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Abstract

Recent advances in Knowledge Graphs (KGs) and Knowledge Graph Embedding Models (KGEMs) have led to their adoption in a broad
range of fields and applications. The current publishing system in machine learning requires newly introduced KGEMs to achieve
state-of-the-art performance, surpassing at least one benchmark in order to be published. Despite this, dozens of novel architectures
are published every year, making it challenging for users, even within the field, to deduce the most suitable configuration for a given
application. A typical biomedical application of KGEMs is drug–disease prediction in the context of drug discovery, in which a KGEM
is trained to predict triples linking drugs and diseases. These predictions can be later tested in clinical trials following extensive
experimental validation. However, given the infeasibility of evaluating each of these predictions and that only a minimal number of
candidates can be experimentally tested, models that yield higher precision on the top prioritized triples are preferred. In this paper, we
apply the concept of ensemble learning on KGEMs for drug discovery to assess whether combining the predictions of several models can
lead to an overall improvement in predictive performance. First, we trained and benchmarked 10 KGEMs to predict drug–disease triples
on two independent biomedical KGs designed for drug discovery. Following, we applied different ensemble methods that aggregate
the predictions of these models by leveraging the distribution or the position of the predicted triple scores. We then demonstrate how
the ensemble models can achieve better results than the original KGEMs by benchmarking the precision (i.e., number of true positives
prioritized) of their top predictions. Lastly, we released the source code presented in this work at https://github.com/enveda/kgem-
ensembles-in-drug-discovery.
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learning

Introduction
Applications of knowledge graphs (KGs) are steadily increasing in
the biomedical domain, including the prediction of side effects
of a given drug in the early stages of drug development [1], drug
repositioning [2] and target prioritization [3]. Several approaches
have previously been proposed for biomedical applications using
KGs. These include meta-path-based approaches which leverage
a relevant type of path in a network (e.g., drug–protein–disease
for drug discovery) [4], node similarity-based approaches which
exploit network properties (e.g., shared neighbors or other con-
nectivity features) [5], path reasoning-based approaches which
take edge types within a path into account [6] and machine
learning-based approaches in which a model learns node and
relation embeddings that are subsequently used for predicting rel-
evant connections, such as gene–disease associations and drug-
targets [7].

Recently, parallel to the adoption of KGs for applications
through wide-reaching domains, a substantial number of
machine learning based approaches have also been developed,
such as Knowledge Graph Embedding Models (KGEMs) [8]. These

models are trained to learn a low-dimensional representation of
the entities and relations in a KG so that the KG can be exploited
for link prediction, among other applications. The goal of link
prediction is to predict new triples or infer missing ones between
non-connected nodes within a network. Although for most non-
biomedical KGs one may want to optimize the model to learn all
relations present in the KG in equal proportions (e.g., predicting
heterogeneous triples in social media networks), biomedical KGs
typically entail that the model is focused on a specific relation
type which corresponds to a biomedical application (e.g., drug–
disease for drug discovery, protein–disease for target prioritization
and drug-side effect for side effect prediction) [9]. This distinct
condition typically required by applications of biomedical KGs
can adversely affect the performance of KGEMs as the majority
of these models have been benchmarked for non-biomedical KGs
which require the simultaneous optimization of the model to
predict all or multiple relation types [10].

To remedy this problem, one can restrict the validation and
test set to a particular relation type, thereby reinforcing the train-
ing of the KGEM towards the relation type of interest. However,
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such a training procedure could potentially be detrimental or
even infeasible depending on the characteristics of the KG, for
example, in drug discovery applications where the proportion of
drug–disease relations is minimal compared with other relations.
Furthermore, KGEMs predictions can vary depending on several
factors such as data splitting (e.g., negative triple generation and
train-validation-test splits) and the hyperparameters of the model
[11]. Finally, given that dozens of KGEMs have been published so
far but have only rarely been benchmarked on biomedical KGs,
KGEM selection plays a significant role in the final predictions.
Especially, due to their topological differences with the classical
benchmark KGs such as FB15k and WikiData. As a consequence,
two KGEMs trained on the same biomedical KG can result in a
completely disjoint set of predictions [12], even if each of these
predictions may be correct.

