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1  | INTRODUC TION

Fieldwork encompasses any practical work taking place outside 
the laboratory for data collection and learning (Lock, 1998). Field 
data collection is essential to investigate long-term ecological pro-
cesses and observe new phenomena for the first time. Moreover, 
university fieldwork is a central component of coursework as field-
work-based skills including project design, surveying, data curation, 

and risk assessment are vital for students seeking work in a compet-
itive job market (Pool & Sewell, 2007). Thus, fieldwork for research 
and teaching purposes provides essential training and experience for 
early-career researchers (Peacock & Bacon, 2018).

Despite these benefits, fieldwork is an expensive endeavor 
that is not accessible to all (Giles et al., 2020). Access to resources 
and the privilege of delaying other responsibilities to conduct 
fieldwork create a barrier to skills that disproportionately affect 
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Abstract
There are many barriers to fieldwork including cost, time, and physical ability. 
Unfortunately, these barriers disproportionately affect minority communities and 
create a disparity in access to fieldwork in the natural sciences. Travel restrictions, 
concerns about our carbon footprint, and the global lockdown have extended this 
barrier to fieldwork across the community and led to increased anxiety about gaps 
in productivity, especially among graduate students and early-career researchers. 
In this paper, we discuss agent-based modeling as an open-source, accessible, and 
inclusive resource to substitute for lost fieldwork during COVID-19 and for future 
scenarios of travel restrictions such as climate change and economic downturn. We 
describe the benefits of Agent-Based models as a teaching and training resource for 
students across education levels. We discuss how and why educators and research 
scientists can implement them with examples from the literature on how agent-based 
models can be applied broadly across life science research. We aim to amplify aware-
ness and adoption of this technique to broaden the diversity and size of the agent-
based modeling community in ecology and evolutionary research. Finally, we discuss 
the challenges facing agent-based modeling and discuss how quantitative ecology 
can work in tandem with traditional field ecology to improve both methods.
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minorities and the disabled community (Giles et al., 2020; Healey 
et al., 2002). The opportunity to work in remote areas on exotic 
species is thus afforded to a select few in the community. The 
COVID-19 global pandemic has extended these barriers across the 
community and disrupted projects throughout the world leading 
to the loss of field seasons for many researchers due to lockdowns 
and travel restrictions (Fikrig, 2020). For early-career research-
ers and students, this has led to amplified stress and anxiety re-
garding the uncertain future of their projects (Kimbrough, 2020; 
Leigh Hester, 2020; Tercel, 2020). Future scenarios such as eco-
nomic downturn and climate change may also present disruptions 
to research and teaching in life sciences (Cagnacci et al., 2012). 
Adapting to “the new normal” presents an opportunity to integrate 
computational tools and quantitative methods into life sciences 
learning and research.

Throughout this paper, we will discuss agent-based modelling 
(also known as Individual-Based Modeling but hereafter referred to 
as agent-based modelling) as an accessible and powerful tool with 
broad applications in the field of ecology and evolution. Our aim 
was to describe the many applications of agent-based modelling for 
teaching and research in life sciences as a powerful computational 
surrogate method when field research is not possible.

2  | WHAT IS AN AGENT-BA SED MODEL?

Agent-based models (ABMs) are a simulation tool capable of test-
ing and teaching biological theory from the microbe level to whole 
ecosystems (McLane et al., 2011). It is a tool particularly suited to 
ecology as it is composed of individual agents and an environment. 
Agents populate a spatial environment and interact with this en-
vironment as well as with each other, giving it an advantage over 
most traditional modeling tools (Huston et al., 1998). Over the past 
twenty-five years, ABMs have been used across a range of projects 
to study wildlife movement, behavior, and management among oth-
ers (Benadi & Gegear, 2018; Bryson et al., 2007; Hartig et al., 2014; 
Tang & Bennett, 2010). Simulations allow for dynamic studies of 
ecological relationships. A central facet of ecological studies is un-
derstanding these relationships and informing practical manage-
ment decisions from empirical science (Margules & Pressey, 2000). 
The software used in ABMs is continually developing in line with 
technological advancements. The integration of adaptation, learn-
ing, fuzzy logic, randomness, and evolution into ABM is now being 
used to examine how systems emerge and how their influence over 
the environment and its inhabitants change over time (DeAngelis & 
Diaz, 2019).

ABM simulations offer insight into the adaptation and function of 
systems over time and space when access to field data is dangerous, 
unavailable, or simply impossible to collect (Cagnacci et al., 2012; 
Sokolowski & Banks, 2009). As COVID-19 creates a major barrier for 
fieldwork in the summer of 2020, ABMs offer an alternative method 
to collect data and test hypotheses in a collaborative and inclusive 
way.

2.1 | Model composition

ABMs are composed of data-fed agents and an environment. An 
agent is an entity with a set of parameters and a defined objective 
that interacts with other entities within the model to achieve this 
objective. In less abstract terms, this could be a model predator look-
ing for prey. The environment is the world the agents occupy and is 
often represented in a patchwork. Each patch has parameters which 
affect how the agents interact with it, for example, a grassland envi-
ronment where some patches are occupied by prey animals. Through 
these interactions, parameters for both agents and the environment 
can change; thus, future interactions are stochastic and allow for the 
emergence of novel behavioral and landscape patterns to emerge, 
for example, emergence of home range in areas of food. ABMs can 
be spatially and temporally explicit. The spatial and temporal scales 
are both defined by the user—a crucial step that is dependent on the 
objectives of the study. See Figure 1 for a graphical representation 
of an example agent-based model aimed at examining predator–prey 
interactions in a mixed-agricultural environment.

