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Background: The grading and pathologic biomarkers of glioma has important guiding
significance for the individual treatment. In clinical, it is often necessary to obtain tumor
samples through invasive operation for pathological diagnosis. The present study aimed
to use conventional machine learning algorithms to predict the tumor grades and
pathologic biomarkers on magnetic resonance imaging (MRI) data.

Methods: The present study retrospectively collected a dataset of 367 glioma patients,
who had pathological reports and underwent MRI scans between October 2013 and
March 2019. The radiomic features were extracted from enhanced MRI images, and
three frequently-used machine-learning models of LC, Support Vector Machine (SVM),
and Random Forests (RF) were built for four predictive tasks: (1) glioma grades, (2) Ki67
expression level, (3) GFAP expression level, and (4) S100 expression level in gliomas.
Each sub dataset was split into training and testing sets at a ratio of 4:1. The training
sets were used for training and tuning models. The testing sets were used for evaluating
models. According to the area under curve (AUC) and accuracy, the best classifier was
chosen for each task.

Results: The RF algorithm was found to be stable and consistently performed better
than Logistic Regression and SVM for all the tasks. The RF classifier on glioma grades
achieved a predictive performance (AUC: 0.79, accuracy: 0.81). The RF classifier also
achieved a predictive performance on the Ki67 expression (AUC: 0.85, accuracy: 0.80).
The AUC and accuracy score for the GFAP classifier were 0.72 and 0.81. The AUC and
accuracy score for S100 expression levels are 0.60 and 0.91.

Conclusion: The machine-learning based radiomics approach can provide a non-
invasive method for the prediction of glioma grades and expression levels of multiple
pathologic biomarkers, preoperatively, with favorable predictive accuracy and stability.
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INTRODUCTION

Gliomas are the most common brain tumors and are often
classified as World Health Organization (WHO) grades I-IV,
depending on the different tumor cells, and the degree of
abnormality (1, 2). As a tumor’s grade increases, gliomas
process more aggressively (3). Treatment options and responses
differ from glioma grades (4). Pathological findings are the
premise of rational treatment. Usually, glioma grades are
confirmed by pathological examination during surgery or
biopsy (5). Then, a following immunohistochemistry (IHC) test
determines the molecular biomarkers of tumor tissues at the
microscopic level. These pathologic biomarkers, typical proteins,
are useful indicators for diagnosis, prognosis, or treatment
response (6). However, obtaining such information for gliomas
requires invasive approaches. The surgical decision making
could be difficult and time-consuming for many patients. Those
patients who are not eligible for a surgery or seek non-
surgical treatment may have limited treatment options without
pathological guidance. Therefore, presurgical glioma grades and
the expression of biomarkers are valued and preferred with
non-invasive approaches.

At present, the medical imaging can differentiate the tumor
phenotype and intra-tumor heterogeneity (7). Conventional
magnetic resonance imaging (MRI) is routinely used in the
diagnosis and management of glioma patients. T1-weighted
contrast-enhanced MRI (T1C) is the current standard for
initial brain tumor imaging (8). Radiomics can generate image
features with high dimensional data from the intensity histogram,
geometry and texture analyses on the entire tumor volume (9).
With the emergence of Artificial Intelligence (AI) technologies,
advanced informatics tools have become accessible to facilitate
machine learning (ML) based radiomics applications using image
features as the data source (10). Radiomics is gaining ground in
oncology and have the potential to accurately classify or predict
tumor characteristics.

Radiomics approaches have been applied for the predictions
of glioma grades or differential diagnoses (11, 12). Several studies
have reached a prediction accuracy of above 80% using popular
ML models. The commonly and frequently used ML algorithms
in radiomics include Logistic Regression (LR), Random Forests
(RF), Support Vector Machine (SVM), and etc. Each ML
method has their own advantages in the classification. For
example, LR fits the variables coefficients and predicts a logit
transformation of the probability of being one class or the other.
SVM separates the classes by finding an optimal hyperplane.
RF uses bootstrap aggregating to decision trees and improves
classification performance.