One of the major biomedical applications of link prediction
using KGEMs is drug–disease prioritization for drug discovery [5].
By predicting triples on a set of chemicals for a given disease,
KGEMs can quickly nominate a set of compounds that could be
experimentally tested. This prioritization is extremely valuable
given the size of the chemical space, and allows focusing on
a limited number of chemicals, thereby increasing the chances
of success in clinical trials as well as reducing the time and
cost associated with drug discovery. However, the aforementioned
challenges related with KGEMs can introduce variability in the
prediction scores among the top-predicted triples. Furthermore,
given the embedding spaces generated by each model and thus,
distinct score distributions, the predictions from one model can-
not directly be compared with the predictions from another with-
out any normalization; thus, relying on a single KGEM. In our work,
we start by comparing the performance of a variety of KGEMs
on two KGs designed for drug discovery. In line with previous
work that investigated biomedical KGs, our results show great
variability across models. Finally, we also investigate whether the
performance of these models can be improved by leveraging an
ensemble of models.

Related work
Recent benchmarks have investigated the performance of KGEMs
in biomedical KGs. Chang et al. [13] conducted an evaluation of
five models on SNOMED-CT, an immense KG with over 2 000 000
triples (170 edge types) and ∼300 000 nodes. In addition, Bonner
et al. [14] conducted a benchmark on two large biomedical KGs
using five models. Apart from a general link prediction task for
any type of edge as the previous work by Chang et al., the authors
trained the models to specifically predict gene–disease triples.
However, the characteristic of these benchmarked KGs impeded
benchmarking the predictions of KGEMs on drug–disease triples.

Ensemble learning is a widely used approach that combines
predictions from multiple models with the goal of achieving a
better performance than any of the individual models. This con-
cept was first explored in the context of KGEMs by Krompaß and
Tresp [15], when only a handful of KGEMs had been published.
In their work, the authors proposed an ensemble model where
they aggregate scores of three models (i.e., RESCAL [16], TransE
[17] and ERMLP [18]). To harmonize the disparate score distribu-
tions generated by each model, they transformed them using a
Platt-Scaler model [19] learned from a subset of the triples to
subsequently aggregate them to generate the ensemble scores.
They then demonstrated that the predictions of the ensemble
were more accurate than ones from the individual models in three
benchmark KGs. More recently, Choi et al. [20] presented a similar

concept in which instead of using a subset of the triples, the entire
distribution of triple scores is normalized to be subsequently
leveraged by a Product of Experts (PoE) to yield ensemble predic-
tions [21]. Here, the authors employ four translational distance
models to also demonstrate that the ensemble outperforms the
individual models in two KGs. Finally, Xu et al. [22] also showed
on the same KGs, how parallely training the same model with
a low dimension and combining their scores achieves a better
performance than training the corresponding model with a higher
dimension.

Taken together, aforementioned studies have demonstrated
the potential of ensemble-based approaches using KGEMs.
Although prior work has focused on five translational distance
KGEMs and benchmark KGs such as FB15k and WN18, it is
still open to what extends ensemble models can improve the
predictions in biomedical KGs designed for drug discovery given
their particular characteristics (e.g., link prediction is conducted
on a specific relation, this relation in a minority of the triples,
smaller number of relation types, nodes, triples, etc.). Given the
large number of novel KGEMs published in the last years, and
the recently released libraries for training, it is now possible to
explore the performance of ensemble models on a variety of
model configurations.

Methods
KGEMs
We employed 10 different KGEMs: RESCAL [16], TransE [17],
DistMult [23], ERMLP [18], TransH [24], ComplEx [25], HolE [26],
ConvE [27], RotatE [28] and MuRE [29]. These models have been
selected based on: (i) their variability in terms of modeling
paradigms [11], (ii) their performance on benchmarks [11] and
(iii) their prior use for applications in drug discovery [10, 30,
31]. Supplementary Table 1 summarizes the key properties of the
models.

KGs
We benchmarked two KGs: BioKG [32] and OpenBioLink [33]. Since
both KGs are designed for a variety of biomedical applications
(e.g., drug repurposing and side effect predictions), they con-
tain different node (e.g., proteins, phenotypes and anatomical
regions) and relation types (e.g., inhibition, activation and binding
in OpenBioLink, and protein–protein interactions and drug–drug
interactions in BioKG) that were normalized in the steps outlined
below.