The parameters (e.g., speed of the predator, density, and detec-
tion distance of prey) are important as model results are sensitive to 
these conditions (Saadat et al., 2018). There are techniques available 
to choose these initial parameters such as using observations from 
field sites, existing datasets, or publications. Similarly, there are a 
variety of statistical methods for tuning initial model parameters for 
example sensitivity analysis, microsimulation, and machine learning 
(Calvez & Hutzler, 2006; Hassan et al., 2010). Input-data in ABMs 
are data that influence processes within the model environment but 
are not in turn influenced by the simulation; for example, daily pre-
cipitation input-data effects on simulated soil moisture (Eisinger & 
Wiegand, 2008). For this reason, these data are differentiated from 
entity variables and initial model parameters (Grimm et al., 2010). 
These data may be selected from field sites such as weather stations, 
previous publications, or generated using statistical modeling.

2.2 | The ODD protocol

Early scepticism of this tool has led to marked improvements in 
standards and protocols such that a framework now exists to en-
sure repeatability and consistency across agent-based models (Hare 
& Deadman, 2004; Grimm et al., 2010). The result of this develop-
ment is that ecologists can simulate testable hypotheses in realistic 
environments with complex dynamics between agents for both hy-
pothetical and real-world scenarios without having to travel for field-
work. This framework known as the Overview, Design Concepts, 
and Details protocol (ODD) was developed by Grimm et al. (2006). 
This is a standardized communication method to ensure that model 
development is understandable and repeatable by the scientific 
community, which is a staple of good research. The ODD protocol is 
a structured report for presenting the rationale, evidence and sup-
porting information of the model development process (Figure 2). It 
entails the following:



12484  |     MURPHY et al.

1. Overview: General information and context of the model
2. Design concepts: Strategic considerations and internal methods
3. Details: Technical methodology and details of their use in the 

model.

Widely used since its conception, the ODD protocol ensures 
the high standards of ecological research are adhered to during 
model development (Grimm et al., 2010; Grimm et al., 2020). It 
ensures the research question, no matter how complex, is trans-
parent to scientific review such that the theoretical foundations 
of the model are robust and the formulation of model features 
is rigorous. The criteria listed under the ODD protocol dictates 
that each entity is fitted with a complex adaptive system (CAS). 
Implementation of these criteria creates structured entities that 
provide greater value in basic or advanced models. The framework 
ensures that theoretical foundations are included computationally 
and prevents ad hoc programming so that the model is a realistic 
system for applied research (Railsback, 2001). See Polhill, Parker, 

Brown, & Grimm (2008) for examples of three ABM's described via 
the ODD protocol.

2.3 | Software

Much of the software to create and run ABMs is open-source and 
hosts an inclusive community that is essential to newcomers to the 
field. Innovation in ABMs is fueled by the collaborative and diverse 
community that extends this tool to simulate increasingly complex 
phenomena (Heckbert, Baynes, & Reeson, 2010). The availability 
of software packages and the computational power required to 
develop a model has greatly improved in recent years facilitat-
ing greater accessibility across disciplines (Railsback et al., 2006; 
Salecker et al., 2019; Thiele, 2014). Table 1 displays the range of soft-
ware available for developing an ABM. We recommend ecologists 
to use NetLogo as it is an open-source and free-to-use platform. 
NetLogo also boasts simple programming language, graphical user 

F I G U R E  1   An example of an agent-based model design for predator-prey dynamics in an agricultural landscape. The predator's objective 
is to catch prey and the outcome of that is dependent on its state variables, for example, sex and age may dictate hunting range. The prey 
animals' objective is to forage and survive. To achieve this, they must enter certain parts of the environment which may increase their 
chance of encountering a predator. The farmer's objective is to keep the livestock alive, whether a predator has interacted with the farm 
previously can affect their “vigilance”, thus if livestock is undefended it may be more accessible to the predator. In this example, each agent's 
objective affects other agents by altering the environment and the state variables which drive decision making. In the grey section (left) is 
the spatiotemporal scale of the model and the developer variables, these variables can influence the model during an experiment or prior to 
one, for example, changing prey accessibility via prey density and farmer vigilance
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interface, and a comprehensive library of resources comprising com-
munity models, code documentation, and cloud services (Figure 3). 
The method's accessibility has promoted the growth of a diverse 
community and research output. The remainder of this paper will 
focus on the use of NetLogo for the development of ABMs for teach-
ing and research, see Abar et al. (2017) for a comprehensive review 
of ABM software if interested in other software.

3  | WHO WOULD USE AN AGENT-BA SED 
MODEL?

