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Robust and accurate prediction 
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Various biochemical functions of organisms are performed by protein–protein interactions (PPIs). 
Therefore, recognition of protein–protein interactions is very important for understanding most 
life activities, such as DNA replication and transcription, protein synthesis and secretion, signal 
transduction and metabolism. Although high-throughput technology makes it possible to generate 
large-scale PPIs data, it requires expensive cost of both time and labor, and leave a risk of high false 
positive rate. In order to formulate a more ingenious solution, biology community is looking for 
computational methods to quickly and efficiently discover massive protein interaction data. In this 
paper, we propose a computational method for predicting PPIs based on a fresh idea of combining 
orthogonal locality preserving projections (OLPP) and rotation forest (RoF) models, using protein 
sequence information. Specifically, the protein sequence is first converted into position-specific 
scoring matrices (PSSMs) containing protein evolutionary information by using the Position-Specific 
Iterated Basic Local Alignment Search Tool (PSI-BLAST). Then we characterize a protein as a fixed 
length feature vector by applying OLPP to PSSMs. Finally, we train an RoF classifier for the purpose of 
identifying non-interacting and interacting protein pairs. The proposed method yielded a significantly 
better results than existing methods, with 90.07% and 96.09% prediction accuracy on Yeast and 
Human datasets. Our experiment show the proposed method can serve as a useful tool to accelerate 
the process of solving key problems in proteomics.

Proteins are the main functional components of biological cells, and they usually interact with DNA or other 
proteins in a specific way to perform their functions. Protein–protein interactions (PPIs) are critical to under-
standing the function of proteins and further manipulating many biological processes1. Therefore, the analysis 
of protein interactions has gradually become a hot topic in proteomics research. Thus far, researchers have 
discovered various experimental methods for detecting large-scale PPIs, including yeast two-hybrid2,3, protein 
chips4, tandem affinity purification5, immunoprecipitation6, and other high-throughput biotechnology. The rapid 
development of these high-throughput technologies has also accumulated available experimental data for the 
study of protein–protein interactions7. Nevertheless, biological experimental methods are expensive, time con-
suming, and labor intensive. Moreover, these methods typically perform poorly and are prone to produce low 
rates of true negative and true positive predictions8–10. Thus, an effective computational method to predict PPIs 
is highly desirable, and it may also alleviate the bottleneck of experimental methods11,12.

Currently, many computational methods based on various data types have been developed for predicting 
protein–protein interactions. The data sources involved in these methods mainly include literature mining 
knowledge13, gene fusion14, phylogenetic profiles15, gene ontology annotations16, gene neighborhood17, and co-
evolution analysis of interacting proteins18. However, these methods are not commonly used to predict PPIs as 
they are difficult to apply if a priori information about the protein is not available. Moreover, the rapid develop-
ment of genomic technology has led to an excessive accumulation of protein sequence data. Hence, it is very 
popular to predict protein–protein interactions based on protein sequence information19,20.
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Numerous previous studies have found that PPIs can be detected using only protein amino acid sequence 
data21,22. Guo et al.23 reported a sequence-based method that combines auto-covariance (AC) and support vector 
machine (SVM) to predict PPIs. Among them, AC considers the neighbouring effect and explains the interac-
tion between a certain number of residues in the sequence. The accuracy of this method on the Saccharomyces 
cerevisiae data was 88.09%. Pitre et al.24 developed a computational engine called PIPE to predict protein–protein 
interactions. The engine can efficiently detect interactions among yeast protein pairs. The experimental results 
show that the PIPE algorithm achieves a sensitivity of 61% with 89% specificity and an average accuracy of 75% 
on yeast dataset. You et al.25 proposed a hierarchical PCA-EELM method to predict PPIs, which utilizes only 
protein sequence information. Lei et al.26 showed a neighbor affinity-based core-attachment method (NAB-
CAM) to predict protein complexes from dynamic PPI networks. Huang et al.19 presented a sequence-based 
substitution matrix representation (SMR) method to predict PPIs by using discrete cosine transform (DCT). 
This method yielded an average accuracy of 96.28% on the yeast dataset. Ding et al.27 proposed a matrix-based 
protein sequence representation method that combines HOG and SVD feature representations as well as ran-
dom forest classifiers to predict PPIs. Wang et al.28 presented a computational model to predict PPIs, which is 
based on a Zernike moment (ZM) feature descriptor and a probabilistic classification vector machine (PCVM) 
algorithm. Although the existing prediction methods for protein–protein interactions have been developed by 
many investigators, there is still room for improvement in algorithms and prediction accuracy of PPIs.