When compared to tumor grading, to make predictions at a
molecular level is more challenging. Kickingereder et al. reported
the association between established MRI features and cancer
gene variations (EGFR amplification and CDKN2A loss), but
failed to build a sufficient ML model to predict the molecular
characteristics (13). In clinic, pathologic biomarkers are more
frequently tested for than genetic testing. IDH1 is one important
glioma biomarker and IDH1 mutation along with 1p/19q is
a part of the molecular diagnosis in the updated 2016 WHO

classification (14). Ki67, S100, and GFAP are also the common
protein targets for gliomas. IDH1, Ki67, and GFAP were once
considered as the golden triad of glioma IHC (15) Ki67 is
highly correlated to proliferation that may indicate the tumor
grades and prognosis (16–18). S100 has been implicated in the
regulation of cellular activities, such as metabolism, motility, and
proliferation. Under the pathological conditions of tumor and
inflammation, the concentration of the S100 protein increases to
the micromole level, which stimulates microglia and astrocytes,
and increases the expression of pro-inflammatory cytokines
(19–23). GFAP is the most widely used markers of astrocytes
(24). Under the condition of injury (trauma or disease), the
expression of GFAP in astrocytes rapidly increases (25). GFAP
is often used to reveal the astrocytic lineage of glial cells
and glial tumor cells, and plays a more significant role in
tumor pathology, when compared to the differential diagnosis
of astrocytoma. Ki67, S100, or GFAP may not be a reliable
diagnostic biomarker for gliomas, because their roles in gliomas
are still under investigations, while controversies have been
observed in experiments (26). However, there is no doubt that
these proteins can provide some insights into the tumor intra-
microenvironment.

So far, it is not surprising to know that most radiomics
studies favor the prediction of the IDH expression for molecular
diagnosis (11, 27), with a few reports on Ki67 (28). In order
to expand predictive effects of radiomics, the investigators
aimed to assess the prediction feasibility of glioma grades
and the pathologic biomarkers of Ki67, S100, and GFAP in
gliomas. The investigators believed that the combination of
multiple biomarkers can increase the predictive power, and the
information obtained can help in understanding the underlying
pathologic process in gliomas. The investigators designed the
present retrospective study and extracted hundreds of radiomic
features from the T1C images of 367 glioma patients. Three
machine-learning-based models (LR, SVM, and RF) were built
to perform the tasks: (1) classify the glioma grades, and (2)
predict the expression levels of Ki67, S100, and GFAP. This
study demonstrated that multiple pathologic biomarkers in
gliomas can be estimated to the certainty levels of clinical
using common ML models on conventional MRI data and
pathological records.

MATERIALS AND METHODS

Study Cohort
The investigators retrospectively collected a data set of 420 glioma
patients, who had pathological reports and MRI scans performed
between October 2013 and March 2019, from the Second Xiangya
Hospital of Central South University. The patients who met
the following criteria were included: (i) a histopathological
diagnosis of primary glioma based on the WHO classification,
(ii) the availability of IHC profiles of biomarkers (S100, GFAP,
and Ki67), (iii) preoperative MRI data of post-contrast axial
T1-weighted (T1C), and (iv) age > 18 years old. Patients
were excluded due to the following: (i) secondary gliomas or
postoperative recurrence of gliomas, (ii) obvious artifacts in
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MRI. Ethics approval was obtained for the present study from
the Ethics Committee of the Second Xiangya Hospital, Central
South University.

Pathological Evaluation
Patient demographics (age and gender), and histopathologic
diagnosis and IHC results were obtained from a surgical
pathology report. On these reports, the diagnosis included
a specific glioma type by cells (e.g., astrocytoma and
oligodendrogliomas) and a given WHO grade (I–IV). The
IHC results were presented in the list of glioma biomarkers (e.g.,
S100, GFAP, or Ki67) and their own expression profile in tumor
cells. It is noteworthy that the list was not standard and varied
upon the request or availability of the biomarkers at that time.
For example, few patients received an IDH1 test before 2017, but
after 2016, the WHO classification standard was published, and
IDH1 tests became common. So, a patient might have a different
set of tested biomarkers, and the number of cases can differ for
each biomarker. Their IHC results depended on the scoring
system used. The expression levels were usually evaluated by the
staining intensity of positive cells, and points were assigned to
describe these positive cells by count (e.g., 0 points as negative
(−), 1 point as positive (+), 2 points as medium positive, and 3
points as high positive), percentage (e.g., 0 points as none, 1 point
less than 5%, 2 points approximately 5–25%, and 3 points above
25%), or the appearance of a clear brown color (e.g., 1 point for
light yellow). In the study, the glioma grades were classified as
low-grade (WHO I–II, benign) and high-grade (WHO III–IV,
malignant), and expression levels of biomarkers were divided
into two categories: a low expression scored less than 2 points
and a high expression scored 2 points or above.

