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+e demand for global software development is growing. +e nonavailability of software experts at one place or a country is the
reason for the increase in the scope of global software development. Software developers who are located in different parts of the
world with diversified skills necessary for a successful completion of a project play a critical role in the field of software de-
velopment. Using the skills and expertise of software developers around the world, one could get any component developed or any
IT-related issue resolved. +e best software skills and tools are dispersed across the globe, but to integrate these skills and tools
together and make them work for solving real world problems is a challenging task. +e discipline of risk management gives the
alternative strategies to manage risks that the software experts are facing in today’s world of competitiveness. +is research is an
effort to predict risks related to time, cost, and resources those are faced by distributed teams in global software development
environment. To examine the relative effect of these factors, in this research, neural network approaches like Lev-
enberg–Marquardt, Bayesian Regularization, and Scaled Conjugate Gradient have been implemented to predict the responses of
risks related to project time, cost, and resources involved in global software development. Comparative analysis of these three
algorithms is also performed to determine the highest accuracy algorithms. +e findings of this study proved that Bayesian
Regularization performed very well in terms of the MSE (validation) criterion as compared with the Levenberg–Marquardt and
Scaled Conjugate Gradient approaches.

1. Introduction

+e last two decades have changed the world [1]. Looking at
the past where you had to walk tomeet your relative, let aside
talking to someone face to face at the other end of the world.
+e idea of global village is not a direct result of having an
excessive number of restaurants or high rise structures but it
is because of the use of advanced technology for an effective
and efficient exchange of information throughout the world.
Similarly, the field of software development has also

experienced the effect of the rapidly changing world to adapt
as per the needs of their clients. In order to offer advantages
over conventional techniques used in software development,
the localized environment has transformed to the distributed
environment [2]. In the last decade, many software firms
began to discover or test the distributed software develop-
ment facilities and subcontracted the projects in search of
cheaper and skilled resources as an alternative [3]. As a
result, software development has become a multisite, di-
verse, and globally a distributed work. At various levels, the
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designers, engineers, managers, and officials involved in
software development have been facing the challenges of
social and cultural diversity in accomplishing the task [3, 4].

Due to the technological advancement, the field of
software development is growing at a very fast pace both
locally and globally and it has been now referred as global
software development (GSD), offshore software develop-
ment, or development by outsourcing. Software outsourcing
is a corporate level strategy that has been adopted for the past
two decades and is gaining maturity [5]. +e software
outsourcing is a GSD outsourcing model for producing
high-quality software at lower costs [6, 7]. Despite of the
increasing growth, the software development industry has
some entry barriers as the industry lacks a defined model of
execution [8]. Globalization, in simple terms means ‘one
world connected together.’ However, technology does not
understand humans. Humans are different by nature which
essentially means it is absolute to say the term globalization
implies cultural heterogeneity [9, 10]. Today, businesses,
companies, and NGOs are investing its financial capital to
develop and understand human dynamics. Companies are
currently involved in enhancing its cross-cultural under-
standing and inculcating intercultural communication skills
and intensifying management competencies. All of this
requires great deal of time and money, but companies are
willing to do all this because the organizations that take the
cultural context of their teams into account generally ex-
perience greater project success [11].

GSD is amodel of themodern age. Software teammembers
are dispersed as they operate across different geographical
locations, at different time zones and organizational bound-
aries, communicate concurrently using tools, and exchange
information irrespective of time difference and physical
boundaries [12]. Among the entire IT organization and in-
dustry, GSD is very popular. A large number of employees
from this industry work on global projects because of the
benefits that it offers. It is very time consuming but is very
beneficial. +e advantages of GSD include global development,
cheap and skilled labor, better product quality, round the clock
development, work efficiency, economic benefit, and many
more [2, 13, 14]. Besides all these key factors and benefits, labor
working in the GSD environment faces many difficulties and
challenges as well, such as strategic issues, lack of communi-
cation or improper communication, different sociocultural
backgrounds, and project management may also be one of the
main concerns [4, 15]. +e schematic diagram of issues as-
sociated with GSD is shown in Figure 1 [16].

GSD projects can be divided as offshore and onshore.
Offshore projects are not considered much successful.+is is
because of the physical time constraints, knowledge level,
and cultural differences. Lack of communication also
hampers the process of knowledge and data sharing between
the two teams working at offshore and onshore locations
[17]. +is results in less productivity and quality and rela-
tively consumes more time [18, 19]. It is suggested that the
project manager before taking charge of any project that
involves several countries or different distributed areas must
inform about all these difficulties and operational risk that
they may face [18–21].

Risk can also be defined as the possibility of an event
occurring that may end up having either a negative or a
positive bearing on the overall objective [22]. One of the
critical functions of management strategies is risk man-
agement. It is the internal control mechanism driven with
certain set of designed practices and procedures in order to
properly manage the loopholes within the system.Moreover,
it also includes identifying, analyzing, handling, evaluating,
inspecting, and reviewing risk [23, 24].

In project management, risk management plays a vital
role in preventing and mitigating risks that have the po-
tential to adversely affect the desired outcomes. In small- and
medium-sized enterprises (SMEs), preventive measures are
incorporated to minimize risks such as insurance and cre-
ation of reserves as part of the risk management process [25].
All SMEs need a well-planned risk management strategy to
combat any adverse effect of an unexpected problem during
the project [26].

Besides the benefits and risks, the threats are also in-
volved while managing the GSD projects. As the team is
located in several countries or designated in different re-
gions, there may be obstacles like geographical risk, language
barrier, political concerns, and weather issues that are to be
considered while working on a global software development
project. [27].