In this paper, we report a protein sequence-based approach to detect protein–protein interactions. Specifi-
cally, all protein sequences were first converted to a position-specific scoring matrix (PSSM). Then, we use the 
orthogonal locality preserving projections (OLPP) algorithm to extract feature mathematical descriptors from 
each protein PSSM to obtain more representative information. Finally, we use the ensemble learning method in 
machine learning to perform the classification tasks of PPIs. The proposed method was applied to highly trusted 
Yeast and Human datasets to test the performance of PPIs prediction models. In addition, we demonstrate the 
predictive power of the proposed model on four separate datasets including C. elegans, H. pylori, H. sapiens, and 
M. musculus. Through further comparative experiments, our method obtains good prediction accuracy, which 
can reflect the reliability of the proposed method in predicting PPIs.

Results and discussion
Evaluation measures.  To validate the proposed model, we consider the following evaluation criteria in 
this experiment. The calculation formulas for overall prediction accuracy (Acc), precision (Pre), sensitivity 
(Sen), and Matthews correlation coefficient (MCC) are defined as:

where TN is the number of true negatives, indicating that the non-interacting proteins are predicted correctly; 
TP is the amount of true positives, representing that the interacting proteins are predicted correctly; FN is the 
number of false negatives, indicating that the interacting proteins are predicted to be non-interacting; and FP is 
the amount of false positives, representing that the non-interacting proteins are predicted to have interaction. 
Additionally, the receiver operating characteristic (ROC)29 curves and the area under the ROC curve (AUC)30 
were also calculated to further evaluate the discriminatory accuracy of the proposed model. The workflow of 
the proposed method is shown in Fig. 1.

Assessment of prediction.  We applied the proposed method to two popular PPIs datasets to verify the 
performance of the model, including Yeast and Human datasets. In addition, to avoid over-fitting problems in 
the experiment, we used a five-fold cross-validation method to evaluate prediction performance. Specifically, we 
divided the entire dataset into five parts, four of which were used for training and one part was used for testing. 
In this way, we can obtain five separate models from the Yeast and Human datasets and perform five independ-
ent experiments. To be fair, we set the same parameters for the rotation forest classifier on different datasets. 
In this experiment, we use a grid search method to optimize two important parameters of the RoF algorithm. 
Figure 2 presents the prediction results of the RoF algorithm under different parameters. Here, the parameter K 
(the amount of feature subsets) is set to 10 and the parameter L (the amount of decision trees) is set to 35. The 
predicted results obtained by combining the proposed model with the five-fold cross-validation method on dif-
ferent datasets are shown in Table 1.

From Table 1, we can see that the proposed method for predicting PPIs has a good performance on the 
Yeast dataset. Its average accuracy, precision, sensitivity, and MCC were 90.07%, 90.24%, 89.83%, and 82.10%, 
respectively, and their standard deviations were 0.60%, 0.56%, 1.41%, and 0.97%, respectively. In addition, our 
method also achieved satisfactory results on the Human dataset. Its average accuracy, precision, sensitivity, and 

(1)Accuracy =
TN + TP

TN + TP + FN + FP
,

(2)Precision =
TP

FP + TP
,
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TP
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√
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MCC were 96.09%, 96.56%, 95.20%, and 92.47%, respectively, and the standard deviations were 0.24%, 0.36%, 
0.34%, and 0.46%, respectively. Figures 3 and 4 show the ROC curves of the proposed method on these two 
datasets, respectively. In the figure, the Y-axis refers to the true positive rate (TPR) and the X-axis refers to the 
false positive rate (FPR). To further evaluate the performance of the RoF classifier, we also obtained average 
AUC values of 94.94% and 99.14% on the Yeast and Human datasets, respectively. Observing these results, our 
method can achieve higher accuracy and lower standard deviation. This further indicates that the proposed 
method can effectively detect PPIs.