Imaging Post-processing and Radiomics
Features Extraction
Magnetic resonance imaging scans were acquired from different
scanners over time. The Picture Archiving and Communication
System (PACS) exported the selected DICOM images to a local
computer using the RadiAnt DICOM Viewer (Medixant, PL). In
order to reduce the influence of different scanning parameters,
post-processing and image registration were applied using the
Advanced Normalization Tools (ANTS 2.1, PA). Then, the
DICOM images were loaded into ITK-SNAP for segmentation
and standardization (29). Two neuroradiologists (5 years of
experience) drew the region of interest (ROI) around the
tumor boundary on the T1C images. The neuroradiologists were
blinded to the patient identification and diagnosis. After a joint
effort, disagreements with the boundary were solved. The ROI
segmentations were resampled to match the dimensions of the
original images, and both images were saved in.narrd as the input
for feature extraction.

The Pyradiomics extractor was customized to calculate
and extract the features (10). All built-in filters [wavelet,
Laplacian of Gaussian (LoG), square, square root, logarithm, and
exponential] were enabled on five image feature classes [first
order statistics, shape descriptors, and texture features on the
gray-level co-occurrence matrix (GLCM), gray-level run length

matrix (GLRLM), and gray-level size zone matrix (GLSZM)].
Feature definitions and calculation algorithms were available in
the PyRadiomics documentation1.

Machine Learning
The feature importance and the following predictive ML methods
were implemented using Python (version 3.7.0) with machine-
learning library scikit-learn (version 23.0) (30). All features were
standardized through Min-Max scaling. Features with all zero
scores were removed. Clinical data (age and gender) were added
in constructing the final prediction models.

Feature Importance
The feature importance helped in understanding the importance
of the features, since a large number radiomics features with
high-dimensional data are difficult to interpret. Three technique
approaches were used to identify the important features.
First, chi-squared (chi2) tests were applied in the scikit-learn
SelectKBest class to obtain a list of the top 15 best features.
Second, the heatmap of correlated features was plotted to identify
features highly correlated to predicting targets (glioma grade and
biomarker expression) using the seaborn library. Third, a RF
classifier was initiated and the in-build feature importance was
used to extract the top features.

Predictive Machine Learning Models
Three frequently-used machine-learning based models of LR,
SVM, and RF were built for four predictive tasks: (1) glioma
grades, (2) Ki67 expression level, (3) GFAP expression level,
and (4) S100 expression level in gliomas. Each sub dataset
was divided into training and testing sets at a ratio of 4:1
(train_size = 0.8, test_size = 0.2). Principal Component Analysis
(PCA) was applied for high-dimension reduction that maps
n-dimensional features to k-dimensional features (n > k),
resulting in brand new orthogonal features. For the unbalanced
data in different classes, the synthetic minority over-sampling
technique (SMOTE) algorithm was used to oversample the
minority class (31). On training set, the grid search with cross-
validation was applied for hyper parameters tuning (RF and
SVM), and k fold validation was used for LR. The accuracy
score was compared with the result from their base models
(default settings in scikit-learn) for model selection. The testing
set was used for final model evaluation. The performance of the
models was evaluated according to accuracy, the area under curve
(AUC) of the receiver operating characteristic (ROC), sensitivity,
specificity, the positive prediction value (PPV), and the negative
predictive value (NPV). According to the AUC and accuracy, the
best classifier was chosen for each task.

Statistics
One way-ANOVA or simple t-test was applied to test the
differences among gender, age, glioma grade, and the expression
levels of the biomarkers. Descriptive statistics was used to
summarize the important features through filters and feature
classes. All significant levels were tested at 0.05.

1https://pyradiomics.readthedocs.io/en/latest/features.html
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RESULTS

Subjects and Pathologic Biomarkers
A data set of preoperative MRI and surgical pathologic reports of
420 glioma patients were collected. A total of 51 patients were
excluded for not meeting the inclusion criteria. Among these
patients, 40 patients were under 18 years old, seven patients
had quality issues on their MRI data, and four patients did
not have an assigned WHO classification level in their records.
The age of the enrolled 369 patients ranged within 18–75 years
old (mean age: 45.63 ± 13.22 years old), and consisted of 210
males (age: 46.99 ± 13.24 years old), and 159 females (age:
43.84 ± 13.03 years old). The clinical characteristics of patients
and the distribution of the selected biomarkers across glioma
grades are presented in Table 1.

The expression of GFAP, Ki67, and S100 was reported as
follows: 367 patients had GFAP results with four negatives (0
point), 323 positives (1 point), and 35 medium (2 points), or
5 high positives (3 points); 348 patients underwent Ki67 tests,
including 96 negatives or low positives (≤5% in tumor cells), and
252 strong positives (>5%); 338 patients underwent S100 tests,
which included eight negatives (0 points), 315 positives (1 point),
and 15 medium positives (2 points).