The flexibility of an ABM makes it a diverse tool for research and 
teaching. Agents and environments can be arbitrary entities with 
no real-life characteristics to test the validity of ecological theory 
outside the natural environment, for example, the landscape of 
fear theory (Teckentrup et al., 2018), the theory of trophic ecology 
(Giacomini et al., 2009), or the dynamics of predator–prey systems 
(Gras et al., 2009). Alternatively, agents and environments can be re-
alistic representations of wildlife to answer targeted research ques-
tions or teach on real-world systems. For example, Florida panther 

(Puma concolor couguar) movement ecology in a disturbed landscape 
(Cramer & Portier, 2001), elk (Cervus elaphus) migration patterns in 
Yellowstone National Park (Bennett & Tang, 2006), and coyote (Canis 
latrans) population structure (Conner et al., 2008). On a macroscale, 
landscape processes can be simulated to study dynamic environmen-
tal variables on individual agents for example the effect of oil and 
gas development on species communities in western North America 
(Copeland et al., 2009) or the effect of landscape management and 
structure on multispecies diversity (Goss-Custard & Stillman, 2008; 
Hovel & Regan, 2008). All said, the scalability of a model gives the 
tool a broad usership in science with extensive applications. So, who 
should use an ABM?

3.1 | Educators

ABMs are valuable for educators as a simulation tool and as a means 
to improve computer literacy among their students. Expensive trips 
to the field for examining ecological processes can be replaced or 
supplemented by simulating ecological phenomena. Moreover, when 
using ABMs, students actively engage with adjustable parameters 

F I G U R E  2   Structure of the ODD protocol which should inform model development. The categories O (Overview), D (Design concepts), 
and D (Details) are meant as comments but are not used in ODD model descriptions. The sub-headings are used to describe the model 
thoroughly from concept to mechanical functionality

TA B L E  1   Toolbox of products to develop agent-based models recommended for ecologists

Platform Developer
Programming 
language Operating system

AnyLogic The AnyLogic Company; Oakbrook Terrace, Illinois, 
USA

Java Microsoft Windows 7 and after; SP1, x64;
Apple Mac OS X 10.10
Universal; SuSE Linux, x64 (with installed GTK+

Cougaar Cougaar Software Inc.; Vienna, Virginia, USA] Java Windows 98;
Windows NT;
Windows XP;
Linux;
Mac OS X; and Java-1.4-capable PDA

Framsticks Poznan University of Technology, Poznan, Poland FramScript Windows;
Linux;
Mac OS X

MASON George Mason University, Fairfax, Virginia, USA JAVA Any Java supporting machine (version 1.3 or higher)

NetLogo Northwestern University, Evanston, Illinois, USA NetLogo Any Java supporting machine (version 6 or higher)

SARL Stéphane Galland, Burgundy Franche-Comté 
University, France;

Nicolas Gaud, Burgundy Franche-Comté University, 
France,

Sebastian Rodriguez, Advanced Informatics 
Technology Research Group, Tucuman, Argentina

SARL/Java Any Java supporting machine (version 1.8 or higher)

Starlogo Mitchel Resnick, Eric Klopfer, and others at MIT 
Media Lab and The MIT Scheller Teacher Education 
Program, Massachusetts Institute of Technology; 
Cambridge, MA, USA

StarLogo (an 
extension of 
Logo)

Mac OS X v10.2.6 or higher with Java 1.4 installed;
Windows;
Unix; Linux (StarLogo does not seem to be 

compatible with Java 5/1.5 on Solaris)

SWARM Swarm Development Group Java Windows; Linux; Mac OS X

Note: All software in the table is open-source and free to use. NetLogo is recommended for ecologists as it hosts an advanced suite of tools for life 
sciences research.
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and can witness changing effects in real-time which can facilitate a 
greater understanding of theoretical concepts. Here, NetLogo comes 
into its own as it has a graphical user interface that a student can in-
teract with or without needing to change the underlying code. At the 
same time, it is important to recognize that quantitative methods and 
computer literacy are core skill sets of modern ecologists in research 
and opportunities for exposure to these skills in the undergraduate 
level are limited (Farrell & Carey, 2018; Read et al., 2016). Teaching 
computer literacy and code language skills to students who have no 
experience is a challenge in ecological teaching, especially as these are 

important skills for a graduate research study (Farrell & Carey, 2018). 
By embedding these concepts in ecological practical classes using an 
ABM, students are more likely to engage and increase experience and 
literacy in computer science (Carey & Gougis, 2016).

3.2 | Supervisors

Experience with quantitative methods is becoming increas-
ingly important within ecology and evolution as technology 

F I G U R E  3   Example of an agent-based model in the NetLogo environment (version 6.1.1). This software is recommended due to its 
understandable and easy to use graphical user interface (a) and its simple programming language (b) that does not require advanced 
programming skills to create models. This model is an ABM SIR model that demonstrates the spread of a virus (red cells) through a network 
of uninfected individuals (blue cells). It is open-source and available in the Netlogo model library (Stonedahl & Wilensky, 2008)
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and high-frequency data are heavily used in research (Auker & 
Barthelmess, 2020; Sherin, 2011). Undergraduate and masters 
level thesis projects are often students' first attempt at complet-
ing an end-to-end research project, and this experience is viewed 
as a proxy for future success and entry to graduate-level research 
(Narayanan, 1999). Supervisors have an important and often de-
fining role training their students and exposing them to scientific 
concepts and methods (Cook, 1980). And those supervisors who 
have experience using ABMs can equip their students with meth-
ods for completing an end-to-end research project on a variety of 
topics while also exposing students to quantitative methods for 
ecology and evolution.