Comparison of proposed method and support vector machine method.  Many algorithms and 
knowledge about machine learning are used to detect PPIs. Among them, support vector machine (SVM) is 
a popular supervised learning algorithm. To evaluate the predictive ability of the proposed model, we used 
the same feature extraction method to compare the prediction results of the two classifiers including RoF and 
SVM on Yeast and Human datasets. In this experiment, we use the LIBSVM tools as an SVM classifier, which 
can be downloaded from https://​www.​csie.​ntu.​edu.​tw/​~cjlin/​libsvm/. To improve the prediction results of the 
SVM classifier on these two datasets, we use a grid search method to select two important parameters of SVM, 
namely the regularization parameter c and the kernel parameter g. When predicting PPIs on the Yeast dataset, 

Figure 1.   The workflow of the proposed method.

Figure 2.   The accuracy surface obtained from the RoF algorithm for optimizing parameters K and L.

Table 1.   Five-fold cross-validation prediction results using the proposed method on two dataset.

Data sets Acc (%) Pre (%) Sen (%) MCC (%)

Yeast 90.07 ± 0.60 90.24 ± 0.56 89.83 ± 1.41 82.10 ± 0.97

Human 96.09 ± 0.24 96.56 ± 0.36 95.20 ± 0.34 92.47 ± 0.46

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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the parameters c and g are set to 4 and 1, respectively. When detecting PPIs on the Human dataset, the param-
eters c and g are set to 8 and 1, respectively. Furthermore, we chose the radial basis function as the kernel func-
tion in this experiment.

From Table 2, we can observe that the SVM-based method achieves an average accuracy of 78.96%, an average 
precision of 79.08%, an average sensitivity of 78.76%, and an average MCC of 66.80% by using fivefold cross-
validation on the Yeast dataset. However, the RoF-based methods achieved average accuracy, precision, sensitivity, 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-Specificity

Se
ns

iti
vi

ty

Average AUC = 0.9494

1st fold
2nd fold
3rd fold
4th fold
5th fold

Figure 3.   ROC curves performed using the proposed method on Yeast dataset.
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Figure 4.   ROC curves performed using the proposed method on Human dataset.

Table 2.   Comparison of the results of the proposed method and SVM by using five-fold cross-validation on 
two datasets.

Data sets Classifier Acc (%) Pre (%) Sen (%) MCC (%)

Yeast
SVM 78.96 ± 1.55 79.08 ± 1.03 78.76 ± 2.37 66.80 ± 1.75

RoF 90.07 ± 0.60 90.24 ± 0.56 89.83 ± 1.41 82.10 ± 0.97

Human
SVM 87.23 ± 0.57 87.23 ± 0.58 85.83 ± 1.16 77.66 ± 0.87

RoF 96.09 ± 0.24 96.56 ± 0.36 95.20 ± 0.34 92.47 ± 0.46
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and MCC of 90.07%, 90.24%, 89.83%, and 82.10%, respectively. At the same time, we also compared the predic-
tion results of the two classifiers on the Human dataset using the same feature extraction method. Similarly, we 
can see that the SVM-based classifier has 87.23% average accuracy, 87.23% average precision, 85.83% average 
sensitivity, and 77.66% average MCC on the Human dataset. In addition, we plot the ROC curves on the two 
datasets based on the SVM model and calculate the average AUC as shown in Figs. 5 and 6. By comparing these 
experimental data, we can see that RoF classifiers are significantly better than SVM classifiers in predicting PPIs.