There was a significant age difference among male and
female patients, as determined by one-way ANOVA [F (1,
367) = 5.17, P < 0.05]. Furthermore, there were significant
differences in age, gender and tumor volume among glioma
grades (WHO I–IV). Moreover, there were significant differences
in glioma grade, tumor size, age and gender for the Ki67
expression. However, there were no significant differences in age,
gender and glioma grade for S100 and GFAP expression. The
t-test and one-way ANOVA results are shown in Table 2.

TABLE 1 | Distribution of clinical characteristics and expression levels of IHC
biomarkers grouped by glioma WHO grades.

WHO I WHO II WHO III WHO IV

Total number 5 142 116 106

Mean age (s.d.) 35.4(7.64) 40.65(11.69) 48.29(13.82) 49.87(12.4)

Gender

Male 2 72 68 68

Female 3 70 48 38

Tumor volume av a
(cm3)

30.8 38.34 46.47 53.81

Ki67 expression level

0 4 73 15 4

1 0 57 97 98

GFAP expression level

0 0 1 1 2

1 5 126 98 94

2 0 13 13 9

3 0 2 2 1

S100 expression level

0 0 3 0 5

1 5 120 104 86

2 0 6 5 4

TABLE 2 | Clinical characteristics vs. glioma grade and expression levels
of IHC biomarkers.

Age Gender Tumor
volume

Grade

Grade t = 6.1602
df = 367
p = 1.91e-09

t = −2.2766
df = 367
p = 0.02339

t = 2.5027
df = 355
p = 0.01277

Ki67 t = 5.6168
df = 346
p = 4.001e-08

F (1,346) = 0.53
p = 0.467

t = 1.5089
df = 336
p = 0.1323

F (1,346) = 124.7
p < 0.05

GFAP t = −0.30242
df = 365
p = 0.7625

F (1,365) = 0.569
p = 0.451

t = −1.1268
df = 354
p = 0.2606

F (1,365) = 0.089
p = 0.77

S100 t = −0.307
df = 336
p = 0.759

F (1,336) = 0.186
p = 0.667

t = 1.639
df = 326
p = 0.1022

F (1,336) = 0.59
p = 0.44

MRI Data Processing and Feature
Extraction
A total of 369 original T1C images and their paired segmentation
images underwent the feature extraction process using
Pyradiomics. The investigators extracted 1,421 radiomics
features (14 shape features, 27 first-order intensity statistics
features, 68 texture features, 96 square features, 96 square root
features, 96 logarithm features, 96 exponential features, 172
LoG features, and 766 wavelet features). After data cleaning,
1,372 features reminded. The data set was normalized by the
SKlearn MinMaxScaler.

Features Importance
The investigators obtained the list of the top 15 important
features based on the scores obtained from the chi-squared stats
between each non-negative feature and the glioma grade, and
S100, GFAP, and Ki 67 expression levels. The features and their
scores are shown in Table 3. The scores ranged within 3.67–44.04.
The mean score of the top important features was 9.30, with a
standard deviation of 5.83. The frequent top features within the
image type were exponential (23), wavelet (22), square (6), square
root (3), original (3), gradian (2), and ihp-2D (1). For the feature
classes, the frequent top features were divided as follows: glszm
(27), glcm (9), glrlm (8), gldm (7), first order (7), and ngtdm
(2). The heatmaps of the correlated features for glioma grade
and the biomarkers of Ki67, GFAP, and S100 are presented in
Figure 1. The RF model built-in feature importance is presented
in Figure 2.

Prediction Machine Learning Models
The performance of the 12 predictive models is presented
in Table 4. The RF models performed slightly better, when
compared to the other models. The comparisons with accuracy
and the results are presented below. Figure 3 shows the
AUC_ROC for the RF classifier in sub test sets.

Glioma Grades
The sub data set was randomly split into the training set
of 276 cases and the test set of 93 cases. With a PCA
retention of 0.95, the PCA process reduced the dimensions
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TABLE 3 | Feature importance by chi-square scores.