In this research, the techniques of artificial neural net-
work (ANN)-based training algorithms, Lev-
enberg–Marquardt (LM), Bayesian Regularization (BR), and
Scaled Conjugate Gradient (SCG) have been implemented to
predict the risks involved in GSD environment. Results are
presented using performance plot, training state plot, error
histogram, and regression plot. To identify the best per-
formance, comparative analysis of three implemented al-
gorithms has also been performed.

Most of the software organization faces risks in GSD en-
vironment. +ey mitigate the risk using traditional risk
management tools. In addition, they realize that the traditional
approaches of risk management lack the ability to address
crucial characteristics of GSD in any significant detail. +is is
why the utilization of machine learning (ML) techniques to
manage risk is helpful due to the self-learning and self-healing
nature of ML algorithms. It becomes handy because such ML
algorithms can deal with unstructured information. +is re-
search shows thatML provides effective techniques that help to
predict the risks associated with GSD. It has a great contri-
bution to optimize the process of GSD to make it competitive
and efficient in terms of fulfilling the needs of the firms that
depends upon IT infrastructure. Such tools can assist project
managers in decision making in such a way that they can
predict future risks with respect to project time, cost, and
resource needed in the completion of the project.

+is paper comprises of five (5) sections.+e first section
covers the introduction of this research study. Related work
with respect to research has been explained in Section 2. +e
artificial neural network algorithm and its techniques uti-
lized in this research are discussed in Section 3. Research
methodology is elaborated in Section 4. Section 5 discusses
the results and findings, and the last section concludes this
research.

2 Computational Intelligence and Neuroscience



2. Related Work

In [28], authors established a multilayer feed forward back-
propagation-based neural network by utilising seven defect sets
of data from the PROMISE repository. Levenberg–Marquardt
(LM), Bayesian Regularization (BR), and Resilient back-
propagation (RP) training algorithms were implemented with
the criteria of statistical estimations like MSE and R2 results,
and the boundaries were calculated from the confusion matrix.
BR training techniques were optimal as compared with the LM
and RP methods to decrease the mean square error and type 2
error that consequently increased accuracy, sensitivity, and R2
values. Precision of greater than 90%was yielded by BR on each
of the seven datasets.

+e degree of requirement complexity was utilized as a
predictor of software complexity by the authors in [29]. +e
data pattern makes it difficult to draw a connection between
a need and its complexity. To that end, this article attempts
to create a connection model that connects the complexity of
software requirements to software complexity predictions
utilising the artificial neural network technique and the
Levenberg–Marquardt and Bayesian Regulation algorithms.
Conclusion presents that the Levenberg–Marquardt method
is superior at predicting software complexity based on
complexity requirements since the resulting mean square
error is lower.

Fuzzy logic (FL) and neural Nnetwork (NN) methods
were used by researchers in [30] to forecast software de-
pendability. +is article makes use of four different tech-
niques to estimate the dependability of the dataset that was
obtained from John Musa at Bell Labs. A neural network is a
hybrid of a neural network and a fuzzy network. After
analyzing the data, the fuzzy-neural approach produced the
best results out of all the ones that were considered. +e
Levenberg–Marquardt algorithm is used to train the neu-
rons in the fuzzy-neural approach. Our suggested methods
have been put to the test utilising testing data, which rep-
resents 15% of the failure data set’s total data.

For defect prediction in software, three cost sensitive
enhanced algorithms have been studied by researchers in

[31] to enhance the neural network. Transferring the or-
ganizing threshold towards not-fault-prone modules had
been organized properly by using the first algorithm that
depends on threshold moving. Also, to boost the additional
weights on the sample that are aligned with unclassified
defect-prone modules, the rest of the two weight-updating-
based algorithms integrated the misdeem price into the
weight-update rule. +e normalized expected cost of mis-
classification (NECM) identified by measuring the perfor-
mance of all the above algorithms had been assessed with the
help of four datasets from NASA-based projects. From the
experimental results, it had been observed that threshold
moving found as the best option to make the software that is
more sensitive in terms of cost. It had also predicted the
defect in software with boosted neural networks among all
the algorithms considered exclusively those type of datasets
that were developed with the help of object-oriented
language.

+e chronic kidney disease (CKD) is one such disease for
which in [32] researchers have developed a detection system
using the artificial neural network. +e idea here is to use
intelligent systems to calculate the probability of having a
particular illness in otherwise normal people.+ey used UCI
ML repository’s input data for training, validation, and
testing, and they found that the Levenberg–Marquardt is the
best on efficiency as compared with Levenberg and Bayesian
regularization. +ey are reporting 99.8% accuracy with the
Levenberg–Marquardt algorithm. +is is an excellent ex-
ample of using neural networks to find an economical so-
lution to CKD detection.