Comparison time performance with SVM‑based method..  In this section, we compare the training 
time required by RoF and SVM algorithms on two datasets, by using the same OLPP feature extraction method 
on the same machine configuration. Table 3 gives the comparison results of the training time required by differ-
ent algorithms on the Yeast and Human datasets. It can be shown that the training time of OLPP + RoF method is 
401 s higher than that of OLPP + SVM method and the accuracy is improved by about 10% on the Yeast dataset. 
Similarly, the training time of OLPP + RoF method is 170 s while the training time of OLPP + SVM method is 
110 s on the Human dataset. Although the training speed of the latter is 60 s faster than that of the former, the 
accuracy is reduced by about 9%. As a result, the RoF algorithm is superior to the SVM algorithm in terms of 
both prediction accuracy and training time.
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Figure 5.   ROC curves performed using the SVM method on Yeast dataset.
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Figure 6.   ROC curves performed using the SVM method on Human dataset.
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Comparison with other methods.  Thus far, many computational methods have been developed to detect 
PPIs. In particular, machine learning algorithms have also received widespread attention from researchers. In 
this section, we compare the proposed method with the currently known methods to further evaluate the predic-
tive power of the model. Tables 4 and 5 summarize the predicted results of other existing methods on Yeast and 
Human datasets, respectively. From Table 4, we can see that the accuracy of the proposed method is 90.07%, the 
sensitivity is 89.83%, the precision is 90.24% and the MCC is 82.10% with the corresponding standard devia-
tions of 0.60, 1.41, 0.56, and 0.97, respectively on the Yeast dataset. Similarly, we can find the prediction results 
of different methods on the Human dataset from Table 5. The average accuracy of the proposed method for PPIs 
prediction reached 96.09%, the sensitivity reached 95.20% and the MCC reached 92.47%. Comparing these 
results, we can find that the proposed method is a stable and reliable model for predicting PPIs. 

Performance on independent dataset.  Although the proposed model has achieved good performance 
on Yeast and Human datasets, the suitability of the proposed method for different datasets still needs to be veri-
fied. Therefore, we also performed additional experiments to further determine the predictive performance of 
this model for other species. It should be noticed that there is a biological hypothesis that PPIs are mapped from 
one species to another. This hypothesis is that many physically interacting proteins have coevolved in a given 
organism so that they are also likely to interact with proteins from other organisms. In this experiment, we 
used all of the 11,188 protein pairs of Yeast datasets to construct a training set through the previously proposed 
method. Then, we use four independent datasets as test sets to detect the final prediction model separately. 
Among them, the four independent test sets are C. elegans, H. pylori, H. sapiens, and M. musculus collected in 
the DIP database. The number of their protein pairs is 4013, 1420, 1412 and 313, respectively. Table 6 shows the 
PPIs prediction results of the five methods on four species. We can conclude that the proposed model achieved 
up to 90% prediction accuracy on four independent datasets C. elegans, H. pylori, H. sapiens, and M. musculus, 
which were 90.93%, 92.54%, 92.21%, and 91.37%, respectively. These results not only indicate the outstand-
ing performance of the proposed method in predicting the interaction of other species but also show that the 
method has good generalization.

Table 3.   Comparison time performance with SVM-based methods.

Data sets Method Time (s)/fold Accuracy (%)

Yeast
OLPP + RoF 237 90.21

OLPP + SVM 638 79.53

Human
OLPP + RoF 170 96.69

OLPP + SVM 110 87.25

Table 4.   Performance comparisons of 12 methods on the Yeast dataset. N/A means not available. The values 
behind ± represent the standard deviation. a Mutiple: Multiple Features; DL: Deep Learning; results reported by 
Ref.31. b PR-LPQ: property response matrix-Local Phase Quantization; RoF: Rotation Forest; results reported by 
Ref.32. c Bio2Vec: bio-to-vector; CNN: convolution neural network; results reported by Ref.33. d MCD: Multi-
scale Continuous and Discontinuous; SVM: Support Vector Machine; results reported by Ref.34. e PSSMMF: 
position-specific scoring matrix with multifeatures fusion; results reported by Ref.35. f 3-mers: represent a 
segmentation strategy of sequence; results reported by Ref.33. g ACC: Auto Cross Covariance; results reported 
by Ref.23. h LD: Local Description; results reported by Ref.36. i AC: Auto Covariance; results reported by Ref.23. 
j PCA-EELM: Principal Component Analysis-Ensemble Extreme Learning Machine; results reported by Ref.25. 
k LD: Local descriptors; KNN: k-nearest neighbors; results reported by Ref.37.

