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Melting in two-dimensional flat space is typically two-step and via the hexatic phase.
How melting proceeds on a curved surface, however, is not known. Topology mandates
that crystalline particle assemblies on these surfaces harbor a finite density of defects,
which itself can be ordered, like the icosahedral ordering of 5-coordinated disclination
defects on a sphere. Thus, melting even on a sphere, the simplest closed surface, involves
the loss of both crystalline and defect order. Probing the interplay of these two forms of
order, however, requires a system in which melting can be performed in situ, and this
has not been achieved hitherto. Here, by tuning interparticle interactions in situ, we
report an observation of an intermediate hexatic phase during the melting of colloidal
crystals on a sphere. Remarkably, we observed a precipitous drop in icosahedral defect
order in the hexatic phase where the shear modulus is expected to vanish. Furthermore,
unlike in flat space, where disorder can fundamentally alter the nature of the melting
process, on the sphere, we observed the signature characteristics of ideal melting. Our
findings have profound implications for understanding, for instance, the self-assembly
and maturation dynamics of viral capsids and also phase transitions on curved surfaces.
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The presence of an intermediate hexatic phase in two-dimensional (2D) melting is the
smoking gun signaling that the celebrated Berezinskii–Kosterlitz–Thouless–Halperin–
Nelson–Young (BKTHNY) mechanism is at play (1–8). In flat space, the hexatic phase—a
state characterized by quasi–long-range orientational order but no translational order—
has now been found in diverse systems that include electrons on the surface of liquid
helium (9), colloidal monolayers (10–13), superconducting vortex lattices (14), and
recently, even in films of magnetic skyrmions (15). The nature of melting in 2D flat
space, however, is sensitive to the precise form of the interaction potential (8). While
for soft particle interactions, melting follows the BKTHNY mechanism and is via two
continuous transitions—a crystal-to-hexatic transition by dislocation unbinding, followed
by a hexatic-to-liquid transition by disclination unbinding; for hardcore interactions,
not only is the hexatic window narrower in comparison, the hexatic–liquid transition
is first-order (13, 16). In fact, for dislocation core energies below a threshold value,
melting is a first-order transition and is via the proliferation of grain boundaries (4,
6, 17–19). Remarkably, while the nature of 2D flat space melting remains debated
even today (7), how melting proceeds on even the simplest closed surface, the sphere,
is unknown. Crystalline assemblies of isotropic particles on a sphere typically present
twelve 5-coordinated disclination defects, which act as conserved topological charges (20).
These disclinations, which are arranged at the vertices of an icosahedron akin to the
pentamers on spherical virus capsids (21) or the pentagons on a soccer ball, are bound
to linear dislocation arrays forming defect patterns called “scars” for system sizes that
exceed a threshold value (22–24). Since defects/disorder profoundly influence the melting
mechanisms in flat space (6, 25–28), an early study doubted whether quasi–long-range
orientational order can survive in the presence of curvature defects/scars (29). Even while a
seminal recent study exploited the icosahedral ordering of defects/scars to show that liquids
of soft particles on a sphere freeze into single crystals (30), whether freezing/melting is
two-step as posited by BKTHNY remains unknown. Spherical crystals by virtue of their
topology are subject to finite-size effects, and these in flat space are known to complicate
the determination of phase boundaries (16). In addition, previous 2D flat space melting
studies found that while increasing the strength of random disorder destabilizes the crystal
phase and broadens the hexatic window (27), when the disorder is itself on a lattice,
the crystal is stabilized, but the hexatic window vanishes, and melting is via a first-order
transition (28). Thus, for icosahedrally defect-ordered spherical crystals, besides a lack of
understanding of how crystalline and defect order collude during melting, it is not evident
if the hexatic phase should even intervene.