In the first normalization step, the two KGs were reduced
to three types of nodes: drugs, proteins and diseases. Modeling
both KGs this way allows for better comparison, as we used an
equivalent schema to represent the mechanism of action (MoA)
of a drug (i.e., a drug binds a target and leads to a cascade of
events that revert the pathophysiology of an indication). Further-
more, some of the node types removed (i.e., protein functions
and side effects for BioKG, and phenotypes, pathways, anatomy,
and biological function for OpenBioLink) can also be used as
node properties (e.g., protein function) and are present in the
KG for other biomedical applications (e.g., side effect prediction).
For instance, in a recent drug repurposing study using KGEMs,
the authors showed how filtering out entities that do not appear
in metapaths connecting chemicals and diseases significantly
improved the performance of the models [10]. This study showed
that after this filtering, although the relative frequency of chem-
icals and diseases nodes increased, the frequency of other node
types, such as pathway or cellular component nodes (the ones
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Table 1. Distribution of drug–disease triples across the train,
validation and test splits

KG Train (%) Validation (%) Test (%)

BioKG 41 648 (80%) 5206 (10%) 5206 (10%)
OpenBioLink 4108 (80%) 516 (10%) 515 (10%)

we removed) was significantly reduced. Lastly, we would like to
note the importance of reducing the original size of the KGs to
achieve a reasonable computational time to train the KGEMs.
The training of some KGEMs on NVIDIA V100 GPUs with 32 GB
of memory required several days, and the addition, for example,
of the 1 million drug–drug interactions present in BioKG alone
would exponentially increase the computational time of training
the model.

In the second normalization step, the original relations types
of the KG were maintained with the exception of protein–protein
interactions in OpenBioLink as only causal relations were consid-
ered (i.e., activates and inhibits). Supplementary Figure 1 shows
the statistics for each KG, at both the node and relation levels.

Train, validation and test datasets
For training and evaluating the KGEMs, we split the two KGs
into train, validation and test sets. Since we ultimately aim at
predicting drug–disease triples, the validation and test datasets
exclusively contain this type of edge, whereas the train dataset
contains all edge types (i.e. drug–disease, drug–protein, protein–
protein and protein–disease). Furthermore, similar to Ratajczak
et al. [10], we distributed the drug–disease triples along the three
splits with ∼80% of the drug–disease triples in the train, ∼10% in
the validation and ∼10% in the test split. Accordingly, the overall
split ratio for all triples is ∼96, 2 and 2% for the train, validation
and test datasets, respectively. Table 1 provides the comparative
summary of the drug and disease triples between the three splits
for each KG. Finally, it is important to note that all drug–disease
triples are directed and thus, inverse triples were not considered
as previous benchmarks show that their inclusion degrades per-
formance [12].

Implementation
KGEMs have been trained using the PyKEEN framework (v1.8.0)
[34]. All experiments were performed on machines with Intel(R)
Xeon(R) Gold 5218 CPUs and 8 NVIDIA Tesla V100 32 GB GPUs.
KGEMs were trained using PyKEEN’s hyperparameter optimiza-
tion pipeline over 30 trials using as initial parameters the best
configurations from Bonner et al. [14] for the models benchmarked
in this study and Ali et al. [11] for the rest. The evaluation in the
hyperparameter optimization was conducted using Hits@10 for all
models on a link prediction task of drug–disease triples (see Train,
validation, and test datasets). Details about the configurations are
available at the GitHub repository (https://github.com/enveda/
kgem-ensembles-in-drug-discovery).

Ensemble methodologies
As previously mentioned, KGEMs can foster drug discovery by
nominating a set of drug–disease pairs that have a higher chance
of succeeding in clinical trials than one would expect by chance.
Since only a limited number of pairs can be experimentally
screened, KGEMs which achieve a high accuracy for the top
predicted drug–disease triples are preferred over models that
might achieve a better overall precision but exhibit a lower

accuracy among the top predictions. Below, we propose and
analyze different methodologies to combine the prediction scores
from an ensemble of models to maximize the performance among
the top predictions.

Normalizing scores across models
KGEMs return a score that represents the plausibility of a triple
using embeddings for entities and relations. As they all have their
own specific real-valued function, they produce different score
distributions which typically lie in different intervals, as illus-
trated in Supplementary Figure 2. Therefore, to build an ensemble
that aggregates plausibility scores from different KGEMs, scores
must first be normalized on the same scale. Furthermore, the
score distribution ultimately denotes the underlying model’s con-
fidence on the predicted triples. For instance, a right-skewed dis-
tribution indicates that the model is exclusively confident about a
minority of the predictions (right tail), as opposed to a normal dis-
tribution. Thus, given the varied distributions produced by differ-
ent models, normalizing scores can provide comparable intervals
under which ensemble models could operate. However, simply
combining normalized scores implies weighing each model differ-
ently depending on its underlying distribution (e.g., left-skewed
distributions would be weighted higher than right-skewed ones)
(Figure 1; left). In addition, since the scores follow a Gaussian
distribution (Supplementary Figure 3) and we are only interested
in the extreme where the most confident predictions are (i.e., in
the right tail of the distribution for a drug discovery task), normal-
izing based on the entire distribution masks the small differences
observed among this extreme. These differences, albeit seemingly
marginal compared to the entire distribution, are the most critical
for the prioritization of one top predicted link over another. For
instance, a model that yields a left-skewed distribution may have
its top 1% predictions clustered within the same score interval,
whereas the right-skewed distribution could have only a few top
predictions.