3.3 | Researchers

Agent-based models are data-fed tools that best simulate realis-
tic systems when high-frequency data sources are model inputs. 
Technology in ecology and evolution is quickly advancing the field, 
and new tools are collecting enormous amounts of high-fidelity data 
from sensors and tools deployed in the field (Cagnacci et al., 2010; 
Hampton et al., 2013; Weathers et al., 2013). Due to their versatil-
ity, agent-based models can be incorporated into a plethora of re-
search projects either to generate data or as an ensemble approach 
with fieldwork or other quantitative methods. Exposure to these 
methods at the early-career stage can diversify a scientist's toolkit 
and increase accessibility to a diverse research portfolio.

4  | WHY USE AN AGENT-BA SED MODEL?

In this section, we discuss why educators and researchers should 
apply ABMs in their teaching and training of students as-well-as dis-
cussing why researchers can benefit from learning this skill regard-
less of their field of study.

4.1 | In teaching

Universities are in the process of altering both taught and research-
based programs to adapt to COVID-19. To effectively practice so-
cial distancing, universities are forecasting that blended learning 
(in-person and online teaching) will become standard practice in the 
2020–2021 academic year. This presents an opportunity to design 
courses that promote inclusivity and accessibility for those not ca-
pable of physical ecological training. ABMs can be incorporated into 
blended learning for all student levels to advance their understand-
ing of important topics for scientific training (Shiflet & Shiflet, 2014). 
ABMs can be used in a variety of ways to diversify teaching methods 
in a blended environment yet few full courses exist and most users 
of this method are self-taught (Macal & North, 2013). Despite this, 
there is a considerable demand for instruction on how to use this 
tool across disciplines (Macal & North, 2013).

4.1.1 | Seeing is believing

Traditionally in university courses, fundamental concepts in ecology 
are taught through mathematical equations, for example, the the-
ory of territoriality, niche theory, and predator–prey theory (Bobis, 
Way, Anderson, & Martin, 2015). Students who struggle mathemati-
cally may struggle to engage with these concepts and thus experi-
ence stunted learning and feelings of anxiety leading to avoidance 
of quantitative methods in ecology (Bobis et al., 2015). Despite 
this, mathematics remains fundamental to ecology. The instruc-
tion method remains one of the most important factors in student 
engagement levels, especially for mathematics (Bobis et al., 2015). 
ABMs allow students to witness mathematics in action and bridge 
the gap between mathematics and wildlife.

ABMs allow students to view theory in practice using a graphical in-
terface to see how changing parameters affect patterns in simulations 
(Shiflet & Shiflet, 2014). NetLogo hosts a library of ready-to-run mod-
els that are free to use which simulate (with adjustable parameters) a 
range of concepts such as disease transmission, predator–prey dynam-
ics, territoriality, forest canopy development, ecological disturbance, 
and succession. These models can be used in parallel with traditional 
lecturing to enhance understanding or as a valid alternative to practical 
field components of modules. Especially as more teaching takes place 
online in 2020–2021 and beyond. By pairing the theoretical explana-
tion of ecological concepts with practical classes using ready-to-go 
ABMs, students can engage with concepts and understand the theory 
dynamically as they view changes within the model environment.

A survey of students at the postgraduate level ran by Barraquand 
et al. (2014) found that many students viewed ecology teaching as 
disconnected from mathematics, statistics, and modeling. Rather 
concepts were explained as a narrative leaving students underpre-
pared to enter postgraduate studies (Ellison & Dennis, 2010). ABMs 
are a natural starting point for learning modeling as it is rooted in 
the individual perspective and demonstrates how individual agents 
interacting with external factors, like their environment, create com-
plex systems. We would argue that this bottom-up perspective is 
more natural for people than top-down representations through 
abstract mathematics. Some have suggested that to improve mathe-
matical literacy we should integrate mathematics with field-courses 
(Gimenez et al., 2012). We would question if this is realistic? The 
barriers to fieldwork remain a problem but so is the problem of mis-
understanding dynamic systems by observing them at one point in 
time. ABMs allow students to examine systems in a temporally and 
spatially explicit environment within the classroom. This method re-
moves barriers to communicating equations effectively and intro-
duces students to quantitative methods, programming, and practical 
statistics as undergraduates.

4.1.2 | Transferable skills

Many students are drawn to ecology due to a love of wildlife and 
because they believe it is not as quantitatively rooted as other 
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sciences, for example, physics (Barraquand et al., 2014). In reality, 
ecology always has been and is more and more linked with technol-
ogy and quantitative methods (Hastings et al., 2005). We must begin 
to review how students receive training so that they are prepared 
to advance their careers beyond the undergraduate level. This is in-
creasingly relevant for students hoping to pursue academic research 
as they will be expected to interface with complex technology, ad-
vanced statistics, and big data (Hobbs & Ogle, 2011). In any case, 
learning programming languages, data handling, and experimen-
tal design are transferable skills which improve the employability 
of science graduates. ABMs expose students to these concepts in 
the context of ecology and evolution as applicable and engaging 
coursework.