Prediction Top pyradiomics imaging feature Score Filter Class

GRADE Exponential_ngtdm_Coarseness 44.04 Exponential ngtdm

Exponential_glszm_LowGrayLevelZoneEmphasis 19.79 Exponential glszm

Exponential_glszm_SizeZoneNonUniformityNormalized 16.93 Exponential glszm

Exponential_glszm_ZoneEntropy 13.68 Exponential glszm

Exponential_glcm_MCC 12.09 Exponential glcm

Exponential_glcm_Correlation 11.30 Exponential glcm

Exponential_glszm_GrayLevelNonUniformity 10.92 Exponential glszm

Exponential_glszm_SmallAreaEmphasis 10.60 Exponential glszm

Exponential_glcm_InverseVariance 10.52 Exponential glcm

Square_glszm_ZonePercentage 9.80 Square glszm

Wavelet-LHL_firstorder_TotalEnergy 9.64 Wavelet-LHL firstorder

Exponential_glcm_Imc2 9.59 Exponential glcm

Exponential_glszm_GrayLevelNonUniformityNormalized 9.46 Exponential glszm

Gradient_firstorder_TotalEnergy 9.03 Gradient firstorder

Wavelet-HHL_firstorder_TotalEnergy 8.48 Wavelet-HHL firstorder

GFAP Lbp-2D_firstorder_10Percentile 12.38 Lbp-2D firstorder

Wavelet-HLH_glrlm_LowGrayLevelRunEmphasis 12.25 Wavelet-HLH glrlm

Wavelet-HLH_gldm_LowGrayLevelEmphasis 12.13 Wavelet-HLH gldm

Wavelet-HLH_glszm_LowGrayLevelZoneEmphasis 11.79 Wavelet-HLH glszm

Wavelet-HHH_gldm_LowGrayLevelEmphasis 11.19 Wavelet-HHH gldm

Wavelet-HHH_glrlm_LowGrayLevelRunEmphasis 11.18 Wavelet-HHH glrlm

Wavelet-HHL_gldm_LowGrayLevelEmphasis 11.12 Wavelet-HHL gldm

Wavelet-HHL_glrlm_LowGrayLevelRunEmphasis 11.08 Wavelet-HHL glrlm

Wavelet-HLH_gldm_LargeDependenceLowGrayLevelEmphasis 10.77 Wavelet-HLH gldm

Wavelet-HHH_gldm_LargeDependenceLowGrayLevelEmphasis 10.64 Wavelet-HHH gldm

Wavelet-HHH_glrlm_LongRunLowGrayLevelEmphasis 9.99 Wavelet-HHH glrlm

Wavelet-HHL_gldm_LargeDependenceLowGrayLevelEmphasis 9.89 Wavelet-HHL gldm

Wavelet-HLH_glrlm_ShortRunLowGrayLevelEmphasis 9.30 Wavelet-HLH glrlm

Wavelet-HHL_glrlm_LongRunLowGrayLevelEmphasis 8.98 Wavelet-HHL glrlm

Wavelet-HHH_glrlm_ShortRunLowGrayLevelEmphasis 8.51 Wavelet-HHH glrlm

S100 Wavelet-LLH_glszm_LargeAreaHighGrayLevelEmphasis 13.65 Wavelet-LLH glszm

Wavelet-LLL_glszm_LargeAreaHighGrayLevelEmphasis 10.53 Wavelet-LLL glszm

Original_glszm_LargeAreaHighGrayLevelEmphasis 10.45 Original glszm

Squareroot_glszm_LargeAreaHighGrayLevelEmphasis 8.44 Squareroot glszm

Original_glszm_ZoneVariance 8.08 Original glszm

Exponential_firstorder_Energy 7.89 Exponential firstorder

Original_glszm_LargeAreaEmphasis 7.87 Original glszm

Squareroot_glszm_ZoneVariance 5.93 Squareroot glszm

Squareroot_glszm_LargeAreaEmphasis 5.83 Squareroot glszm

Exponential_firstorder_TotalEnergy 5.72 Exponential firstorder

Wavelet-LHH_glszm_LargeAreaLowGrayLevelEmphasis 5.65 Wavelet-LHH glszm

Wavelet-LLH_glszm_ZoneVariance 5.49 Wavelet-LLH glszm

Wavelet-LLH_glszm_LargeAreaEmphasis 5.39 Wavelet-LLH glszm

Gradient_glszm_LargeAreaLowGrayLevelEmphasis 5.23 Gradient glszm

Wavelet-LHL_glszm_LargeAreaHighGrayLevelEmphasis 4.98 Wavelet-LHL glszm

Ki67 Exponential_ngtdm_Coarseness 18.37 Exponential ngtdm

Exponential_glszm_LowGrayLevelZoneEmphasis 8.44 Exponential glszm

Exponential_glszm_SizeZoneNonUniformityNormalized 7.75 Exponential glszm

Exponential_glszm_ZoneEntropy 6.12 Exponential glszm

Exponential_glszm_GrayLevelNonUniformity 4.64 Exponential glszm

Exponential_glcm_MCC 4.36 Exponential glcm

Square_glszm_SmallAreaLowGrayLevelEmphasis 4.20 Square glszm

(Continued)

Frontiers in Oncology | www.frontiersin.org 5 September 2020 | Volume 10 | Article 1676

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-01676 September 10, 2020 Time: 17:21 # 6