For this reason, we propose selecting a predetermined number
of top K predictions for each model and exclusively conducting
the normalization on them. This not only solves the problem of
giving different weights to models with different distributions, but
also ensures that top predictions are weighted more than the rest
by the ensemble approach and that differences among the top
predictions are accentuated, both of which are desired properties
in a drug discovery application.

Although other arbitrary thresholds could be applied, we focus
on three conservative thresholds for the top K predictions (i.e.,
5 1 and 0.1%). Here, it is important to note that the choice of
the threshold has to be adjusted with the size of the KG as
well as the top K to be prioritized (e.g., one may want to focus
on the top 10 or top 500 predictions). Consequently, we set the
baseline threshold at 5% (i.e., 95th percentile) for OpenBioLink and
1% for BioKG (i.e., 99th percentile) (results presented in Ensemble
models outperform individual KGEMs). In the case of BioKG, this
threshold was chosen because the number of drug–disease triples
to be tested is significantly larger than OpenBioLink (Table 1), and
corresponds to the top 13 502 predictions of each individual KGEM
(among all 1 350 266 possible drug–disease triples between drugs
and disease in the test set). On the other hand, given the smaller
size of OpenBioLink, we increased the threshold to the top 5%
predictions (i.e., 95th percentile), as a 1% threshold corresponds
to <500 triples and thus, would not allow us to evaluate the
ensemble model on K = 500. We evaluate the relative performance
of applying all previously mentioned thresholds in Subsection
Ensemble models outperform individual KGEMs.
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Figure 1. (Left) Score distributions for all drug–disease predicted triples after min-max normalization for each model on the two KGs. Right) Score
distributions after normalizing the 99th percentile drug–disease triples (top predictions) for each model on the two KGs. For simplicity, scores have been
normalized between 0 and 1. The score distributions are generated with the best trained model. By normalizing the top predicted triples (in the example
the top 1%) as opposed to all predicted triples, we can generate a similar score distribution for each model while maintaining the distances between
the scores. This in turn allows for better aggregation of the scores across models for a given triple. Note that the renormalized distribution of the top
1% triples is similar for each model despite large differences in distributions prior to the renormalization.

Once the top predicted triples have been identified via thresh-
olding, we can now normalize the prediction scores with the goal
of preserving the relative distances between the scores of the top
predictions. To achieve this, a variety of normalization methods
can be applied. As a baseline, we employed min-max normaliza-
tion, the most common normalization approach, which maintains
the relative distance between the predicted scores. In addition, we
tested sigmoid normalization, which yields an S-shaped distribu-
tion where scores are regularized on the low and high ends of the
distribution. Finally, we evaluated min-max applied to the rank of
the predicted link instead of the predicted score, which uniformly
distributes the relative distance between triples (i.e., the differ-
ence between the normalized scores of the top 1 triple and the top
2 is the same as between the top 5000 and the top 5001). We eval-
uated the relative performance of applying each of these normal-
ization methods in Ensemble models outperform individual KGEMs.

As an illustration, Figure 1 (right) shows the distributions of the
normalized scores on both KGs after applying the 99th percentile

threshold. The resulting distributions match different forms of an
exponential distribution with different values of lambda.

Generating the ensemble predictions
After normalizing the prediction scores for each model, scores
must then be combined or aggregated to effectively leverage an
ensemble of models. One of the most common techniques for
this purpose is the majority voting algorithm, which combines the
predictions of multiple models by considering the majority vote.
In regression problems, this is achieved by averaging the values
predicted by each model (also known as soft voting), whereas for
classification problems, it involves summing the votes for classes
predicted by each model and considering the class with the most
votes (also known as hard voting).