Micrometer-sized colloids bound to curved oil–aqueous interfaces are a paradigmatic
system to probe how the topology of the host surface influences the physics of condensed
phases (24, 30–35). A particularly versatile system is charged hydrophobic colloids that
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are bound to these interfaces due to image charge forces (30, 32,
33, 35). Besides being amenable to single-particle scale imaging
of dynamics, the phase behavior of this system is governed by a
single dimensionless parameter, Γ = (πρ)3/2A

kBT , which is the ratio
of electric dipole and thermal energies (30). Here kBT is the
thermal energy, ρ is the number density of particles on the surface,
and A is the magnitude of the dipolar pair potential U (r)∼
A
r3 , where r is the distance between particles. With this system,
however, different phases have hitherto been realized by starting
from samples with a different ρ (30, 32, 33, 35). Given that in
flat space, the hexatic phase often appears in a narrow range of
the control parameter (11–13, 15), the essential prerequisite for
detecting the hexatic, if it is at all present, during melting on a
sphere is to be able to tune Γ continuously and in situ.

Results

In Situ Melting on a Sphere. We found that introducing trace
amounts of sodium hydroxide (NaOH) in a system of charged hy-
drophobic polymethyl methacrylate (PMMA) colloids bound to
the interface of spherical oil droplets in an aqueous phase resulted
in melting (Materials and Methods). Since ρ remained constant,
it is A that decreases upon NaOH addition. This is possibly
because of the diffusion of some of the excess hydroxyl radicals
from the aqueous into the oil phase resulted in better screening of
the colloid charge. Further, the decrease in A is linear (Materials
and Methods and SI Appendix, Figs. S1 and S2), and tuning the
NaOH concentration in a narrow window allowed tuning of the
melting rate (SI Appendix, Table S1). Equipped with this capabil-
ity to tune Γ in situ, we now dissected the melting process.

The confocal micrographs shown in Fig. 1A capture the tran-
sition from a visually ordered initial state (Fig. 1 A, Top) to a
disordered final state (Fig. 1 A, Bottom) for N = 1,538 particles
on a sphere of radius R = 29 μm (SI Appendix, Fig. S3 and
Movie S1). The corresponding Voronoi tessellations of these as-
semblies, however, are more revealing (Fig. 1B). To begin with, the
tessellation is typical of a large spherical crystal (Fig. 1 B, Top) (30);
particles maintained their preferred sixfold coordination except at
the 12 spatially localized grain boundary scars each with an array
of dislocations (pairs of 5- and 7-coordinated particles with a net
topological charge of zero) strung to a disclination (5-coordinated
particle with topological charge +1). These excess dislocations help
screen the disclinations’ stress field and are required only when
system size exceeds a threshold value, R

a > 5, where a is the mean
interparticle separation (22, 24). For the system shown in Fig. 1A,
R
a ∼ 10 and scars are indeed expected. Once melting is complete,
coordination defects are many and are homogeneously distributed
in the liquid (Fig. 1 B, Bottom).

We confirmed defect-ordering in our spherical crystals through
the defect–defect correlation function gDD′(s) (Fig. 1C ) (29, 36).
Here s is the geodesic distance (expressed in radians), and the
subscripts D and D ′ denote the type of disclination considered,
either a 5- or a 7-coordinated particle while calculating this
quantity. The features seen in gDD′ at small s are a consequence
of local correlations between defects. However, the two peaks at
large s , centered on θ1 and θ2 and seen only for large Γ, are due to
the icosahedral ordering of the scars (30) (SI Appendix, Fig. S5).
These defect correlations are lost when the crystal melts and the
peaks vanish (small Γ values).

The simple analysis above threw a surprise. In Fig. 1D, we
plot the peak height of gDD′(s = θ1) = g1DD′ , a coarse mea-
sure of the extent of defect ordering, and the spatiotemporally
averaged hexagonal bond-order parameter, 〈|ψ6|〉= 〈|ψ6(ri , t)|〉,

against Γ. Here ψ6(ri , t) = 1
Ni

Ni∑
j=1

e6iθij (t), where Ni is the

coordination of particle i located at ri at time t and θij is the
angle made by line joining the centers of particle i and its nearest-
neighbor j with respect to an arbitrary reference axis (37). Initially,
both g1DD′ and 〈|ψ6|〉 decrease, and this decrease is more rapid
for the longer-ranged defect correlations. However, intriguingly,
in a narrow range of 110≥ Γ≥ 85, defect ordering melts—g1DD′