Researchers in [33] used the Levenberg–Marquardt,
Bayesian Regularization, and Scaled Conjugate Gradient
learning algorithms to predict the survival of a diabetes
patient as an exercise in medical diagnosis. +ey discussed
the performance of these supervised machine learning al-
gorithms through regression analysis as they used Diabetes
Dataset of the Pima Indian living in Arizona, theUSA, for
training and testing the network. +ey also found that the
Levenberg–Marquardt algorithm is the most suitable algo-
rithm for prediction.
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Figure 1: Issues in global software development [16].
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+e cryptocurrency and digital currencies are growing
fast as an alternative to the fiat currency. Authors in [34]
used the feedforward neural network (FNN) to predict the
behavior of Bitcoin which is highly popular decentralized
cryptocurrency in contemporary times. +e Bitcoin price
characteristics are nonstationary and nonlinear which
according to the authors makes the neural network tech-
niques more suitable to study their behavior in time as the
classical models cannot handle nonlinearity. +e researchers
found that the usage of the Levenberg–Marquardt back-
propagation algorithm (FNN-LM) worked much better to
forecast the price of Bitcoin as compared with the Scaled
Conjugate Gradient (SCG) backpropagation algorithm. +e
better performance of FNN-LM is interesting to note be-
cause one would assume that the SCG algorithm will work
better in such a case of large network and dataset.

Due to improvement in communication, the world has
become a global village resulting in much of the software
development taking place between groups situated in dif-
ferent countries. +e measuring of software complexity is
important because a code which is considered at a level of
“good-complexity” is easier to understand, faster to debug,
comfortable to maintain, and contains less errors. What is a
“good-complexity” level? To answer this question, different
metrics of software complexity are in use which include line
of codemetric, Halsteadmetric, andmaintainability index to
mention a few. +e researchers in [35] proved that neural
networks are fairly accurate for calculating software com-
plexity metric.+ey argue in their paper that the results from
Bayesian Regularization algorithm show average difference
of only 0.09% for Volume, 1.08% for Effort, and 0.36% for
the Program Length as compared with the Halstead metric.
+is shows that neural networks are an effective tool for
estimation of software complexity.

+e researchers in [36] used neural network algorithms
for predicting physical properties of superconductors and
concluded that Levenberg–Marquardt provides the best
performance as it gives a fairly accurate prediction for the
critical temperature of superconductors which the authors
did through plotting SOM (Self Organizing Maps) derived
from applying to data set through neuro fuzzy networks.
Neural network algorithms may be of great help (i) to
narrow down the right materials parameters to work with to
prepare new materials in the laboratories and (ii) to accu-
rately predict the critical temperature [37].

3. Problem Statement

Software experts in global software development environ-
ment are facing many challenges. Moreover, risk is a big
challenge as compared with other challenges. In GSD, where
team members work in different geographical locations and
different time zones, the risks related to project time, cost,
and resources should be taken into account so that project
managers can take better decisions to reduce these risks.+is
research article is an effort to focus on the implementation of
neural network approaches (Levenberg–Marquardt, Bayes-
ian Regularization, and Scaled Conjugate Gradient) to
predict overall project risks according to time, cost, and

resources which will help decision makers to assess time,
budget, and resources needed to conduct a project.

4. Artificial Neural Network

Artificial neural networks (ANNs) are models inspired by
the biological networks, especially the neural network in the
human or animal brain. It tries to imitate functions of the
human brain like speech recognition, pattern recognition,
and face recognition which are just a few of the neurological
processes that the human brain performs [38]. +e network
learns from examples and continues the iteration process
with forward and backward propagation. +is process is
done until the output is in conformity with the provided
response with certain desired accuracy. Every example
consists of series of inputs and corresponding outputs also
known as responses, and the network makes changes
through the internal connections known as weights [39]. A
typical ANN consists of three layers (see Figure 2 [40]): (1)
an input layer, (2) a hidden layer, and (3) an output layer.
For example, an input layer could be an object (like a cube),
and the output goal is to recognize this cube and identify it
accurately. +e task of recognizing the cube is performed
with the help of hidden layer through an iteration process.
+e input layer, the hidden layer, and the output layer are
connected using connections (or channels) as shown by
solid lines.

+e three approaches pertinent to the artificial neural
network algorithm named as Levenberg–Marquardt,
Bayesian Regularization, and Scaled Conjugate Gradient
training algorithms had been implemented in various re-
search papers to examine to relative efficiency of these three
approaches in terms of predictive ability.

4.1. Levenberg–Marquardt. It is an algorithm that trains
ANN relatively quicker than the backpropagation algorithm.
In this approach, the minimum of a function is expressed as
a sum of squares of a nonlinear function. [41]. +e Lev-
enberg–Marquardt method implements the least damped
square method with respect to weights [42–44]. +e Lev-
enberg–Marquardt backpropagation algorithm uses the
conjugate gradient technique to reduce the sum of squares at
each iteration [45]. It was intended not to calculate the
Hessian matrix [46].

4.2. Scaled Conjugate Gradient. +e Scaled Conjugate
Gradient algorithm belongs to the group of Conjugate
Gradient methods [41]. It starts initially in the direction with
steepest descent that allows it to converge to the minimum
error [42]. +is method avoids a line-search per learning
literature by using a step size scaling mechanism, and it
makes this algorithm faster as compared with other second-
order algorithms. Scaled Conjugate Gradient offers a con-
trolled learning algorithm with a super linear convergence
rate [43]. +e Scale Conjugate method is comparatively
faster than the standard backpropagation as it does not
include any critical user-dependent parameter. It can train
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any network as long as its weight, net input, and transfer
functions have derivative functions [44].

+is algorithm was built on conjugate directions and not
on a line-search. +e stopping criteria are either a maximum
number of epochs or the maximum amount of time exceeds or
the performance reaches below to minimum gradient [46, 47].

4.3. Bayesian Regularization. As compared with the standard
backpropagation method, Bayesian Regularization is relatively
more robust which eliminates the need for cross-validation
[44]. It provides a probability distribution to be used in
quantitative reasoning analysis. +e Bayesian regularization
algorithm contains an objective function that includes a re-
sidual sum of squares and sum of squared weights to minimize
estimation errors for obtaining the required model [45, 46].