Although the task of drug–disease prediction can be seen as
a binary classification task in which a drug either does or does
not treat a disease, it is framed as a regression problem in which
KGEMs output a certain score or confidence for each triple and
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the Kth triple sets the threshold for which a drug is prioritized.
Thus, a score can be treated as a threshold where a decision
boundary is set and only predicted triples with a score above this
threshold are considered. These triples can then be used to com-
bine predictions from different models after normalization has
been conducted (see subsection Normalizing scores across models).
Consequently, ensemble predictions are calculated by aggregating
(i.e., summing) the normalized scores for the top K triples. The
common approach when aggregating using soft-voting is to apply
the average to the scores predicted by all models. However, as
we filter out part of the predicted triples, the precision resulting
from applying the average (considering a score of 0 for filtered
triples) is heavily penalized by models with poor performance,
as they tend to prioritize a disjoint set of triples, which also
tend to be false positives (i.e., triples not present in the KG)
given their low precision. Furthermore, since disparate models
will place different triples in the top K predictions, any triple not
in the top K for a particular model is treated as if it was given
a score of 0 by the model. This approach inherently gives more
weight to frequently occurring triples which are predicted across
more than one model. Although this will happen for both, true
positives and false positives, we observed that different models
tend to agree more on the true positives than on the false positives
(Section Investigating the agreement of the top predicted triples across
different models). In addition, we also tested the performance of the
aggregation of averaged normalized scores. Note that the average
is calculated only for normalized scores of predicted triples that
are within the top 1 and 5%.

Defining the ensemble models
As the ensemble model’s predictions depend on the quality of
predictions by each of the individual models, if the majority of
KGEMs incorrectly prioritize a drug–disease triple, the ensemble
will most likely do so as well. Thus, to evaluate the robustness
of our approach, we consider two different ensembles, each com-
posed of different models.

• Ensemble-top5: composed of the top five best-performing mod-
els, as per their Precision@Top100 in the validation dataset.

• Ensemble-all: composed of all 10 benchmarked models.

Both ensemble models were tested using the thresholds and
normalization approaches described in 3.5.1. Furthermore, we
added two additional configurations using PoE [20] and an ensem-
ble that prioritizes triples based on ranked positions instead of the
predicted scores, referred to as position norm.

Model evaluation
Since our goal is to assess the top-ranked predictions, we evalu-
ated all models using Precision@K as a metric, which corresponds
to the proportion of true positives within the top K drug–disease
triples predicted by the model. To evaluate the models within a
broad range, we selected typical values of K ranging from 1 to
500. We discarded exploring larger values of K as the number
of positive triples in the OpenBioLink test set was 515 (Table 1)
and we are conducting a drug discovery task where only the top-
ranked predictions would be experimentally validated. We would
like to note the difference between Precision@K, the chosen metric
for model evaluation and Hits@K in the context of link-prediction.
Although Precision@K indicates the fraction of triples present
in the test set after ranking all drug–disease triples, Hits@K
represents the average proportion at which a triple in the test

set appears within the top K with respect to other corrupt
triples.

Results
This section begins by presenting a benchmark of 10 KGEMs on
two biomedical KGs (subsection Benchmarking the performance of
models) which revealed large differences in performance across
models as well as identified the best performing KGEMs. Then, in
subsection Investigating the agreement of the top predicted triples
across different models, we investigated the overlap of the top
predicted triples across different models, demonstrating that
KGEMs tend to show a higher degree of agreement on triples
that have been correctly prioritized. Prompted by these findings,
in subsection Ensemble models outperform individual KGEMs , we
showed how combining the predictions from several models
through ensemble learning can outperform the best-performing
KGEMs. Finally, in subsection Investigating prioritized predictions by
the ensemble model, we explored a subset of the top predictions pri-
oritized by the ensemble models that were not prioritized by any
KGEM.

Benchmarking the performance of models
We began by investigating the robustness of different training
setups on the 10 benchmarked models, observing similar patterns
on both KGs (Figure 2). ConvE, HolE and RotatE achieved the
best performance, followed by MuRE, TransE and TransH. The
remaining models (i.e., ERMLP, DistMult, RESCAL and ComplEx)
achieved low performance on both KGs.

Notably, our results are consistent with recent benchmarks
that included five of these models [13, 14]. For instance, similar
to our results, both benchmarks reported a high performance
for RotatE closely followed by TransE, and a low performance
for ComplEx. When comparing the performance on the two KGs,
we observed that the 10 benchmarked models exhibited signif-
icantly worse performance on BioKG compared with OpenBi-
oLink with the exceptions of TransH and ConvE. Although in the
case of TransH a similar median performance was achieved in
both KGs, the median performance (Precision@100) of the trained
ConvE models increased from 30 on OpenBioLink to 50 on BioKG
(for reference, the second best performing model on BioKG was
HolE with a median precision below 20). In addition, we investi-
gated the performance of the best hyperparameters found (i.e.,
best model across all runs) on the validation and test dataset
(Supplementary Table 2). Here, all models performed better on
the test set than on the validation set. In OpenBioLink, MuRE
achieved the best performance across all models (see outlier on
the boxplot of MuRE for OpenBioLink in Figure 2) with a Preci-
sion@100 of 41 and 58 on validation and test sets, respectively.
In BioKG, ConvE and RotatE achieved the best performance. Using
Precision@10, the majority of the models obtain a higher preci-
sion, although the relative precision among them follows a similar
trend (Supplementary Figure 4).