drops precipitously, even while the globally averaged crystallinity
remains high. In fact 〈|ψ6|〉> 0.7—the lower bound often used
to detect crystalline order in flat space (Movie S2) (38, 39).
Melting on a Sphere Is Two-Step and via the Hexatic Phase. We
gleaned insights into this observation by focusing on how spher-
ical crystals lost their long-ranged translational and orientational
order during melting. Unlike in flat space, detecting this order on
a curved manifold is hampered because the basis vectors them-
selves now vary in space, making parallel vector transport path-
dependent (40). However, by exploiting the broken symmetry of
the defect-ordered state to define a global reference axis, long-
ranged correlations can be uncovered. Following ref. 30, we found
the orientation of the icosahedron whose vertices overlapped best
with the defects and then projected the particles onto the faces
of this icosahedron as shown in Fig. 1E (SI Appendix, Fig. S7).
Unfolding this icosahedron onto a plane revealed the underlying
structure of these particle assemblies shown for three represen-
tative Γ values in Fig. 1 F–H. Here particles are colored ac-
cording to their local orientation, θ′i = arg(ψ′

6,i)/6, which spans
from 0◦ − 60◦ due to the hexagonal symmetry (13), and ψ′

6,i

is the icosahedrally referenced bond order parameter of parti-
cle i (Movie S3). For the largest Γ, the spherical crystal is a
single crystal; orientational and positional order display global
coherence—θ′i is nearly a constant except at the vertices, and
the structure factor, S (q), shows well-defined bright spots with
hexagonal symmetry (SI Appendix, Fig. S8). The presence of only
short-ranged isotropic order, characteristic of the liquid state,
for the smallest Γ is apparent in Fig. 1H. For intermediate Γ
(Fig. 1G), however, while orientational order appears reasonably
long-ranged, the peaks in S (q) are azimuthally broadened, which
is suggestive of a hexatic phase (SI Appendix, Fig. S9) (12, 19, 41).
Interestingly, this Γ value lies in the window where we observed a
steep drop in g1DD′ (Fig. 1D).

A hallmark of the BKTHNY mechanism of melting (1–5)
is that positional correlations disappear before orientational
ones (12, 13, 15), and in between, the latter is quasi–long-
ranged in both space and time, a signature of the hexatic phase
(11). To this end, we tracked the evolution of positional order
through the modified Lindemann parameter, γL(t)≈ 〈Δsij (t)

2〉
2a2

(SI Appendix) (12), and of orientation by the icosahedrally
referenced space and time correlations of ψ′

6, these being
g ′6 (s) = 〈ψ′

6 (ri)ψ
′∗
6 (rj)〉R cos−1(ri.rj/R2)=s (30) and g ′6(τ) =

〈ψ′
6,i(t)ψ

′∗
6,i(t

′)〉t−t′=τ , respectively (SI Appendix). Here
Δsij (t) is the relative geodesic displacement of nearest-neighbor
particles i and j . While for Γ≥ 110, γL(t) remained constant in
time with particles only rattling about their lattice positions, for
smaller Γ, it diverged at long times as γL(t)∝ tβ (Fig. 2A) with
β → 1 in the liquid (Fig. 2 D, Top, and SI Appendix, Fig. S12 for
various N ). We identified the Γ where β began to increase (Γ≈
110) as the crystal–hexatic boundary, ΓCH (Fig. 2 D, Top) (13).