It belongs to the group of probabilistic graphical sim-
ulations based on a set of random variables and directed
acyclic graphs to exhibit the probable dependence between
variables [48].

Several researchers have used these three ANN techniques
with a variety of applications. In [49], authors applied these
three ANN techniques for the prediction of Flash Floods and
found Bayesian Regularization an efficient technique as
compared with the other two techniques. Authors in [50] used
ANN for reservoir petro-physical properties such as porosity,
permeability, and water saturation. In [51], authors compared
relative predictive abilities of Levenberg–Marquardt and
Bayesian Regularization methods for data on prices of four
cryptocurrencies, namely, Bitcoin, Bitcoin Cash, Litecoin, and
Ripple and found that the Bayesian Regularization method
gives less error in prediction as compared with Lev-
enberg–Marquardt in case of large data but both the methods
are found nearly equally efficient for small data. Researchers in
[52] used the Bayesian Regularization method to predict stock

time series and worked for the improvement of the Bayesian
Regularization method to increase the predictive ability of time
series data used in the study. Authors in [53] applied four
backpropagation neural networks to explore correlation that
how plug load data, occupancy rates, and local weather factors
affects to predict electricity usage. Authors in [54] studied the
challenges to reduce complexity, failures, and time in the field
of software development and used fuzzy-neural network
composed by fuzzy rules to seek the solutions to overcome
these challenges.

5. Research Methodology

Under umbrella of the artificial neural network algorithm,
Levenberg–Marquardt, Bayesian Regularization, and Scaled
Conjugate Gradient training algorithms have been imple-
mented for risk prediction in global software development
projects.

5.1. Research Design. +is study utilized both experimental
and simulation-based research designs. Using convenient
sampling, a total of 274 medium- and large-sized software
organizations in Pakistan, Australia, and the United States
have been identified from where data can be collected.
However, first, a thorough study of the available literature
has been carried out to identify risks associated with project
time, cost, and resources.

A total of 54 risks related to project time, cost, and
resource were identified from literature review that would
have been sufficient to compromise the effectiveness and
viability of a software project in software development. List
of 54 identified risk factors was sent to industry connois-
seurs; the industry experts decreased the 54 risk factors to 26
(see Table 1) that could affect negatively the project in GSD
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Figure 2: Artificial neural network architecture [38].
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environment. A questionnaire was designed to address the
26 risk factors emphasized by the software experts. +e
questionnaire was sent to 760 medium- and large-sized
software development firms in Pakistan, Australia, and the
USA. Data cleaning has been done because some organi-
zations left certain questions incomplete.

+ere are mainly three types of risk factors that are
cumulatively linked to an overall risk in a project related to
GSD, i.e., time risk, cost risk, and resource risk. However, the
extent of the risk posed by each risk factor may differ in
weightage or effect on an overall risk. +erefore, a thorough
examination of the three risks is needed to find the extent to
which each risk contributes to an overall risk in the project.
To address this, three neural network approaches named as
Levenberg–Marquardt (LM), Bayesian Regularization (BR),
and Scaled Conjugate Gradient (SCG) have been imple-
mented to predict these risks in GSD.

Finally, results have been achieved, and comparative
analysis of LM, BR, and SCG has been performed with
respect to project time, cost, and resource-related risks (see
Figure 3).

5.2. Respondents of the Study. +e people who replied to the
questionnaire were the project managers, team leaders, and
system and business analysts from medium- to large-sized
software development organizations, located in Pakistan,
Australia, and the United States. +ey are the people who
have to face different types of risk in GSD environment. A
total of 107, 103, and 64 responses were received from the

American, Australian, and Pakistani software
organizations.

5.3. Data Collection Procedure. +e risks concerning the
challenges of global software development were investigated
using the questionnaire survey method. +e questionnaire
contained 33 questions related to time, cost, and resource
risks. Out of these 33 questions, Q13, Q14, Q15, Q17, Q19,
Q20, Q26, Q27, and Q28 covered the risk related to time; Q8,
Q13, Q14, Q15, Q18, Q26, Q27, and Q28 encompass risk
pertinent to cost whereas Q8, Q10, Q11, Q15, Q16, Q21,
Q22, Q23, Q24, and Q25 to risk caused pertinent to resource
(for ouestionnaire see Appendix).

+e respondents were given the options as follows: 0
(Very Unlikely), 1 (Unlikely), 2 (Neutral), 3 (Likely), and 4
(Very Likely).

+e questionnaire was sent to 760 medium- and large-
sized software development organizations located in Paki-
stan, Australia, and the United States. A total of 390 re-
sponses were received; out of which, 116 responses were
rejected considered as invalid. +e sample data of 274 re-
spondents are given in Tables 2 and 3. +ese data have been
trained using neural network approaches like Lev-
enberg–Marquardt, Bayesian Regularization, and Scaled
Conjugate Gradient to perform data analysis.

6. Results and Findings

LM, BR, and SCG neural network training algorithms have
been implemented, and mean squared error (MSE),

Table 1: List of 26 risks related to time, cost, and resource shortlisted by practitioners.