Taken together, three major conclusions can be drawn from our
benchmark when using KGEMs for link prediction on biomedical
KGs. The first one is the importance of model selection given that
this and previous benchmarks [13, 14] have revealed significant
differences in performances across models. The second is the
high variability observed in the performance across runs, which
highlights the importance of finding the best hyperparameters for
each model-KG pair. Finally, not only is RotatE a top performer as

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac481#supplementary-data
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Figure 2. Distribution of the Precision@100 achieved for each model trained with different hyperparameters in the OpenBioLink and BioKG KGs. Note
that this evaluation is conducted on the test set of both KGs. Supplementary Table 1 shows the performance of the best hyperparameters found for
each model on both the validation and the test set.

identified in earlier benchmarks, HolE and in particular, ConvE,
all exhibit superior performance for a link prediction task on
biomedical KGs.

Investigating the agreement of the top predicted
triples across different models
Given that each KGEM employs a different methodology to repre-
sent a KG, not surprisingly, differences are observable among top
predicted triples, which are typically the most interesting ones
to explore in a drug–disease prediction task. Prompted by this,
we subsequently investigated the overlap of the top K-predicted
drug–disease triples (excluding triples already seen by the model
in training and validation) for the best performing hyperparam-
eters of each model. Interestingly, we observed that the overlap
of true positives is significantly larger than the overlap of false
positives for the same value of K. As an illustration, Figure 3
depicts the intersection of the top 10 and top 100 predicted triples
between drugs and diseases by the 10 models benchmarked on
OpenBioLink. While the left part of the figure shows an overlap of
approximately four times higher of % true positive triples for the
top 100 compared with the overlap of false positives (right), which
is almost nonexistent. The same trend is maintained across differ-
ent Ks and BioKG (Supplementary Figure 5). These results suggest
that KGEMs tend to agree more on correctly prioritized triples.
Together, these experiments illustrate that although overall the
models demonstrate minimal overlap between the top predicted

triples, overlapping triples are more likely to be true predictions
than false positives.

Ensemble models outperform individual KGEMs
In this subsection, we compare the performance of the different
ensemble models against individual KGEMs. Figure 4 illustrates
the precision on the top K-predicted triples for the two baseline
ensemble models (i.e., ensemble-all and ensemble-top5 using min-
max normalization of the top 1% triples for BioKG and the top
5% triples for OpenBioLink) compared against the best performing
KGEMs in each KG.

We found that the baseline ensemble models outperformed
each of the individual ones at all investigated K, highlighting the
benefit of applying ensemble learning to KGEMs. In both KGs,
although most of the top predicted triples were true positives
for all models at K = 5, differences in performance became more
pronounced as K increased up to the top 100 predicted triples (e.g.,
RotatE consistently exhibits a lower Precision@k from top 10 to top
100). Conversely, differences in performance between the ensem-
bles and the best individual models diminished when evaluating
a larger K (i.e., 250 and 500). This can be partially attributed to
the fact that the precision of the models is inversely proportional
to K (i.e., top predictions evaluated), which is expected given that
the number of positive triples evaluated (i.e., drug–disease triples)
is a small proportion in comparison to all negative drug–disease
triples that could potentially be predicted by the models.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac481#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac481#supplementary-data
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Figure 3. Pairwise intersection of the top 10 and top 100 drug–disease triples predicted by each model on OpenBioLink. The heatmaps are divided into
the intersection of true positives (drug–disease triples in the test dataset) (left) and the intersection of false positives (right).

When comparing the two baseline ensemble models for each
KG, we observed that the ensemble of the top 5 performing
KGEMs (i.e., ensemble-top5) systematically performed better than
the ensemble built out of all models (i.e., ensemble-all) up to K = 25.
From K = 50 onwards, we observed a gain in performance for
ensemble-all, despite having poorer performing models.