Fig. 2 B and C show g ′6(s) and g ′6(t), respectively. Both quanti-
ties remained flat for the crystal (Γ≥ 110) and decayed exponen-
tially for Γ≤ 85, which we identified as the onset of the liquid
state (SI Appendix, Figs. S13 and S14 for various N ) (13, 15).
Importantly, for 110> Γ> 83, orientational correlations were
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Fig. 1. Melting of crystalline and icosahedral defect order on a sphere. (A) Reconstructed confocal micrographs of charged colloids of radius 0.75 μm (shown
in green) on the surface of a sphere, before (Top) and after (Bottom) the addition of NaOH. (B) The corresponding Voronoi tessellations of these particle packings.
For the spherical crystal, the defects are localized (Top), whereas for the liquid (Bottom), defects are spatially homogeneous. The polygons are colored according
to their local coordination, and their corresponding topological charge is also indicated. (C) Defect–defect pair correlation function gDD′ (θ) versus geodesic
distance s (expressed in radians) for various Γ values. At high Γ, the peaks of gDD′ (θ) at θ1 and θ2 are due to the icosahedral ordering of defects, while at low Γ,
these peaks vanish. (D) The peak amplitude of gDD′ (θ = θ1) = g1

DD′ and the average magnitude of the bond-orientational order parameter, 〈|ψ6|〉, versus Γ.
g1

DD′ , alone, decays rapidly at intermediate Γ (gray-shaded region). (E) The projection of particles onto a reference icosahedron that is oriented such that its
vertices coincides with the positions of the topological defects. Here particles shown in red and green are 5- and 7-coordinated, respectively, while those shown
in gray have sixfold coordination. (F–H) Unfolding of the fitted icosahedron on to a plane at Γ = 142 (F), Γ = 98 (G), and Γ = 30 (H). The particles are colored
according to their local orientation θ′

i . (Right) The structure factors S(q) of the unfolded structures. Long-ranged orientational and translational order is present
for Γ = 142, while there is a lack of both of these for Γ = 30. For Γ = 98, orientational order appears to be medium-ranged, and the peaks in S(q) are azimuthally
broadened—a telltale signature of the hexatic phase.

quasi–long-ranged, evidenced by the algebraic decay in g ′6(s)∝
s−η6 and g ′6(t)∝ t−η6/2, confirming the existence of the hexatic
phase. Further, by reducing the system size to gain access to faster
3D imaging speeds, we also directly observed the unbinding of
spontaneously generated dislocation pairs into free dislocations
predicted to occur in the hexatic regime (Fig. 2E) (42). BKTHNY
theory also predicts a universal value of η6 → 1/4 on nearing
the hexatic–liquid transition, which, here, occurs at ΓHL ≈ 83
(13, 15). Notably, the increase in β precedes η6 for all N ,
suggesting that melting of spherical crystals is two-step (Fig. 2 D,
Top and Middle, and SI Appendix, Fig. S15). In further support
of this observation, the increase in the number density of excess
dislocations was at ΓCH , while that in disclinations was at ΓHL

(SI Appendix, Fig. S16 for various N ) (12). We note that we did
not observe the proliferation of grain boundaries in the vicinity of
ΓCH for any N (SI Appendix, Fig. S10), suggesting that the grain
boundary melting mechanism is not at play here (4, 6, 17–19).

Loss of Icosahedral Defect Order in the Hexatic Phase. Since
elastic interactions between curvature defects mediate their
ordering (22, 23), we anticipated that the loss of this order
(Fig. 1D) occurred entirely in the hexatic phase, which lacks
translational order and hence also a shear and Young’s modulus (4,
5, 42) (SI Appendix, Fig. S18). To verify this, we quantified defect
ordering through an order parameter sensitive to icosahedral
symmetry (30, 43), this being the rotationally invariant 3D,
three-body bond-orientational order parameter, W̃6, which is
defined as

W̃6 =

−
√
4,999

11

6∑
m1,m2,m3=−6

(
6 6 6
m1 m2 m3

)
ρ6m1

ρ6m2
ρ6m3

(
∑

m |ρ6m |2)3/2 .