Risk dimension Risk no. Question Risk factor

Time

R1 Q13 Lack of ineffective PM methodology
R2 Q14 Inappropriate task timings
R3 Q15 Failure to provide resources
R4 Q17 Failure in activity estimation and scheduling
R5 Q19 Inappropriate planning
R6 Q20 Unrealistic time estimate
R7 Q26 Cost overruns
R8 Q27 Inexperienced project manager
R9 Q28 Project progress not monitored closely enough

Cost

R10 Q8 Lack of balance on the project team
R11 Q13 Lack of ineffective PM methodology
R12 Q14 Inappropriate task timings
R13 Q15 Failure to provide resources
R14 Q26 Cost overruns
R15 Q27 Inexperienced project manager
R16 Q28 Project progress not monitored closely enough

Resource

R17 Q8 Lack of balance on the project team
R18 Q10 Inadequately trained development team members
R19 Q11 Organizational and cultural differences of participants
R20 Q15 Failure to provide resources
R21 Q16 Lack of cooperation and coordination among team members
R22 Q21 Loss of key resource(s) that impact the project
R23 Q22 Inadequate technical resources
R24 Q23 Lack of appropriately skilled resources
R25 Q24 Scope creep
R26 Q25 Project milestones not clearly defined
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regression R values, processing time, performance and
gradient are calculated (see Tables 3–5). Performance plot,
training state plot, error histogram, and regression plot
have also been shown. Mean squared error (MSE), shown
in equation (1), identifies the extent of the difference be-
tween the actual and the estimated values of the dependent
variable, the lower the MSE value, the higher the goodness
of fit and vice versa. +e coefficient of correlation (R), as
shown in equation (2), indicates the extent to which the
fitted model is able to explain variation in the dependent
variable due to the variation in the independent variable.
+e error histogram explains whether the errors are nor-
mally distributed which is critical for the goodness of fit of
the model. Time-related risk is used as a predictor of overall
risk associated to the global software development. +e
results of three different approaches LM, SCG, and BR are
compared using the criterion of MSE and R to identify the
best model.
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LM, BR, and SCG-based neural networks are trained in
which 1 input layer, 1 hidden layer, and 1 output layer are
used (see Figure 4).

To predict the effect of time-related risk on the overall
risk pertinent to global software development, three ap-
proaches of neural networks have been used. +e results
summarized (see Table 4) reveal that the MSE (validation) of
the Bayesian Regularization method is the least with the
maximum number of iterations for Epoch whereas MSE
(testing) value of Levenberg–Marquardt is least with almost
similar value of R as compared with the results for the same
indicators of the other two models. Also, performance has
the highest value in case of the Levenberg–Marquardt
method. Epoch is computed with the least number of it-
erations in case of Levenberg–Marquardt as compared with
the number of iterations associated to the other two
approaches.

+e performance plot of time-related risk in which 5
Epoch values are plotted versus mean squared error using
Levenberg–Marquardt approach is shown in Figure 5. +e
plot shows the decreasing behavior between 0 and 1 and
then follows the horizontal line trend for all values greater
than 1.

+e error histogram which shows the distribution of
errors for training, validation, and test is shown in Figure 6.
+e frequency corresponding to positive values of residuals
slightly exceeds the frequency corresponding to negative
values of errors comparatively.

+e regression plot of time-related risks (see Figure 7)
gives a comparison of goodness of fit measure R for training,
validation, and test and overall taking the target on the
horizontal axis and different functional structures on the
vertical axis for all four specifications. +e values of R
measure in all four regression plots are not significantly
different.

+e performance plot of time-related risk in which 19
Epoch values are plotted versus mean squared error using
Scaled Conjugate approach is shown in Figure 8. +e plot
shows the decreasing exponential behavior between 0 and 8
and then follows approximately the horizontal line trend for
all values above 8.

+e error histogram (see Figure 9) shows the distribution
of errors for training, validation, the frequencies of positive
values of residuals, or errors exceeding the frequencies
corresponding to negative values.

+e regression plot of time-related risks (see Figure 10)
gives a comparison of goodness of fit measure R for training,
validation, and test and overall taking the target on the
horizontal axis and different functional structures on the
vertical axis for all four specifications. +e values of R
measure in case of test are significantly greater as compared
with those of the other three regression plots.

Identification of
Software Development Risks 

Short listing of risks by
practitioners related to GSD 

Questionnaire Development

Data Collection

Risk Prediction using ANN

LM SCG BR

Analysis of Results

Conclusion

54 Risks

26 Risks

Figure 3: Research framework.

Computational Intelligence and Neuroscience 7



+e performance plot of time-related risk in which 150
Epoch values are plotted versusmean squared error based on
Bayesian approach is shown in Figure 11.+e plot shows the
L-shaped distribution starting from 0 and follows the
horizontal line trend for all values above 6.

+e error histogram (see Figure 12) shows the distri-
bution of errors for training, validation, and test for the
Bayesian Regularization. +e frequencies of negative values
of residuals are found more variable as compared with the

frequencies corresponding to positive values that follow
approximately symmetrical behavior.

+e regression plot of time-related risks (see Figure 13)
gives a comparison of goodness of fit measure R for training,
validation, and test and overall taking the target on the
horizontal axis and different functional structures on the
vertical axis for all four specifications. +e values of R
measure in case of test are relatively greater as compared
with those of the other two regression plots.

+e results are summarized in Table 5 for cost-related
risks taken as the explanatory variable to predict the overall
risk associated to global software development. +e results
reveal that the MSE (validation) has the least value as
compared with the other two approaches whereas MSE
(testing) value of Scaled Conjugate Gradient is least with the
highest value of R as compared with the results for the same
indicators of the other two approaches and performance has
the highest value in case of the Levenberg–Marquardt
method. Epoch is computed with the least number of

Table 2: Sample data set Part I (from total of 274 data set).