Figure 5 illustrates the effect of the selection of distinct thresh-
olds and normalization approaches with respect to the baseline
ensemble-all. PoE and the position-based ensembles achieved
the lowest performance across all configurations. This is not
surprising given that PoE is designed for and evaluated on a
problem where most types of triples are of interest. Conversely, we
are only interested in a small subset of triples (i.e., drug–disease
triples), whereas KGEM models are biased towards predicting
the most abundant type of triples, which correspond to protein–
protein triples. With regard to the position-based ensemble, this
model discards the underlying information held by the scores
(i.e., the difference between two scores quantifies the relative
confidence of the model for a given prediction), which can account
for its relatively poor performance. In addition, another important
aspect is setting an appropriate threshold as, for instance, the
99.9th percentile achieves the highest precision up to K = 25 in
BioKG and K = 10 in OpenBioLink. However, because of this low
threshold, the performance of this configuration quickly decays
as K increases since the ensemble is focusing on prioritizing the
very top triples. This suggests that this can be an effective thresh-
old, if the goal is to focus on the top 10 or 50 triples. Furthermore,
the sigmoid normalization, although for some specific values of
K yields similar results as the baseline min-max normalization,
generally achieved a considerably lower performance.

Lastly, we evaluate two approaches to combine the predictions
of the different KGEMs into the ensembles. As shown in Figure 6,
we found that the sum aggregation clearly outperforms the pre-
cision of the approaches using average aggregation since average
aggregation is heavily penalized by KGEMs not prioritizing a given
triple. Apart from the difference in precision observed between
both approaches, it is important to highlight how the results of
sum aggregation are not only robust, but the more models added
to the ensemble seem to further improve precision, even if the
added models perform poorly. This may be especially desirable
because the performance of different KGEMs in previously unseen
datasets will always be unknown, as we cannot possibly know
beforehand which models will be the best or worst-performing
models.

Investigating prioritized predictions by the
ensemble model
In this subsection, we sought to explore the top drug–disease
triples predicted by the baseline ensemble-all model to better
understand how reliable such predictions are compared with the
individual models. Among the top 10 predictions of OpenBioLink,
we found correctly predicted triples such as cyclophosphamide,
fludarabine phosphate and busulfan, which were respectively
predicted to treat neuroblastoma, chronic lymphocytic leukemia
and myelodysplastic syndrome. Interestingly, despite the average
predicted ranking for these three triplets being around 3000, they
all end up in the top 10 (Table 2). For instance, in the case of
the busulfan-myelodysplastic syndrome triple, the best ranking
in an individual model is position 8 for HolE, but it is likely to
be prioritized as it appears in the top 100 predicted triples for
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Figure 4. Precision at Top K in the test set using different values of K in the OpenBioLink and BioKG. For predefined values of K, the Precision@K for
top predicted drug–disease triples are displayed for two ensembles (i.e., ensemble-all and ensemble-top5) and two independent KGEMs (i.e., RotatE
and ConvE) using the 99th (BioKG) and 95th (OpenBioLink) percentile normalization approach. Although the latter two KGEMs represent the two best
performing benchmarked models, the ensemble models outperform each of these individual models.

six out of the remaining nine models. A similar case occurs
in BioKG, where, within the top five, atropine, carbamazepine
and nifedipine are predicted to treat bradycardia, tremor and
hypertension, respectively (Table 2). Finally, we also explored
whether node degree correlates with the predicted score, as
reported in Bonner et al. [12]. We observed a low correlation
between all drug–disease pairs and their node degree for ensemble-
all: 0.09 (BioKG) and 0.27 (OpenBioLink) (Supplementary Figure 6).

Discussion
As the variety of KGEMs have increased, so have the number
of possible biomedical applications for KGEMs, driving the
need for comparative studies that investigate the performance
of disparate models across various downstream tasks. Here,
we focused on a particular application in drug discovery (i.e.,
prediction of novel drug–disease triples) and benchmarked 10
distinct KGEMs on two biomedical KGs. Our results revealed
large variability among the top predictions across both axes (i.e.,
KGEMs and KGs), highlighting the importance of the KGEM choice
for this task. Furthermore, we also observed a low overlap of
true positives among the top predictions, which prompted us to
explore the use of ensemble models. Subsequently, we developed
distinct ensemble methodologies that incorporate predictions
from several KGEMs and included these ensemble models in our
benchmark. These generated ensemble models systematically
outperformed each of the individual KGEMs within the ensemble
on two KGs, even when some KGEMs exhibited a significantly
lower performance than the rest. In conclusion, our findings

demonstrate the benefits of ensemble approaches that combine
predictions from several KGEMs.