Software, especially NetLogo, uses a very intuitive programming 
language which is an easy-to-use resource for students looking to 
improve computer literacy or as an introduction to programming 
(low threshold for entry, no ceiling for complexity). Students must 
be trained accordingly as programming and quantitative skills are 
becoming increasingly important in research throughout the liter-
ature (Ríos-Saldaña, Delibes-Mateos, & Ferreira, 2018). NetLogo is 
open-source, and the model library contains multi-disciplinary (e.g., 
ecology, evolution, social science, computer science) model exam-
ples that range from very simple to highly complex. All of the code 
for these models is fully annotated and can be examined, manip-
ulated, and extracted into students own creations. The model de-
velopment process concludes with the running of experiments and 
data extraction from NetLogo; thus, ABM also forces students to 
think about experimental design and data handling throughout the 
model development process. These are transferable skills that can 
be extrapolated to projects which involve fieldwork. The ability to 
use quantitative methods in combination with traditional fieldwork 
is an attractive attribute for candidates in a competitive job market 
(Shiflet & Shiflet, 2014; Ríos-Saldaña et al., 2018).

The scalable complexity of NetLogo also allows students who 
find themselves interested in quantitative ecology to find new and 
more complex aspects of the field. As research involving ABMs diver-
sifies so does its applications. Working with R (R Core Team, 2020), 
Python (Van Rossum & Drake, 2009), QGIS (QGIS, 2020), and other 
programming languages via NetLogo can lead naturally curious stu-
dents to expand their quantitative interests, skills, and research 
portfolio through a relatively simple and early introduction to ABMs.

4.1.3 | Research autonomy

Students can also use ABMs in their own projects to complete the 
full research process for original ideas without a field component. 
Ecotourism research companies such as Operation Wallacea (https://
www.opwall.com/) have been important destinations for under-
graduate and graduate students to complete exciting projects in ex-
otic locations. However, this avenue is clouded in uncertainty due to 
COVID-19 (Galley & Clifton, 2004; Operation Wallacea COVID-19 
statement). It is often not possible and less practical. however for 

students, to travel to exotic locations to complete fieldwork for their 
undergraduate or masters thesis if funding is unavailable.

Research has shown that success of natural history documen-
taries has raised awareness for many exotic species and led to vi-
carious connections and public engagement on par with targeted 
conservation campaigns (Fernández-Bellon & Kane, 2019). An ABM 
allows students to select any case-study species regardless of lo-
cation and formulate hypotheses of their own choosing without a 
fieldwork component. An ABM also develops students' experimen-
tal design and quantitative methodology in a practical, accessible, 
and collaborative way. ABMs allow a greater number of students to 
take full ownership of their thesis project from beginning to end and 
develop a rounded skill set for scientific research.

4.2 | In research

Ecological understanding is derived from examining subtle pro-
cesses, patterns, and interactions that occur between species and 
the environment (Pressey, Cabeza, Watts, Cowling, & Wilson, 2007). 
ABMs enable ecologists to study behavioral ecology, movement 
ecology, intraspecific/interspecific interaction ecology, disturbance 
ecology, and human interaction ecology across a range of environ-
ments; for example, agriculture, forestry, urban landscapes, and 
wilderness at any spatial-temporal resolution (McLane et al., 2011). 
Importantly, ABMs move away from the “average-individual” para-
digm which is typical in traditional models and toward an “ecology of 
individuals” to capture variance at the core of the system (Uchmański 
& Grimm, 1996).

4.2.1 | Ecology of individuals

The inclusion of tunable parameters, agent behavior, environmen-
tal characteristics, and processes in a model sets the ABMs apart. 
Incorporating subtle variables with radiating effects is a feature 
not seen in traditional models, for example the role of dominance 
and territoriality in canid species social structure (Pitt et al., 2003) 
or the role of previous environmental experience in barnacle 
goose (Branta leucopsi) foraging behavior (Kanarek et al., 2008). 
For this reason, ABMs differ from other modeling, which are typi-
cally written as mathematical equations (Evans, 2012; Pickett, 
Kolasa, Jones, 2007). The Lotka-Volterra models are an example 
of such an equation structure where predator-prey dynamics are 
captured by a pair of differential equations. This classical approach 
to modeling is mathematically tractable in that there are general 
solutions (Kokko, 2009). Such models are deterministic and in-
clude no randomness, they assume we are dealing with a popu-
lation of “average individuals” (Uchmański & Grimm, 1996). The 
solutions are continuous which is an acceptable simplification but 
does lead to the “atto-fox problem” where fractional populations/
organisms (0.5 predators) are possible (Mollison, 1991). In systems 
where cognition and sensory modality play a part in interactions, 

https://www.opwall.com/
https://www.opwall.com/
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ABMs can examine the processes that drive these interactions, for 
example Srinivasan et al. (2010) modeled predator-prey dynamics 
between intelligent organisms in unique habitat (orca Orcinus orca 
and dusky dolphins Lagenorhynchus obscurus in Kaikoura, New 
Zealand).