[1]
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Fig. 2. Evidence for the hexatic phase and identifying its role in the loss of defect order. (A) The modified Lindemann parameter, γL(t), for various Γ. γL(t) is
flat for the crystal and scales as ∼tβ , at long times, with decrease in Γ. The black dashed line is a guide to the eye and has slope 1. (B and C) The icosahedrally
referenced orientational space and time correlation functions, g′

6(s) and g′
6(t), respectively, for various Γ. The black dash-dotted curve is an exponential fit

to the upper envelope of the data. The critical power law decay exponent η6 → 1/4 as predicted by BKTHNY theory is shown by the black dashed line. In C,
the dashed line has an exponent −η6/2 → −1/8, and this value is reached on nearing the hexatic–liquid boundary. (D) (Top and Middle) The Γ dependence
of the power law exponents β and η6 for different system sizes, N, respectively. The vertical dotted lines in Top and Middle indicate the crystal–hexatic,
ΓCH , and hexatic–liquid, ΓHL, transitions for each N, respectively. (Bottom) The rotationally invariant 3D, three-body bond-orientational order parameter, W̃6,
which is sensitive to the icosahedral ordering of defects, for various N. The gray shaded region is the hexatic window. (E) Time evolution of a dislocation
pair unbinding in the hexatic phase for N = 485 particles. The black dash-dotted and solid red ovals show the bound dislocation pair and free dislocations,
respectively.

Here the first term in the summand is the Wigner-3j symbol
and ρ6m =

√
4π

∑
i Y6m(θi ,φi) with Y6m being the sixth-

order spherical harmonic, and θi and φi are the coordinates of
defect i . For a regular icosahedron, W̃6 takes the maximum value
of 1. W̃6 is large (∼0.8) and constant for Γ≥ ΓCH and is around

zero for Γ≤ ΓHL, with the drop lying almost entirely in the
hexatic window for all N (Fig. 2 D, Bottom).

Curvature-Induced Defects Do Not Interfere with Melting. Our
fast imaging experiments also helped investigate if grain boundary
scars had a role during melting. For instance, in flat space, grain
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Fig. 3. Hexatic regime is robust to the presence of scars. (A) The Voronoi tessellation of the sphere with scar centers as sites. The Voronoi cells are
pentagons due to the icosahedral ordering of the scars. The shaded pentagon also shows a dislocation located away from the scar. (B) The 12 pentagonal
tiles superimposed. The first appearance of a dislocation in each tile is marked (circles) and is colored according to the tile number. The red pentagons and the
green heptagons in the center of the tile are the 12 scars. (C) Dislocation (marked by red oval) migration to and annihilation at a scar in the hexatic regime.
Only the initial part of the hexatic phase (110 > Γ ≥ 95) was considered for this analysis since scars lost their individual identities on nearing the hexatic–liquid
boundary due to the proliferation of defects (SI Appendix, Fig. S19). (D) The crystal–hexatic (red symbols) and hexatic–liquid (black symbols) phase boundaries for
various system sizes N obtained through two measures: the first from the translational and orientational correlation functions and the second from the number
of topological defects. ΓCH−β corresponds to the Γ where β > 0.1, and ΓHL−η6 is the Γ where η6 crosses 0.25 (Fig. 2 D, Top and Middle panels). ΓCH−Dislocations
and ΓHL−Disclinations correspond to the Γ where the number of dislocations and disclinations begin to increase, respectively. The dashed lines are the phase
boundaries obtained from linear fits to data that were obtained by averaging the two different measures. The right axis is a label for each data point denoting
the system size. The scar length ls increases with N (SI Appendix, Figs. S22 and S23), but the location of the hexatic window remains unchanged.

boundaries act as sources or sinks for vacancies and dislocations
(44, 45). However, we found that crossing the crystal–hexatic
boundary, the primary source for excess free dislocations was
not scars but rather the unbinding of dislocations in bulk. We
quantified this observation by using scar centers as sites for first
carrying out a Voronoi tessellation of the sphere surface and
then marking the position of the dislocations the first time they
appeared in each tile (Fig. 3A). These tiles are pentagons due to
the icosahedral ordering of scars. Superimposing these tiles helped
visualize where dislocations appeared on the entire sphere surface,
and Fig. 3B clearly shows this is random and not exclusively
near scars. There was nevertheless a tendency for dislocations to
migrate to and annihilate at scars (Fig. 3C ), and this is in line with
earlier studies that found that the anisotropic stress field of scars
draws defects toward them (SI Appendix, Fig. S20 for quantitative
analysis of dislocation migration) (33, 46).