One of the major challenges in predicting drugs for a given
disease is that the majority of drug–disease combinations have
yet to be explored, resulting in a scarcity of data for validation
and imperfect definitions for negative labels. This can lead to
significant differences in the precision of the same model when
evaluated on different biomedical KGs [14]. We attempted to
mitigate this factor by including two KGs in our benchmark which
share equivalent triples but vary in size. Furthermore, we followed
a similar strategy as Ratajczak and colleagues [10] by train-
ing the KGEMs using validation and test splits that exclusively
contained drug–disease triples. Outstanding questions remain
regarding the performance of other non-benchmarked models
and the inclusion of novel KGs. With respect to the former, we
envision a future benchmark of KGEMs for drug–disease link
prediction on other biomedical KGs, such as Hetionet [35] and
CKG [36], that could potentially corroborate our findings. These
KGs significantly differ from the two selected ones as they contain
several additional nodes (e.g., pathways, anatomical regions) and
edge types, as well as several millions of triples. This consti-
tuted the primary reason why these KGs were not included in
our benchmark as we intended to conduct a comparison across
KGs that contained the same node and relations types. Similarly,
although here we have focused on 10 of the most widely used
KGEMs, other KGEMs beyond the ones employed in our study
could also be used. It is worth mentioning that a known limita-
tion of KGEMs is that they generally attribute higher scores to
overrepresented entities (nodes with a higher degree) [12]. Thus,
future work could focus on developing more advanced ensemble

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac481#supplementary-data
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Figure 5. Precision at Top K using different values of K (i.e., top predicted drug–disease triples) comparing the different normalization approaches on
the ensemble-all. The horizontal bar represents the performance of the baseline ensemble-all presented in Figure 4.

Table 2. Examples of the top 10 predicted triples by the baseline ensemble-all on both KGs

KG Drug Disease Ensemble
ranking

Highest ranking in an
individual model

BioKG Cyclophosphamide
(pubchem.compound:2907)

Neuroblastoma (DOID:769) 4 5 (TransE and MuRE)

Fludarabine phosphate
(pubchem.compound:30751)

chronic lymphocytic leukemia (DOID:1040) 6 3 (ConvE)

Busulfan (pubchem.compound:2478) myelodysplastic syndrome (DOID:0050908) 8 8 (HolE)

OpenBioLink Carbamazepine (drugbank:DB00564) Tremor (mesh:D014202) 1 5 (ConvE)
Atropine (drugbank:DB00572) Bradycardia (mesh:D001919) 2 31 (HolE)
Nifedipine (drugbank:DB01115) Hypertension (mesh:D006973) 5 32 (RotatE)

models that take this bias into account. In addition, although
our benchmark was consistent with previous work [13, 14], we
would like to highlight two important differences between our
and their evaluation. First, they employed a different evaluation
metric than ours (i.e., Hits@10). Second, although Bonner et al. [14]
also employed BioKG, their version of this KG included other node
and edge types as they conducted a gene–disease prioritization
task, as opposed to our drug–disease prediction task which made
us reduce the KG to drugs, proteins and diseases. Finally, although
our work has demonstrated that ensemble models can potentially

yield better predictions, we would like to acknowledge that they
require significantly more resources as several models have to be
trained.

Lastly, it is important to note the differences between drug
discovery applications (e.g., predicting drug–disease triples), in
comparison to generic link prediction tasks on non-biomedical
KGs. As emphasized in this introduction, biomedical applications
generally require models with high accuracy for their top pre-
dicted triples, as opposed to a model with better overall perfor-
mance across all evaluated triples. This is further exacerbated
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Figure 6. Precision at Top K using different values of K (i.e., top predicted drug–disease triples) comparing ensemble-all and ensemble-top5 using two
score aggregation approaches: sum aggregation (baseline) and average (Avg0).

in drug discovery as the number of tested drugs tends to be
limited. Thus, this benchmark focuses on the top predicted drug–
disease triples, and although our results indicate that ensemble
models outperform individual ones, results cannot necessarily be
extrapolated beyond the characteristic of the study.

Key Points

• In recent years, the increasing number of KGEMs has led
to several benchmarks to evaluate their performance in
several biomedical KGs

• We evaluate 10 state-of-the-art KGEMs on a drug discov-
ery task (i.e., predicting triples between drugs and dis-
eases) to illustrate the large difference in performance
across models

• To mitigate these differences and generate more robust
predictions, we propose to adopt concepts of ensemble
learning

• We demonstrate how combining the predictions of sev-
eral models, despite their differences in performance,
systematically yields better predictions
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