Country Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15
AUS 1 1 0 1 1 4 2 3 3 3 3 3 4 4 1
AUS 0 0 0 1 1 2 2 3 3 1 1 3 3 1 1
AUS 2 2 1 1 1 1 2 1 3 3 3 1 3 1 1
AUS 1 1 0 1 1 2 2 1 3 3 3 3 3 1 3
AUS 2 1 0 1 1 2 2 3 3 1 1 1 3 1 1
AUS 3 2 0 1 1 3 2 3 3 1 1 3 3 3 1
PAK 2 1 1 1 1 2 2 3 0 3 3 3 3 2 3
PAK 2 2 2 1 1 1 2 2 2 2 1 0 3 3 3
PAK 3 2 1 1 1 1 2 3 1 1 1 0 1 3 1
PAK 0 0 0 1 1 2 2 3 3 1 1 3 3 1 1
PAK 3 2 0 1 1 2 2 2 1 1 1 3 3 3 1
USA 2 1 0 1 1 1 2 4 3 4 4 3 3 1 0
USA 3 1 0 1 1 1 2 3 2 2 2 3 3 3 3
USA 2 1 1 1 1 2 2 1 4 1 1 3 3 3 0
USA 1 1 0 1 1 2 2 1 3 3 3 3 3 1 3
USA 3 2 1 1 1 3 2 3 3 1 1 3 3 3 1
USA 2 1 0 1 1 2 2 3 3 1 1 1 3 1 1

Table 3: Sample data set Part II (from total of 274 data set).

Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Output
3 1 3 4 4 3 3 3 4 4 1 4 4 3 0 3
3 4 3 4 4 3 1 3 4 4 1 4 4 3 0 2
3 3 1 3 3 3 1 3 3 3 1 4 4 1 1 2
3 3 3 4 4 3 1 3 4 4 1 4 3 1 0 0
3 3 3 3 3 3 3 3 4 4 3 3 3 3 0 3
3 1 3 4 4 3 3 3 4 4 1 4 4 3 0 3
4 4 4 3 4 3 3 3 3 4 4 3 3 3 1 3
3 3 3 3 3 3 3 3 3 3 2 3 3 2 0 1
3 3 3 3 3 3 1 2 3 3 3 3 1 2 0 0
4 3 3 4 4 2 3 3 3 3 1 3 3 2 0 1
3 3 1 4 4 3 3 3 3 3 2 3 3 1 1 2
4 3 1 4 4 4 4 3 3 3 2 3 3 2 0 3
2 3 4 4 3 3 3 3 3 3 3 3 2 2 0 2
3 3 3 4 4 3 3 3 3 3 1 3 3 1 1 3
3 3 1 3 3 3 1 3 3 3 1 4 4 1 1 2
3 3 3 3 3 3 3 3 4 4 3 3 3 3 0 3
3 3 3 4 4 3 1 3 4 4 1 4 3 1 0 1

Hidden
Input

110
1

w
+

b

Output

1

Output

w
+

b

Figure 4: Neural network training.
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Table 4: Comparison of LM, SCG, and BR of time-related risks.

Levenberg–Marquardt Scaled Conjugate Gradient Bayesian Regularization
Epoch 5 iteration 19 iteration 150 iteration
Processing 0 : 00 : 00 0 : 00 : 00 0 : 00 : 02
Performance 8.27 8.71 8.1
Gradient 0 3.16 0.0555
MU 0 5.00 E+10
MSE (validation) 8.02 9.08 2.157
R (validation) 0.85 0.84 0.9245
MSE (testing) 6.90 11.25 7.47
R (testing) 0.88 0.88 0.89
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Figure 5: LM performance plot of time-related risk.
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Figure 7: LM regression plot of time-related risks.
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Figure 9: SCG error histogram of time-related risks.
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Figure 10: Scaled conjugate regression plot of time-related risks.
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iterations in case of Levenberg–Marquardt as compared with
the number of iterations associated to the other two
approaches.

+e performance plot of cost-related risk in which 6
Epoch values are plotted versusmean squared error based on
Levenberg–Marquardt approach is shown in Figure 14. +e
plot shows the linearly decreasing behavior from 0 to 1, and
it follows approximately the horizontal line trend for all

values above 1. It also indicated that the best validation
performance is at Epoch 2. +e error histogram (see Fig-
ure 15) shows the distribution of errors for training, vali-
dation, and test.

+e regression plot of cost-related risks (see Figure 16)
gives a comparison of goodness of fit measure R for training,
validation, and test and overall taking the target on the
horizontal axis and different functional structures on the
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Figure 11: BR performance plot of time-related risks.
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Figure 12: BR error histogram of time-related risks.
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vertical axis for all four specifications. +e value of R
measure of validation is relatively greater as compared with
that of the other four regression plots.

+e performance plot of cost-related risk in which 49
Epoch values are plotted versus mean squared error using
Scaled Conjugate approach is shown in Figure 17.
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Figure 13: BR regression plot of time-related risks.

Table 5: Comparison of LM, SCG, and BR of cost-related risks.