Method Feature Classifier Acc (%) Sen (%) Pre (%) MCC (%)

Du et al.a Mutiple DL 94.43 ± 0.30 92.06 ± 0.36 96.65 ± 0.59 88.97 ± 0.62

Wong et al.b PR-LPQ RoF 93.92 ± 0.36 91.10 ± 0.31 96.45 ± 0.45 88.56 ± 0.63

Wang et al.c Bio2Vec CNN 93.30 92.70 93.55 87.49

You et al.d MCD SVM 91.36 ± 0.36 90.67 ± 0.69 91.94 ± 0.62 84.21 ± 0.59

An et al.e PSSMMF SVM 90.48 ± 0.76 90.26 ± 0.87 90.58 ± 0.98 82.84 ± 1.27

Wang et al.f 3-mers CNN 90.26 88.14 91.65 82.38

Our method OLPP RoF 90.07 ± 0.60 89.83 ± 1.41 90.24 ± 0.56 82.10 ± 0.97

Guo et al.g ACC​ SVM 89.33 ± 2.67 89.93 ± 3.68 88.87 ± 6.16 N/A

Zhou et al.h LD SVM 88.56 ± 0.33 87.37 ± 0.22 89.50 ± 0.60 77.15 ± 0.68

Guo et al.i AC SVM 87.36 ± 1.38 87.30 ± 4.68 87.82 ± 4.33 N/A

You et al.j Mutiple PCA-EELM 87.00 ± 0.29 86.15 ± 0.43 87.59 ± 0.32 77.36 ± 0.44

Yang et al.k LD KNN 86.15 ± 1.17 81.03 ± 1.74 90.24 ± 1.34 N/A
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Conclusions
Machine learning algorithms play a crucial role in proteomics research as they can quickly and accurately improve 
the prediction accuracy of PPIs. In this work, we propose an ensemble learning approach to detect PPIs from 
protein sequences. Orthogonal locality preserving projections are used to extract discriminative features from 
the PSSM, which can effectively preserve evolutionary information of the protein sequence. Finally, we use a 
rotation forest model to predict PPIs. To evaluate the reliability of the proposed method for PPIs prediction, 
we performed experiments on Yeast and Human datasets to verify the performance of the method. At the same 
time, we also compared the proposed model with the SVM classifier and other existing models. The experimental 
results show that our method has achieved good performance in predicting protein interactions and it can be a 
useful tool for detecting PPIs.

Materials and methodology
Data sources.  Previous studies have generated many databases of protein–protein interactions, such as Bio-
molecular Interaction Network Database (BIND)43, Molecular Interaction Database (MINT)44, and Database of 
Interacting Proteins (DIP)45. To demonstrate the efficacy of the proposed method, we used two publicly available 
and highly reliable datasets for this study, including Yeast and Human, which were derived from the database 
of interacting proteins (DIP) and collected by Guo et  al.23 and Huang et  al.19, respectively. To eliminate the 
redundancy of the dataset and ensure the validity of the experiment, we performed a screening work to remove 
the redundant protein pairs46. Specifically, protein pairs with fewer than fifty residues are completely removed, 
as they may be just fragments. Furthermore, considering the presence of homologous sequence pairs, those 
protein pairs with more than 40% sequence identity were also removed. Finally, we retained the remaining 5594 
protein pairs to construct a positive PPIs dataset. At the same time, we also constructed a negative dataset using 
an additional 5594 non-interacting protein pairs, and their subcellular localization was different. Thus, the final 
Yeast dataset in this experiment consisted of 11,188 protein pairs, which contained 50% negative datasets and 
50% positive datasets. Analogously, we constructed 8161 protein pairs for Human dataset, which included 4262 
non-interacting protein pairs and 3899 interacting protein pairs.

