
the file requirements.txt of the source code.

Results
Representative image patches of every class in LC25000 data-
set are shown in Figure 3.

The first, second and third image on the first row belongs to 
class benign lung, lung adenocarcinoma, and lung squamous 
cell carcinoma, respectively. The first and second image on the 
second row belongs to class benign colon and colon adenocar-
cinoma, respectively.

Statistical performance metrics of different models are 
shown in Table 1.

Performance metrics of some models were very close to 1 
and hard to distinguish. However, there existed observable 
differences in their confusion matrices. The confusion matri-
ces of different models are presented in Supplemental Figure 
1. Swin-Transformer V2 model obtained a perfect confusion 
matrix, which means that the predicted labels and the ground 
truth labels were identical for all images. Training and valida-
tion loss curves are shown in Supplemental Figure 2. For 
every model, the loss graph was randomly selected from the 
training process of one data splitting. According to perfor-
mance metrics presented in Table 1, the Swin Transform V2 
was chosen as the final model, which outperformed all other 
18 models

Table 2 shows the performance metrics comparisons with 
other studies using the same dataset. To make a fair compari-
son, studies conducting only 1 cancer type classification such as 
lung cancer classification (3 classes) or colon cancer classifica-
tion (2 classes) were excluded.

Discussion
There existed significant performance differences among 
CNNs. CNNs including Inception V3, Inception-Resnet 
V2 and ResnetV2 obtained near perfect results. However, 
EfficientNet, DenseNet, and MobileNet (both V2 and V3) 
obtained much worse performance. MobileNets are light-
weight models, it is reasonable that they are inferior to other 
models. However, the performance gap is too big to under-
stand. And we totally do not understand why EfficientNet 
and DenseNet obtained such poor results. As for ViTs, Swin 
Transformer series were trained much more stable and faster 
than other ViTs including the original ViT, Deit, and 
Convit. There was no obvious training speed difference 
between CNNs (except for abovementioned bad CNNs) 
and Swin Transformer series. Most importantly, only Swin 
Transform V2 achieved perfect results on all metrics, which 
was much better than those of other models in this study 
and previous studies using the same dataset.

This study has both strengths and limitations. Strengths: This 
study adopted the advanced Swin Transform V2 model and 



6	 Biomedical Engineering and Computational Biology ﻿

achieved perfect results. This study compared the performance 
and convergence speed of different models including mainstream 
CNNs and ViTs. These comparison results may be valuable for 
not only the lung and colon cancer classification but also other 
medical image analysis tasks. Limitations: First and most impor-
tantly, a typical whole slide image classification pipeline includes 
image patches generation, patches classification and aggregating 
patch results to obtain the result of the whole slide image. This 
study only focused on image patch classification because the 
LC25000 dataset only contains image patches.

The LC25000 is class balanced. However, in real clinical 
settings class imbalance ratio can reach to 1000.19 In those 
cases, class imbalanced should be considered in real clinical set-
ting. Both resampling method and cost sensitive learning 
method such as weighted cross entropy loss and a combination 
of these 2 are candidate methods to tackle this problem. 
Moreover, the LC25000 dataset do not represent all kind of 
images in the real clinical environment. They not only do not 
cover most of lung and colon cancer subtypes but also do not 
include images containing hemorrhage, inflammation, necrotic, 
and tissue folding areas. The dataset only contains well differ-
entiated samples. The LC25000 dataset did not include any 
patient or tissue IDs information, so it was impossible to do 
patient-based data splitting. External validation was not con-
ducted in this study and the dataset used lacks more complex 
cases Theoretically, the testing dataset may contain data leak-
age coming from the training dataset. This study only used the 

LC25000 dataset, the generalization ability of the models was 
not guaranteed.

In the future, we plan to develop a new lung and colon can-
cer classification dataset. The whole slide images will be col-
lected from multiple centers and scanned using different 
protocols. Most importantly, these slides should better repre-
sent images in the real clinical environment. These slides 
should not only cover most of lung and colon cancer subtypes 
but also contain hemorrhage, inflammation, necrotic, and tis-
sue folding areas. Based on the new dataset, we will conduct a 
more in-depth research on algorithm development and do 
external validation to validate model generalization ability. 
Additionally, exploring the model’s performance on more chal-
lenging or diverse datasets could offer insights into its robust-
ness and applicability in real-world scenarios. Moreover, we 
plan to compare performances of tumor detection and classifi-
cation for pathologist with different level of experience under 
the conditional of with and without AI assistance. Our study is 
only a very small step toward AI be used in real clinical prac-
tice. So far, there exist tons of research papers on AI in diagnos-
tic pathology; however, very few of them are clinical applicable. 
In the foreseeable future, the significance of the AI system is 
not to replace doctors, but to assist doctors. AI systems can 
deploy to the real clinical environment and act as tireless assis-
tants for pathologists. Before that, it should be proved that 
pathologists with AI assistant consistently outperform pathol-
ogists without AI assistant.40

Figure 3.  Representative image patches of LC25000 dataset.
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Conclusions
In this study, we have developed an automated lung and colon 
cancer classification system using the publicly available 
LC25000 dataset. Extensive experiments showed that the 
Swin Transformer V2 model obtained perfect results, which 
outperformed other models including both mainstream CNNs 
and ViTs and models of previous studies. The LC25000 data-
set is more a benchmark dataset than a dataset that can repre-
sent real clinical scenarios. In this study all benchmarks hit 
saturation (perfect results). From the point of view of bench-
mark dataset, the significance of comparing the algorithm per-
formance using this dataset has been lost.

In the future, after thorough verification, the Swin Transformer 
V2 model has the potential to be used to assist pathologists in 
classifying lung and colon cancer histopathology images in the 
clinical setting.
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