Gao et al. Radiomics in Biomarkers of Glioma

TABLE 3 | Continued

Prediction Top pyradiomics imaging feature Score Filter Class

Square_gldm_LowGrayLevelEmphasis 4.12 Square gldm

Exponential_glcm_Imc2 4.12 Exponential glcm

Square_glrlm_LowGrayLevelRunEmphasis 4.09 Square glrlm

Exponential_glcm_InverseVariance 4.02 Exponential glcm

Exponential_glszm_GrayLevelNonUniformityNormalized 3.95 Exponential glszm

Exponential_glcm_Correlation 3.89 Exponential glcm

Square_firstorder_Uniformity 3.69 Square firstorder

Square_glcm_MaximumProbability 3.67 Square glcm

to 37 components, and these remained in the final prediction
model of glioma grading. There was a 96:252 class distribution.
After SMOTE oversampling, the number of train samples
increased to 318. After grid search with cross validation
(cv = 5) or K fold validation (n_splits = 5), the selected
classifier included: (1) LR (penalty = “l2,” C = 1.0), (2)
SVM (C = 10, kernel = “rbf,” and gamma = 0.1), and
(3) RF (min_samples_leaf = 1,min_samples_split = 2, and
n_estimators = 100). The RF classifier achieved a satisfying
predictive performance (AUC: 0.79, accuracy: 0.81). The average
accuracy, sensitivity, specificity and f1 score was 0.81, 0.63, 0.89,
and 0.67, respectively.

Ki67 Expression
A total of 348 patients had Ki67 test results, which included
252 low expression levels and 96 high expression levels. There
was a 96:252 class distribution. The training set and test
set were split into 278 and 70 cases, respectively. After the
SMOTE oversampling, the number of train samples increased
to 415. With a PCA retention of 0.95, the PCA process
reduced the dimensions to 37 components, and there were
used for the final prediction model for the Ki_67 expression.
After grid search with cross validation (cv = 5) or K fold
validation (n_splits = 5), the selected classifier included:
(1) LR (penalty = “l2,” C = 1.0), (2) SVM (C = 10,
kernel = “rbf,” and gamma = 0.1), and (3) RF (max_depth = 80,
max_features = 3, min_samples_leaf = 4,min_samples_split = 8,
and n_estimators = 100). Among these three classifiers, the
RF classifier achieved the best predictive performance on the
Ki67 expression based on the AUC (0.85), accuracy (0.80),
sensitivity (0.91), specificity (0.80), and f1 score (0.85) for the
Ki67 high expression.

S100 Expression
A total of 338 patients had S100 test results, which included
323 low expression levels (<2 points) and 15 high expression
levels (≥2 points). The class distribution was 323:15. The training
set and test set were split into 270 and 68, respectively. After
the SMOTE oversampling, the resampled number increased to
518. With a PCA retention of 0.95, the PCA process reduced
the dimensions to 38 components, and these were used for the
final prediction model for the S100 expression. After grid search
with cross validation (cv = 5) or K fold validation (n_splits = 5),
the selected classifier included: (1) LR (penalty = “l2,” C = 1.0),

(2) SVM (C = 1, kernel = “rbf,” and gamma = “auto”), and
(3) RF (min_samples_leaf = 1,min_samples_split = 2, and
n_estimators = 100). Among these classifiers, the RF classifier
achieved the best prediction performance on the S100 expression,
based on the measurements (AUC: 0.60, accuracy: 0.91, average-
weighted sensitivity: 0.88 specificity: 0.91, and f1 score: 0.90). It is
noteworthy that the average-weight computes f1 for each class,
and returns the average while considering the proportion for
each class in the dataset. For S100 low expression levels: accuracy
(0.95), sensitivity (0.94), specificity (0.97), and f1 (0.95). For high
expression levels: none of the four high expression cases was
correctly predicted.

GFAP Expression
A total of 367 patients had a GFAP test. Among these
patients, there were 327 low expression levels and 40 high
expression levels. The class distribution ratio was 327:40.
The training set and test set were split into 293 and 74,
respectively. After the SMOTE oversampling, the number of
samples increased to 532. With a PCA retention of 0.95,
the PCA process reduced the dimensions to 38 components,
and those that remained were used for the final prediction
model for the GFAP expression. After grid search with cross
validation (cv = 5) or K fold validation (n_splits = 5), the
selected classifier included: (1) LR (penalty = “l2,” C = 1.0),
(2) SVM (C = 1, kernel = “rbf,” and gamma = “auto”),
and (3) RF (min_samples_leaf = 1,min_samples_split = 2,
and n_estimators = 100). Among these three classifiers, the
RF classifier achieved the best predictive performance on the
GFAP expression measured, as follows: AUC (0.72), accuracy
(0.81), average-weighted sensitivity (0.74), specificity (0.81), and
f1 score (0.76).