Table 5.   Performance comparisons of 12 methods on the Human dataset. N/A means not available. The values 
behind ± represent the standard deviation. a Mutiple: Multiple Features; DL: Deep Learning; results reported 
by Ref.31. b MMI + NMBAC: multivariate mutual information + normalized Moreau-Broto Autocorrelation; 
RF: Random Forest; results reported by Ref.38. c LDA: latent dirichlet allocation; RF: Random Forest; results 
reported by Ref.39. d DTC + SMR: discrete cosine transform + substitution matrix representation; WSRC: 
weighted sparse representation based classifier; results reported by Ref.19. e MMI: multivariate mutual 
information; results reported by Ref.38. f LDA: latent dirichlet allocation; RoF: Rotation Forest; results 
reported by Ref.39. g NMBAC: normalized Moreau-Broto Autocorrelation; results reported by Ref.38. h AC: auto 
covariance; results reported by Ref.39. i RoF: Rotation Forest; results reported by Ref.39. j SVM: Support Vector 
Machine; results reported by Ref.39. k Results reported by Ref.39.

Method Feature Classifier Acc (%) Sen (%) Pre (%) MCC (%)

Du et al.a Mutiple DL 98.14 96.95 99.13 96.29

Ding et al.b MMI + NMBAC RF 97.56 96.57 98.30 95.13

Pan et al.c LDA RF 96.4 94.2 N/A 92.8

Huang et al.d DTC + SMR WSRC 96.30 92.63 99.59 92.82

Our method OLPP RoF 96.09 95.20 96.56 92.47

Ding et al.e MMI RF 96.08 95.05 96.97 92.17

Pan et al.f LDA RoF 95.7 97.6 N/A 91.8

Ding et al.g NMBAC RF 95.59 94.06 96.94 91.21

Pan et al.h AC RF 95.5 94.0 N/A 91.4

Pan et al.i AC RoF 95.1 93.3 N/A 91.0

Pan et al.j LDA SVM 90.7 89.7 N/A 81.3

Pan et al.k AC SVM 89.3 94.0 N/A 79.2

Table 6.   Performance comparisons on four species. N/A means not available.

Species Test pairs Our Method Huang et al.19 Ding et al.40 Wang et al.41 Zhan et al.42

C. elegans 4013 90.93% 81.19% 86.72% 92.60% 93.20%

H. pylori 1420 92.54% 82.18% 90.34% N/A 91.34%

H. sapiens 1412 92.21% 82.22% 90.23% 80.10% 91.93%

M. musculus 313 91.37% 79.87% 91.37% 89.14% 94.89%
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Position‑specific scoring matrix.  Gribskov et al.47 initially introduced a position-specific scoring matrix 
(PSSM) for the search for distantly related proteins. PSSM is an evolutionary profile based on feature extraction 
methods that have been successfully used in various fields of bioinformatics. For instance, protein secondary 
structure prediction48, prediction of membrane protein types49, prediction of disordered regions50, identification 
of DNA binding proteins51, and protein binding site prediction52. To integrate the evolutionary information of 
proteins, we also used PSSM to predict PPIs in this study. The structure of the PSSM can be represented as a 
matrix with T rows and 20 columns. It can be interpreted as P = {xi,j : i = 1, . . . ,T , j = 1, . . . , 20}. Of these, the 
rows of the matrix are protein residues and the columns refer to native amino acids. We can use the following 
formula to describe PSSM:

where T represents the length of the protein sequence, and the element xi,j of PSSM refers to the residue score 
of the ith residue mutated to the type j amino acid during biological evolution.