While dislocation annihilation at scars led to a small increase
in their length (SI Appendix, Fig. S21), this did not appear to
influence the melting process significantly. Since the number of
excess dislocations per scar scales linearly with the system size, a
straightforward way to probe the role of the scar length, ls , on the
melting behavior is to simply increase the total number of particles
in the spherical crystals (SI Appendix, Figs. S22 and S23). Fig. 3D
shows the experimentally determined phase boundaries for various
N (Fig. 2D and SI Appendix, Fig. S16). We see that ls more than
doubles in length over the range of N studied, but strikingly, the
Γ values of the crystal–hexatic and the hexatic–liquid transitions
remain more or less unchanged.

Conclusions. In flat space, premelting of thick polycrystalline
films (>4 monolayers) often initiates at grain boundaries (26).
On reducing the film thickness, premelting effects weaken (47),
but even for monolayer films, frozen-in grain boundaries increase
defect formation probabilities and thus enhance melting (48).
Our observation that grain boundary scars, irrespective of their
length, largely remain passive players and leave the hexatic window
unscathed is, therefore, quite surprising. This is all the more
so, given an earlier study that found that these scars, just like
grain boundaries in flat space, are spatially correlated with regions
of high mobility (30). Clearly, defects whose sole purpose is to
relieve the stress induced by curving space are less intrusive than
their flat space siblings in the physics of melting/freezing. We
anticipate an exciting future ahead wherein it may now be possible

to import concepts from flat space to understand phase transitions
in condensed matter systems on complex topologies (49–51).

Materials and Methods

Experiments were performed using fluorescently labeled sterically stabilized
PMMA (Poly methylmethacrylate) colloids of radius r = 0.75 μm suspended
in an oil mixture (cyclohexyl bromide [75% vol/vol] and decalin [25% vol/vol]),
whose refractive index and density are precisely matched with those of the
particles. The suspension was then added to an aqueous mixture containing
glycerol, DMSO (dimethyl sulfoxide), and water (8:1:1 vol/vol) (for more details,
see SI Appendix). Emulsion droplets (oil in aqueous medium) with a radius
ranging from 10 to 200 μm were formed via manual shaking. The samples are
then loaded in an open cylindrical cell and sealed from above with an oil seal.
All the glasswares used are cleaned by dipping for 30 min in a 2.5 M solution
of NaOH and then drying at 70 ◦C in an oven for 12 h. The PMMA particles are
known to become charged in oil (cyclohexyl bromide and decalin) due to the
partial dissociation of HBr component of cyclohexyl bromide into H+ and Br–

(52). These charged PMMA particles bind to the oil–aqueous interface due to the
formation of the image charges of opposite signs in the aqueous phase, without
absorbing to the interface (52, 53). The PMMA colloids interact via a dipolar pair
potential, U(r) = A

r3 , where A is the magnitude of the dipolar pair potential, and
r is the distance between particles (30).

We found that adding 2 μL of sodium hydroxide (NaOH 100 mM) to this
system resulted in a monotonic decrease of magnitude of the dipolar pair po-
tential, A (SI Appendix, Fig. S1). This is because the ions diffuse from the aqueous
mixture to the emulsion droplets until a balance is reached. The ion diffusion
process helps screen the colloid charge and allows tuningΓ, which in turn results
in melting of the crystal (SI Appendix, Fig. S3).

Using a Leica SP8-II confocal microscope (63X oil immersion objective,
N.A. 1.4), we followed the melting dynamics of the colloidal crystals. The 3D
stacks were captured at frame rate spanning from 7 to 25 s per stack. ImageJ
and MATLAB were used to process and render the images. We have used
standard MATLAB algorithms to find the center-of-mass coordinates of the
colloidal particles (54). All other analyses were done using custom-written codes
in MATLAB (for more details, see SI Appendix).

Data Availability. All study data are included in the article and/or supporting
information. Raw data are available upon request from corresponding author.
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