4.2.2 | Biological realism

The inclusion of temporal and spatial extent in an ABM makes it 
an ideal tool for studying important concepts in biology such as 
behavior, interaction, movement, and adaptation, for example, 
Malishev et al., 2017. Models that incorporate physiological bar-
riers and restrictions to behavior are key to capturing biological 
realism in ecological systems (Johnston et al., 2014). Internal state 
and navigation drive process in the wild but remain understudied 
and knowledge on these topics is limited (Graf et al., 2007; Tang 
& Bennett, 2010). Sense within an ABM dictates where agents go 
and the resources they access thus having consequences at indi-
vidual, collective, and landscape scales (Graf et al., 2007). Senses 
are not universal, and different species have advantages and dis-
advantages in how they sense their environment (Kalmijn, 1988). 
The five senses and other nonhuman senses such as electro-mag-
netic detection (Keeton, 1971), echolocation (Jones & Holderied, 
2007), and ultraviolet light detection (Viitala et al., 1995) provide 
wildlife with the data they need to make decisions. Including these 
factors is unique to ABMs and can drive understanding of agent 
interactions within complex systems.

Interaction is a core concept that underlies ecological the-
ory and has practical consequences in the field (Urban, 2011). 
Species interact extensively with the abiotic, biotic, and human 
environment (Gilpin, 1973). Intraspecific interactions within a col-
lective and the group dictates fitness and safety for many spe-
cies, for example, mammal herds and flocking birds (Seppä et al., 
2001; Sparkman et al., 2010; Wang et al., 2011). The behaviors 
and movement patterns exhibited by groups begin at the individ-
ual level. However, how these patterns emerge is poorly under-
stood due to their inherent complexity (DeAngelis & Diaz, 2019). 
ABMs are invaluable for studying how interactions have collective 
consequences. This can be applied to understanding arbitrary be-
havior arbitrarily, for example, flocking behavior and the role of 
leadership in group dynamics as shown in Quera et al., (2010) or 
for applications to specific species, for example, examining how 
group foraging can drive spatial segregation as seen in Northern 
gannets (Morus bassanus) (Wakefield et al., 2013). ABMs are a 
unique resource for modeling interactions as individual variance is 
captured as is its effect on the population.

When a model event happens, which changes an agent or en-
vironmental state, the output can influence the model in some-
times unpredictable ways. The ability for novel system dynamics 
to emerge naturally through agent action sets ABMs apart from 
other techniques (Uchmański & Grimm, 1996). How unconven-
tional patterns emerge can be examined under different parameter 

values such as habitat heterogeneity which affects foraging behav-
ior (Nonaka & Holme, 2007) or via agent decision-making such as 
dispersal (Kramer-Schadt et al., 2004). When novel systems emerge 
in an ABM, agents can adapt and thus can be observed responding 
to a changing environment.

Adaption is a central component of natural science that is dif-
ficult to model accurately (Holman, Brown, Carter, Harrison, & 
Rounsevell, 2019). Agents in ecology change their behavior dy-
namically over time in response to their environment, and these 
adaptations can often be unpredictable (Alberti, 2009). Adaption 
is a fundamental process in ABMs that improves their applica-
bility to ecological research. Changes in the environment may 
cause a shift in individual behavior which can radiate outward to 
the collective, for example, examining how elk (C. elaphus) adjust 
their movement ecology to a fire-disturbed landscape (Rupp & 
Rupp, 2010) or the adaption of honey bee (Apis mellifera) colonies 
to prevent attacks on colonies capable of a successful defense 
(Johnson & Nieh, 2010).

4.2.3 | Intelligent systems

Agent decision-making is a result of internal models which represent 
cognition. Agent cognition models range from logical if-then state-
ments to complex algorithms that better mimic animal cognition. 
Agent learning and decision-making models have advanced with de-
velopment in artificial intelligence leading to the integration of these 
techniques within ABMs (DeAngelis & Diaz, 2019; Rand, 2006). 
Individual behavior is important in ABMs, and the ability for individ-
uals to develop strategies from experience with a fitness incentive 
is an invaluable resource for modeling ecological systems (DeAngelis 
& Diaz, 2019). See Figure 4 for a comparison between a simplistic 
agent internal model and an agent with integrated machine learning 
model. Machine learning is a rapidly advancing field and integration 
with ABMs yields massive potential for forecasting real-world sys-
tems and understanding behavior (Rammer & Seidl, 2019). Using a 
machine learning model within agents changes the decision-making 
process and how they take action over time. Integration of machine 
learning can also extend knowledge transfer through agent genera-
tions and communities which is imperative in modeling species who 
exhibit complex behaviors. Examples from the literature of ABMs 
integrated with machine learning algorithms in ecology include neu-
ral networks for decision-making (Okunishi et al., 2009), genetic 
algorithms for fitness and strategy development (Hamblin, 2012; 
Mitchell et al., 2012), Q-learning algorithms for movement (Kons & 
Santos, 2019), and deep learning for predicting disturbance events 
(Rammer & Seidl, 2019).