Levenberg–Marquardt Scaled Conjugate Gradient Bayesian Regularization
Epoch 6 iterations 49 iterations 238 iterations
Processing 0 : 00 : 00 0 : 00 : 00 0 : 00 : 01
Performance 5.63 5.61 5.05
Gradient 0.00 0.0302 0.0516
MU 0.00 5.00e+10
MSE (validation) 3.09 4.71 1.75
R (validation) 0.94 0.94 0.8524
MSE (testing) 5.78 4.14 6.70
R (testing) 0.92 0.93 0.87
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Figure 14: LM performance plot of cost-related risk.
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Figure 15: LM error histogram of cost-related risks.
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Figure 16: LM regression plot of cost-related risks.
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+e plot shows the best validation performance at Epoch
43.

+e error histogram (see Figure 18) shows the ap-
proximately symmetrical distribution of errors for training,
validation, and test for the Scaled Conjugate approach with
slightly greater occurrences of frequencies of negative values
of errors as compared with positive values.

+e regression plot of cost-related risks (see Fig-
ure 19) gives a comparison of goodness of fit measure R
for training, validation, and test and overall taking the

target on the horizontal axis and different functional
structures on the vertical axis for all four specifications.
+e values of R measure in case of test and validation are
nearly same.

+e performance plot of cost-related risk in which 238
Epoch values are plotted versusmean squared error based on
Bayesian approach is shown in Figure 20.+e plot shows the
L-shaped distribution starting from 0 and follows the
horizontal line trend for all values above 0. It also indicates
the best training performance at Epoch 6.
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Figure 17: SCG performance plot of cost-related risks.
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Figure 18: SCG error histogram of cost-related risks.
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+e error histogram (see Figure 21) shows that the
frequencies corresponding to negative values of errors are
relatively higher as compared with the frequencies corre-
sponding to positive values.

+e regression plot of cost-related risks (see Figure 22)
gives a comparison of goodness of fit measure R for training
and test and overall taking the target on the horizontal axis
and different functional structures on the vertical axis for all
three specifications. It can be observed that the value of R
measure in case of training is significantly greater as com-
pared with that of test.

+e results of the three neural network approaches used
to determine the effect of resource-related risks on the
overall risk linked with global software development are
presented (see Table 6). +e results identified that the MSE
(validation) of Bayesian Regularization has the least value as
compared with the other two alternative approaches used in
this study. MSE (testing) value of Levenberg–Marquardt
approach is least with the highest value of R as compared
with the results for the same indicators of the other two
approaches whereas performance has the highest value in
case of the Levenberg–Marquardt method. Epoch is

computed with the least number of iterations in case of
Levenberg–Marquardt as compared with the number of
iterations associated to the other two approaches.

+e performance plot of resource-related risk in which 6
Epoch values are plotted versusmean squared error based on
LM approach is shown in Figure 23. +e plot shows the
linearly decreasing behavior from 0 to 1, and then it follows
approximately the horizontal line trend for all values above
1. It also indicated that the best validation performance is at
Epoch 2.

+e error histogram (see Figure 24) shows the distri-
bution of errors for training, validation, and test. +e
negative values of residuals found more variable as com-
pared with the frequencies corresponding to positive values.

+e regression plot of resource-related risks (see Fig-
ure 25) gives a comparison of goodness of fit measure R for
training, validation, and test and overall taking the target on
the horizontal axis and different functional structures on the
vertical axis for all four specifications. +e values of R
measure for all three plots of training, test, and validation are
significantly different which is least in case of training and
highest in case of test.
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Figure 19: SCG regression plot of cost-related risks.
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+e performance plot of resource-related risk in which
31 Epoch values are plotted versus mean squared error using
Scaled Conjugate approach is shown in Figure 26. +e plot
shows the decreasing exponential behavior between 0 and 10
and then follows the horizontal line trend, and it gives best
validation performance at Epoch 25.

+e error histogram (see Figure 27) exhibits the fre-
quency distribution of errors with greater occurrences for
positive values of residuals and relatively low frequencies

corresponding to negative values of errors with greater
variability.

+e regression plot of resource-related risks (see Fig-
ure 28) gives a comparison of goodness of fit measure R for
training, validation, and test which are significantly different
in which test has the least value of R and validation has the
highest value.

+e performance plot of resource-related risk in which
Epoch values plotted versus mean squared error based on
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Figure 20: BR performance plot of cost-related risks.
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Figure 21: BR error histogram of cost-related risks.

Computational Intelligence and Neuroscience 17



25

25 30 35
Target

40 45

30

O
ut

pu
t ~

 =
 0

.8
5*

Ta
rg

et
 +

 5
Training: R = 0.92485

35

40

45

Data
Fit
Y = T

25

25 30 35
Target

40

30

O
ut

pu
t ~

 =
 0

.9
2*

Ta
rg

et
 +

 2
.7

Test: R = 0.86664

35

40

Data
Fit
Y = T

25

25 30 35
Target

40 45

30

O
ut

pu
t ~

 =
 0

.8
6*

Ta
rg

et
 +

 4
.7

All: R = 0.91689

35

40

45

Data
Fit
Y = T

Figure 22: BR regression plot of cost-related risks.

Table 6: Comparison of LM, SCG, and BR of resource-related risks.

Levenberg–Marquardt Scaled Conjugate Gradient Bayesian Regularization
Epoch 5 iterations 31 iterations 189 iterations
Processing 0 : 00 : 00 0 : 00 : 00 0 : 00 : 01
Performance 16.1 14.6 15.1
Gradient 0.00 3.02 0.124
MU 0.00 5.00e+10
MSE (validation) 16.80 15.16 10.254
R (validation) 0.74 0.77 0.7452
MSE (testing) 14.40 25.04 19.55
R (testing) 0.85 0.57 0.70
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Figure 23: LM performance plot of resource-related risk.
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Figure 24: LM error histogram of resource-related risk.