DISCUSSION

The machine-learning based radiomics approach was applied to
predict glioma grades and the expression levels of pathologic
biomarkers Ki67, GFAP, and S100 in low or high. The overall
performance of the ML models was satisfactory. The RF
algorithm was found to be stable and consistently performed
better than LR and SVM. Feature importance varies on
predictive tasks, glioma grade or specific protein expression. The
most frequent important feature classes were textual and first
order statistics.
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FIGURE 1 | The heatmaps of corelated features for glioma grade and biomarkers of Ki67, GFAP, and S100.
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FIGURE 2 | RF model inbuild feature importance for predicting glioma grades and biomarkers of Ki67, GFAP, and S100.

TABLE 4 | The performance of predictive models.

Models Error rate True positive rate True negative rate AUC Score (mean accuracy)

Logistic_Ki67 0.22857 0.787234 0.73913 0.799 0.771429

SVM_Ki67 0.25714 0.851064 0.521739 0.748 0.742857

Random Forest_Ki67 0.2 0.914894 0.565217 0.849 0.8

Logistic_GFAP 0.24324 0.615385 0.786885 0.774 0.756757

SVM_GFAP 0.21622 0.153846 0.918033 0.613 0.783784

Random Forest_GFAP 0.18919 0.076923 0.967213 0.718 0.810811

Logistic_S100 0.19118 0 0.859375 0.164 0.808824

SVM_S100 0.11765 0 0.9375 0.48 0.882353

Random Forest_S100 0.08824 0 0.96875 0.604 0.911765

We selected LR, SVM, and RF as classifiers mainly for their
popularity. LR, SVM, and RF classifiers can work on non-text
data set less than 100K. Whether the data is linearly divisible or
not, the linearly separable models (LR, SVM), and the non-linear
separable model (RF) are helpful to view the effect and avoid the
impact due to poor data. LR shows a higher AUC, in GFAP’s
prediction model, but performs worst in S100’s prediction.
Comparing the overall results from three biomarker prediction
models, the combination of PCA reduction and RF classification
consistently performed best. It suggests a common ML pipeline
that may be helpful in standardizing the prediction process of
multiple protein expressions.

Also more recently, researchers have demonstrated
achievements of deep learning (DL) in the image segmentation
and glioma grades prediction (32–37). Convolutional neural
networks (CNNs) started outperforming other methods on
several high-profile image analysis projects. DL has advantages
in computation, as high-performance graphics processing unit

(GPU) supports fast computing and less time on modeling. Like
a kind of end-to-end learning, DL can automatically extract
relevant functions from images, and tasks such as raw data
processing and classification can be completed automatically.
However, DL is complex and requires thousands of images to
start with, otherwise due to a relatively small collection of images
like ours, overfitting is more likely. The classic ML methods
met our needs and suited the data. RF models performed
well for predicting glioma grades and pathologic biomarkers
S100, Ki67, and GFAP.

As it is known, the roles of these biomarkers can be
complicated and controversial in laboratory experiments (26).
In addition to the abilities of predicting tumor phenotypes,
radiomics might offer a new approach to evaluate biomarkers,
since their differentiation can be identified through the analysis
of imaging features. The expression level of Ki67 was significantly
correlated with the tumor grade and tumor volume, as well as the
patient age and gender. A study once reported that the high level

Frontiers in Oncology | www.frontiersin.org 8 September 2020 | Volume 10 | Article 1676

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-01676 September 10, 2020 Time: 17:21 # 9

Gao et al. Radiomics in Biomarkers of Glioma

FIGURE 3 | AUC_ROC for the RF classifier.

of Ki-67 expression was correlated to poor overall survival (OS)
and progression free survival (PFS) (16). The accurate prediction
of high level Ki67 is more meaningful than its low level expression
to indicate poor prognosis for glioma patients.

The GFAP has been widely expressed in gliomas. Merely four
patients presented as GFAP negative. The majority of the patients
(323 of 367, 88%) had GFAP positive (+), and 327 patients with
low expression GFAP (90%), combined with four that scored
(−), were distributed all over the gliomas grades, including low

grade (132, 40%), and high grade (195, 60%). The minority of
the patients (40 of 367, 12%) had GFAP medium positive (++)
or high positive (+++) distributed in low grade (15, 37.5%) and
high grade (25, 62.5%). In the literature, a high GFAP expression
is likely to be found in low grade gliomas. The present result was
confusing, that is, the high and low expression levels of GFAP
were more correlated to high grade gliomas. This result may
echo that GFAP is not a direct predictor of low grade gliomas
(15, 26). On the classification report of the RF_GFAP model,
the accuracy score of predicting a GFAP low expression was
up to, while that of predicting high expression levels of GFAP
was much lower. The overall prediction performance might
not be meaningful, since GFAP was lowly expressed in 90% of
patients, and the model could always answer 90% correctly. The
same problem was found in the predictive model of S100. It
required the rethinking of these two models. There was a need
to determine which expression class is more valued. And then,
as one solution, the ROC thresholds can tuned, increasing the
sensitivity of the favored class.