NetLogo now features a powerful extension allowing for integra-
tion of raster and vector shapefiles from GIS datasets (see Figure 5). 
This high-frequency input-data strongly increases simulation accu-
racy and moves the patchwork environment typical of ABMs toward 
realistic landscapes (Walker & Johnson, 2019; Wilensky, 1999). 
Advances are not only being made in creating complex internal 
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models but also incorporating mathematical models and combining 
multiple ABMs that influence each other in a series of intrinsic in-
teractions using the LevelSpace extension (see Figure 6). Complex 
submodels improve accuracy through introduction of complex inter-
actions and parameters which alter processes over time and space. 
Innovation with input-data is pushing ABMs toward realism and 
allowing developers to discover new solutions within a representa-
tional environment. This promotes repeatability and open-science 
as input-data files can be included in the model package to ensure 
transparent and scrupulous model development (Grimm et al., 2010; 
Walker & Johnson, 2019).

Experiments run in NetLogo output data which are typically 
analyzed in separate software such as Excel, Python, or R (Thiele 
& Grimm, 2010). Integration of NetLogo with statistical software 
Python and R has expanded the ABM toolbox as it combines the 
strengths of both programs to improve accuracy, validation, and 
ease-of-use (Jaxa-Rozen & Kwakkel, 2018). Both R and Python are 
open-source and have a growing user community; thus, integration 
will allow for the expansion and development of ABMs as a tool with 
increased capacity for sub-modeling, parameter testing, and data 
analysis (Thiele & Grimm, 2010; Salecker et al., 2019; Thiele, 2014).

5  | HOW TO USE AN AGENT-BA SED 
MODEL

In this section, we provide learning resources and frameworks for 
implementing Agent-Based methods into life science classrooms and 
research projects.

5.1 | Tutorials, lesson plans, and hands-on guidance

We present a range of multimedia learning resources for ABM 
novices in Supplementary Material 1, which provide fundamen-
tal training in the understanding and development of ABM. We 
provide deliverables and timelines for teaching NetLogo in the 
classroom in Table 2 to give educators and researchers esti-
mated timeframes for learning the foundation of NetLogo for 
use in the class and research. We provide a sample lesson plan in 
Supplementary Material 2 which can be used as a framework for 
educators who wish to use ABM content to enhance their teaching 
material. We present links to helpful resources for using ABMs in 
research in Supplementary Material 3, these resources can equip 

F I G U R E  4   Example of internal agent model cycle (in black) with integration of machine learning (in red) as described by Rand (2006). The 
left hand side of the diagram shows the logical flow for both a simple internal model (in black) and how that flow changes when machine 
learning is added for cognition (in red). The right hand side of the model is to visualize how internal models affect behaviour. A simple 
internal model may tell agents the right choice (in black) whereas via machine learning agents can contextualize the environment and make 
informed decisions (in red)

Agent with sensory
input observes the

world 

Agent updates
internal model with

new information 

Agent takes action

I need to find a bed
site in appropriate

habitat 
Record and save

sensory input

update machine
learning  model with

history of
success/failure 

Recommend an
action based on

current information
and historical

success
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scientists in the development of complex models to emulate a 
study site or theoretical hypothesis for peer-review. Finally, we 
present a work-through for a research question in Supplementary 
Material 4 which active researchers can use as a guide for imple-
menting ABM into their work.

5.2 | To supplement or surrogate fieldwork

ABMs can bridge fieldwork and quantitative methods and allow sci-
entists across sectors to work together (Axelrod, 2006). ABMs can 
be completely independent of field-studies and can test theories on 

F I G U R E  5   (a) OpenStreetMap view of 
the city of The Hague, in the Netherlands 
and its surrounding areas in QGIS. (b) 
Circle of 30 km radius overlaid with 
Corine land cover onto map and centred 
on The Hague in QGIS. (c) View of the 
NetLogo agent-based model. The radius 
of the circle is 30 km. Different Corine 
land cover types were assigned specific 
colours, for example, dark blue for sea, 
light blue for other water bodies, and grey 
for urban land cover. The agents, in white, 
represent gulls on their nests and are 
distributed around the centre of the figure
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abstract or real-world entities where fieldwork is impossible such 
as testing the role of body size on obligate scavenging behavior in 
theropod dinosaurs (Kane et al., 2016).

If fieldwork is central to the project, ABMs can be integrated into 
the experimental design of field-based research to generate new in-
sights impossible to collect in the field (Poisot et al., 2019). For ex-
ample, Carter et al. (2015) used ABMs to model Tiger (Panthera tigris) 
territoriality and population dynamics in Nepal's Chitwan National 

Park. The ABM prediction accuracy was tested against a twen-
ty-year field study on tigers in the national park with high accuracy 
and was used to inform management strategies. Bonnell, Sengupta, 
Chapman, and Goldberg (2010) showed these techniques in their 
paper on disease dynamics in red colobus monkeys (Procolobus spp.). 
Dispersal patterns of simulated agents were modeled against field 
observations with statistical tests to validate predictions on disease 
dynamics, and they found high accuracy in simulations of real-world 

F I G U R E  6   The LevelSpace extension in Netlogo allows two Agent-Based models to work concurrently. In this example, a climate model 
(A) dictates the rate of growth for grass, which is a key resource for prey in the predator-prey model (B). A change in climate parameters in 
model A will subsequently alter the predator-dynamic in model B which can affect model A via increased methane release from prey creating 
a spatiotemporally explicit network of interwoven ecological processes not achievable in most modeling techniques
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ecological situations which boosted their productivity in the field as 
they could target disease “hot-spots” for observation.