In this paper, we employed the Position-Specific Iterated BLAST (PSI-BLAST)53 program and the SwissProt 
database on a local machine to transform each protein sequence into a matrix of score values to further construct 
experimental datasets to predict PPIs54. In the process of running PSI-BLAST, we hope to select highly homolo-
gous sequences, and mainly employ these aligned sequences to construct a new scoring matrix. This matrix is 
called the Position-Specific Scoring Matrix (PSSM), and is weighted according to the kinds of high homology 
found in the initial hit list. Using this matrix again, we do a blast to pick any new homologous sequences as our 
scoring schema will change. This process is repeated until no new sequences can be found. PSI-BLAST is more 
sensitive compared to BLAST, especially in terms of discovering new members of protein families. To generate 
highly homologous sequences, the important parameter cutoff e-value and the number of iterations of PSI-BLAST 
were set to 0.001 and 3, respectively, while other parameters were default values. The applications of PSI-BLAST 
can be publicly accessed at http://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi.

Orthogonal locality preserving projections (OLPP).  Orthogonal locality preserving projections 
(OLPP) algorithm is an effective manifold learning method. It was used early in the recognition of human faces 
and was proposed by Deng Cai et al.55. This algorithm is extended based on Locality preserving projections 
(LPP)56. Among them, the theoretical knowledge and detailed derivation of the LPP method can be traced 
back to Ref.57. Suppose we give a set of n D-dimensional data x1, x2, . . . , xn through n d-dimensional vectors 
y1, y2, . . . , yn, respectively, D > d. The objective function of LPP is formally stated below:

where S represents a similarity matrix and yi is the one-dimensional representation of xi with a projection vector 
w. Here, yi = wTxi . According to the minimized objective function, LPP will incur a severe penalty if neighboring 
points xi and xj are projected far away. One possible way to define the similarity matrix S is as follows:

where ε is extremely small, ε > 0, and the parameter t  is seen as a regulator. Here, ε specifies the radius of the 
local neighborhood. That is, ε defines the locality. Thus, the objective function needs to be minimized so that 
when xi and xj are close, yi and yj are close as well. Finally, the transformation vector w is given by solving the 
minimum eigenvalue:

where X = {x1, x2, . . . , xn} and � represents the eigenvalue and w is the corresponding eigenvector. Here, 
L = D − S is the Laplacian matrix and D represents a diagonal matrix, Dii =

∑

j Sji . Next, we describe the 
OLPP algorithm by using the following steps.

1.	 PCA projection. Principal Components Analysis (PCA) is an effective tool for reducing the dimensional-
ity of multivariate data by using a covariance analysis between factors. PCA projects the input data into an 
alternate subspace by discarding the portion corresponding to zero eigenvalue. Here, we introduce the WPCA 
to represent the transformation matrix of PCA.

2.	 Contiguity graph construction. OLPP algorithm can construct a K-nearest neighbor (KNN) graph in super-
vised or unsupervised mode and can also achieve good stability. Let G denote a KNN graph with n nodes. The 
i-th node corresponds to xi We tend to put an edge between nodes i and j if xi and xj are close, i.e. xi is among 
p nearest neighbors of xj. In other words, xj is among p nearest neighbors of xi. Edges are located between a 
sample and its K nearest neighbors in an unsupervised setting. Here, K represents a small integer. In general, 
we use the Euclidean distance metric to measure the closeness between data nodes in a K nearest neighbor 

(5)P =











x1,1 x1,2 · · · x1,20
x2,1 x2,2 · · · x2,20
...

...
...

...
xT ,1 xT ,2 · · · xT ,20











,

(6)min
∑

ij

∥

∥yi − yj
∥

∥

2
Sij ,

(7)Sij =

{

exp
(

− 1
t

∥

∥xi − xj
∥

∥

2
)

,
∥

∥xi − xj
∥

∥

2
< ε

0, otherwise,

(8)XLXTw = �XDXTw,

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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graph. In an unsupervised mode, we can get a constructed nearest neighbor graph that approximates the 
local manifold structure.

3.	 Selecting the weights. If node i and j are linked, the weight Wij is expressed as,

where t  is a suitable constant. If node i and j are not linked, we have Wij = 0. The weight matrix W of graph 
G refers to the native structure of the feature space.