The interpretation of the predicted results is complex, but may
be helpful to understand the molecular mechanisms it underlies.
In addition, the investigators selected CE MRI from several
typical cases for demonstration, in which the different expression
levels of biomarkers exhibited different imaging characteristics
(Figure 4). For the high expression of S100 case (Figure 4A),
the tumor exhibited an obvious rosette enhancement, no
enhancement of internal necrotic components, and a few edema
zones around it, and was diagnosed as glioblastoma (WHO IV
grade). In the image of the tumor with a low expression of S100
(Figure 4B), the tumor mass effect was obvious, but there was
no obvious enhancement, and the surrounding edema was not
obvious, which was diagnosed as astrocytoma (WHO II grade).

FIGURE 4 | T1-weighted contrast-enhanced MR images. (A) A 23-year-old female patient with a grade IV glioma in left thalamus. The expression of S100β is
strongly positive (S100β+++). (B) A 23-year-old male patient with a grade II glioma in left frontal lobe. The expression of S100β is weakly positive (S100β+). (C) A
27-year-old male patient with a grade II glioma in left frontal lobe. The expression of GFAP is strongly positive (GFAP+++). (D) A 27-year-old female patient with a
grade IV glioma in left frontotemporal lobe. The expression of GFAP is weakly positive (GFAP+). (E) A 64-year-old male patient with a grade IV glioma in left
frontotemporal lobe. The Ki67 index is 80%. (F) A 44-year-old male patient with a grade II glioma in right frontal lobe. The Ki67 index is 80%. (G) A 31-year-old
female patient with a grade II glioma in left frontal lobe. Genetic test showed that IDH1 was mutant type. (H) A 50-year-old male patient with a grade IV glioma in left
parietal-occipital lobe. Genetic test showed that IDH1 was wild type.
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In this case, the positive correlation appeared as both the S100
and glioma grade moved in the same direction that was contrary
to many observations. The study conducted by Wang et al. has
proven that S100 is expressed in most gliomas, and that this is
an important inducer of CCL2 (19). CCL2 participates in the
transport of tumor-associated macrophages (TAM) in gliomas,
which affects angiogenesis, invasion, local tumor recurrence and
immunosuppression. This may explain the relationship between
the degree of tumor enhancement and the expression of S100 in
the present cases.

There are some limitations in our study. First, we only
used conventional MRI sequences with a default set of tumor
features extracted by Pyradiomics. Advanced MRI sequences
(e.g., DWI, DKI, MRS, ASL, et al.) can reflect the microstructure
and metabolic information of tumors. In future study, we will
further investigate the molecular phenotype of gliomas using
a multimode magnetic resonance scheme. Second, we only
selected 3 common pathologic biomarkers for gliomas from
a wide range of biomarkers either current available or under
investigation. We have to develop an evaluation plan for other
glioma biomarkers and find candidates that can be benefit from
radiomics applications. Third, imbalance classes did not reflect
the incidences of glioma in real world, where glioblastoma is
the most common subtype, and grade I glioma is relatively
rare in adults. We used the SMOTE algorithm to balance data,
oversampling the minority class, but the differences in data
distribution cannot be ignored. In our experiments, before and
after the use of SMOTE, AUC was only changed slightly. A larger
dataset from multiple sites is expected to complement predictive
effects, and the resulting classifiers can be more accurate and
stable. Fourth, after PCA reducing feature dimensions, a new
set of features was less remained but difficult to interpret.
A combination of hierarchical clustering on PCA may help us to
select feature more efficiently. At the current stage, a real-world
application is out of our scope, but further prospective assessment
is warranted. Based on the results we obtained as a reference,
we will extend the study to identify the best classifier algorithm
and the best set of features to simplify the classification tasks.
The standardized computation methods would greatly enhance
the reproducibility of radiomics studies, and it may also lead to
standardized software solutions available in clinical practice.

In conclusion, the machine-learning based radiomics
application provided a non-invasive approach for the prediction

of glioma grades and expression levels of multiple pathologic
biomarkers, with favorable predictive accuracy and stability.
The study also demonstrated the potential of radiomics for
pathological assessment and individualized cancer treatment.
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