Where data exist but fieldwork is not feasible an ABM can be used 
to save time and resources to test strategies before they are applied in 
the field. For example, Philips (2020) modeled avenues of dispersal and 
potential human interactions of Eurasian lynx (Lynx lynx) at proposed re-
introduction sites in Scottish National Parks to inform spatio–temporal 
understanding of lynx ecology in an unknown and novel environment.

6  | LIMITATIONS OF AGENT-BA SED 
MODEL S

Despite the benefits listed above, it remains a challenge to create 
an ABM capable of generating new insights into ecological systems. 
While the complex and dynamic nature of ABMs is what makes them 
attractive, it is also one of the challenges they face. Developing a 
model system requires the developers to remain focused on the 

Exercise Necessary level of understanding
Estimated 
timeframe

Opening NetLogo and running a 
ready-to-run model

- Basic Netlogo functionality (file, edit, 
tools, zoom, tabs, help; Interface, Info, 
Code)

- Agents (inspect, watch, follow, 
properties, shape)

- Environment (inspect patch, patch 
coordinates, patch properties)

- Global variables
- Ticks (tick representation, speed, view 

updates)
- Go
- Setup
- Plots (viewing)

1–3 hr.

Manipulating a NetLogo model - Buttons
- Sliders
- Switch
- Chooser
- Input
- Monitor
- Plots (designing)
- Outputs
- Notes
- Command Centre

4–6 hr

Basic NetLogo programming
Please see attached simple-ocean 

model file for example of basic 
programming

- Globals
- Breeds
- Basic procedures
- Setup commands
- Go commands

6–12 hr

Simple model development for 
answering basic questions

Please see attached multi-agent-
ocean model file for example of 
basic model capable of answering 
questions

- Creating breeds
- Inputting variables (global, patch, turtle)
- Creating tunable parameters
- Writing functioning procedures
- Writing functioning Setup commands
- Writing functioning Go commands
- Designing experiments in BehaviorSpace

12–30 hr

Complex model development for 
peer-review research

- NetLogo extensions
- Integration of mathematics and code
- Understanding spatial and temporal 

extent
- Sensitivity analysis for parameters
- Implementing agent cognition and 

behavior
- AOB

30+ hr

Note: Each proceeding exercise assumes understanding of the previous exercise for completion. 
Two sample models are attached as a framework for what is achievable within the time constraints 
of the estimated time frames. It is appropriate to quote Hofstadter's law when attempting to 
estimate time frames, especially with regard to programming; “It always takes longer than you 
expect, even when you take into account Hofstadter's Law” (Hofstadter, 1999).

TA B L E  2   Framework for implementing 
NetLogo into a teaching schedule
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question posed so each facet of the system has the appropriate 
level of detail for their research objective (Couclelis, 2002; Crooks 
et al., 2008).

As Orzack (2012) notes “…it is not credible (much less feasible) 
that we would create a model of ecosystem dynamics that was explic-
itly grounded in the metabolic dynamics of the cell.” This problem can 
also extend into the theoretical framework for model development 
where ad hoc programming can mask important assumptions made in 
the development, which can skew the outcome of the model (Crooks 
et al., 2008). All models are simplified representations of reality. This 
broad definition speaks to the diversity of modeling approaches. Why 
the need for simplicity? For starters, we are ignorant of the way the 
world works. We do not have a complete understanding of any process 
even if we are near certain of the general outline (Breckling, 1992). In 
ABMs, this is a problem when designing agents and the environment 
as simplified systems may not accurately model reality.

Certainly, the most potent challenge of ABMs is model valida-
tion and calibration. Although leaps in computational power mean 
researchers can now conduct a comprehensive sensitivity analysis, 
if real-world data are unavailable, then validating the results of the 
model can be challenging and can devalue predictions. There are 
two solutions to these challenges. Firstly, the ODD protocol was de-
signed to communicate each aspect of model development to reduce 
ad hoc programming and encourage the developer to justify each 
model feature with data or references (Grimm & Railsback, 2006). 
Secondly, by working with field ecologists and building models in 
tandem with field-based projects, the outcomes of that model can 
be calibrated and validated by real-world data from the system the 
model is trying to emulate. Despite these challenges, the growth and 
diversification of the ABMs community birth new ways of thinking 
and practices to increase the applicability of this tool.

7  | CONCLUSIONS

In this paper, we discussed the broad applications of ABMs in ecological 
research. We present the diverse use of this tool in research and teach-
ing across natural science. ABMs can teach students key concepts in 
ecology and evolution which add to their skill set by introducing them 
to quantitative methods and tools. The goal of this paper is to advertise 
ABMs as a resource that ecologists can use to enhance their research, 
diversify their skillset, and expand their teaching practices. During the 
COVID-19 pandemic and looking forward to future unforeseen barri-
ers to fieldwork, ABMs offer alternatives that field ecologists may use. 
We highlight how the method is continually developing and relies on 
the growth of a diverse community to offer innovative ways to use this 
tool and integrate it with other tools of research. Online, open-source 
resources present the opportunity to grow professionally during the 
COVID-19 pandemic and future disruption of fieldwork.
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