4.	 Computing the orthogonal basis functions. After finding the weight matrix W , we tend to calculate the 
diagonal matrix D. The diagonal matrix D is defined as the sums of each column element of W (or sums of 
each row element of W as W is symmetric):

We also calculated the Laplacian matrix L, which is defined as

Let {o1, o2, ..., od} be orthogonal basis vectors, and we define

The calculation process of the orthogonal basis vectors {o1, o2, ..., od} can be expressed as follows

(a)	 Compute o1 as the eigenvector of (XDXT )−1XLXT associated with the smallest eigenvalue.
(b)	 Compute od as the eigenvector of

	   related to the minimum eigenvalue of M(d).

5.	 OLPP embedding. Let WOLPP = [o1, o2, . . . , os], the embedding is defined as,

where y is a s-dimensional vector and W is the transformation matrix.

Rotation forest.  In recent years, many ensemble algorithms have been rapidly developed in the field of 
machine learning, mainly because the ensemble learning classification method can greatly improve the predic-
tion accuracy of classification results. Among them, ensemble classifier built using ensemble machine learning 
algorithms, such as boosting and bagging methods, usually have much better prediction accuracy than using 
only a single classifier. In this paper, we use the Rotation Forest (RoF) classifier to perform the classification task 
of protein–protein interactions. Rotation forest is an ensemble classifier combining decision tree algorithm and 
principal component analysis theory, which was proposed by Rodriguez et al.58. The main idea of the RoF classi-
fier is to improve the diversity and prediction accuracy of the base classifiers by using a transformation approach 
to perform feature extractions for each classifier59. In addition, each decision tree is individually trained and 
embedded in a rotated feature space utilizing a new dataset in the transformed feature space by the original 
dataset60. Other research literature suggests that the RoF algorithm can achieve better prediction accuracy in 
classification problems when compared to other ensemble methods61,62.

Assuming X be the original training dataset and we can represent it with a matrix of N × n. Here, N denotes 
the number of training samples and n denotes the number of features. The corresponding feature set and class 
label can be represented as S and Y , respectively, where Y = (y1, y2, . . . , yn)

T . Let L be the total number of deci-
sion tree classifiers present in the RoF, where the ith decision tree is Ti(i = 1, 2, . . . , L). More specifically, the 
feature set S is first randomly divided into K disjoint subsets in the rotation forest model. In each subset, there 
are C = n

K  features. Here, K and L are two user-defined parameters. Next, we can get Sij and Xij , where Sij is the 
jth subset of features for the ith decision tree classifier and Xij is the training dataset X for features in Sij . Based on 
the bootstrap algorithm, we can generate a new nonempty training set X ′

ij , which is 75% of the original training 
dataset. Furthermore, a linear transformation method is applied to X ′

ij to generate a coefficient vector, and it can 
be described as {a(1)

ij
, . . . , a

(Cj)

ij }, and the size of each X ′
ij is C × 1. Subsequently, a sparse rotation transformation 

matrix Gi can be constructed, as shown in the following equation:

(9)Wij=e−
1
t �xi−xj�2 ,

(10)Dii =
∑

j
Wji .

(11)L = D −W .

(12)A(d−1) = [o1, o2, . . . , od−1],

(13)B(d−1) = [A(d−1)]T (XDXT )−1A(d−1).

(14)M(d) = {I − (XDXT )−1A(d−1)[B(d−1)]−1[A(d−1)]T } · (XDXT )−1XLXT

(15)x → y = WTx,

(16)W = WPCAWOLPP ,
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Then, for a given test sample x, the dij(xGa
i ) generated by the decision tree classifier Ti is used to determine 

that the sample x belongs to the class yi . In the next step, the average combination method is used for each class 
yi to calculate the confidence and the formula is as follows:

Accordingly, for a given test sample x, the main purpose is to assign it to the class with the highest confidence. 
Thus, to determine whether these protein pairs have interactions with each other.
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