25

25 30 35
Target

40 45

30

O
ut

pu
t ~

 =
 0

.4
8*

Ta
rg

et
 +

 1
8

Training: R = 0.68838

35

40

45

Data
Fit
Y = T

25

25 30 35
Target

40 45

30

O
ut

pu
t ~

 =
 0

.5
1*

Ta
rg

et
 +

 1
7

Validation: R = 0.73968

35

40

45

Data
Fit
Y = T

25

25 30 35
Target

40 45

30

O
ut

pu
t ~

 =
 0

.4
9*

Ta
rg

et
 +

 1
7

All: R = 0.71994

35

40

45

Data
Fit
Y = T

25

25 30 35
Target

40 45

30

O
ut

pu
t ~

 =
 0

.5
9*

Ta
rg

et
 +

 1
3

Test: R = 0.84747

35

40

45

Data
Fit
Y = T

Figure 25: LM regression plot of resource-related risk.
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Bayesian approach indicate the best training performance at
Epoch 8 is shown in Figure 29. +e plot shows the L-shaped
distribution starting from 0 and follows the horizontal line
trend for all values above 0.

+e error histogram (see Figure 30) shows that the
frequencies corresponding to negative values of errors are

relatively fewer as compared with the frequencies corre-
sponding to positive values.

+e regression plot of resource-related risks (see Fig-
ure 31) gives a comparison of goodness of fit measure R for
training and test and overall taking the target on the hor-
izontal axis. It can be observed that the value of Rmeasure in
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case of training is significantly greater as compared with that
of test.

7. Conclusions

+eGSD is a complex software development environment in
which teams are dispersed and located in different geo-
graphical locations and perform their duties in different time
zones. +erefore, the risk management pertinent to the
software development environment seems difficult. Con-
sequently, there is a need to design and implement proper
risk management practices to minimize the impact of risk
associated with GSD environment. In this research, neural
network training algorithms like Levenberg–Marquardt,
Bayesian Regularization, and Scaled Conjugate Gradient

have been implemented to predict the responses of risks
related to project time, cost, and resource involved in
global software development. +e data set has been trained
using these neural network algorithms, and mean squared
rrror (MSE), regression R values, processing time, per-
formance, and gradient have been calculated. Comparative
analysis of the implemented algorithms has also been
performed. +e results revealed that the MSE (validation)
of Bayesian Regularization in time-related, cost-related,
and resource-related risks has the least value as compared
with the other two alternative approaches used in this
study. Hence, the results proved that Bayesian Regulari-
zation gave better results as compared with the other two
approaches. +is finding is similar to [28, 50] but different
from [33].
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GSD faces heterogeneous work environments that re-
sults in multiple challenges which have been highlighted in
this research study. +is paper points out the importance of
time, cost, and resource risks within GSD.+is paper further
provides a useful insights of various risk factors within GSD
and provided a scalable and generalizable solution to
manage them using effective risk prediction. To the best of
our knowledge, this is the first study concerned with the risk
prediction in the context of GSD using artificial neural
network. +ree ANN methods are used (Lev-
enberg–Marquardt, Bayesian Regularization, and Scaled
Conjugate Gradient) to compare predictive abilities of these
methods.+e results of this study show that Levenberg is not
as efficient as Bayesian regularization and Scaled Conjugate
are. After dataset training, the Bayesian Regularization
method gave less error in prediction as compared with
Levenberg–Marquardt and Scaled Conjugate. Bayesian
Regularization provides a robust model in quantitative
studies.

Overall findings of this research indicate that all three
risks, namely, time, cost, and resource related to the GSD are
found significant and critically important for the overall risk
associated with GSD. +e research findings imply that these
factors that are affecting the overall risk must be given due
importance and should be minimized to optimize the
benefits of GSD. To increase the validity of the findings, this
research could also be revisited by including greater span of
countries where the operations related to GSD are closely
linked. +is will help to study the effects of any changes in
the nature and intensity in the factors with the greater degree
of certainty so that it gives a more reliable framework to
optimize the performance of GSD.

It is recommended to use artificial neural network
methods, namely, Levenberg–Marquardt, Scaled Conjugate,
and Bayesian Regularization for prediction purpose specially
on nonlinear data because several researchers have used
these three methods with a variety of applications [32–34].
ANN provides a robust model in quantitative studies. +e
literature in this study proved that these ANN methods
outperform other techniques when predicting software-re-
lated issues like faults or defects, complexity, and risks
[29–31].

7.1. Limitations. In this research, the data have been col-
lected from Pakistan, Australia, and the USA. Future study
will include other countries to broaden the scope of research.
It will be of great help to identify the similarities and dis-
similarities regarding the trends related to global software
development in different countries of the world. Further-
more, the data are collected on the basis of convenience
sampling that prevents the researchers to generalize the
results. +e use of random sampling will overcome this
problem, and the result and findings of the study could be
generalized.

+e activities related to global software development are
the sole responsibility of the team leaders or project man-
agers involved in the survey. +erefore, we receive only one
response as only representation from an organization and

that is from the project managers’ perspective, and conse-
quently it limits the diversity of opinions and perceptions
regarding risks related to global software development
within an organization.

To identify the risks associated with the global software
development, deep learning algorithms may also be used as
an alternative to get a greater insight into the subject area as
deep learning outperforms machine learning techniques for
larger sample sizes. +erefore, the study may be replicated
with greater sample size to increase the validity of results.
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